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Last time... Linear Discriminant Function

- Linear discriminant function for a vector x

y(x) = w' X + wg
where w Is called weight vector, and wp is a bias.

- The classification function is
C(x) = sign(w'x + wp)

where step function sign(-) is defined as

. +1, a=0
sign(a) = —1, a<0
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- S0 Wp determines the location of the decision surface.

Last time... Properties of Linear
Discriminant Functions

e The decision surface, shown in red,
IS perpendicular to w, and its
displacement from the origin is

controlled by the bias parameter
Wo.

y >0 5132

e The signed orthogonal distance of
a general point x from the decision
surface is given by y(x)/||w||

== * Y(X) gives a signed measure of the
perpendicular distance r of the
point X from the decision surface

- y(X) = 0 for x on the decision surface. The normal distance

from the origin to the decision surface is



Last time... Multiple Classes: Simple Extension

- One-versus-the-rest classifier: classify Cx and samples
not in Cx.
- One-versus-one classifier: classify every pair of classes.

nin @) Ag epls



Last time... Multiple Classes: K-Class
Discriminant

- A single K-class discriminant comprising K linear functions

T
yk(X) — WkX Wik
- Decision function

C(x) =k, if ye(x) > y;(x) Vj # k

- The decision boundary between class Cx and C; is given
by Yi(X) = Yi(X)

(Wi — W) X + (w0 — wjo) = 0

nin @) Ag epls
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Last time...Fisher’s Linear Discriminant

J(w) =

neCs

Between—-class wvariance

Within—-class wvariance
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- Pursue the optimal linear projection on which the two classes
can be maximally separated

y =W X
- The mean vectors of the two classes

mi= Yo xe m= 3o,

neCy

A way to view a linear
classification model is
In terms of
dimensionality
reduction.
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Last time... Linear classification

f(z, W)

10x1

=W S072x1 [(+b)] 10x1
10x3072

W

[32x32x3]
array of numbers 0...1

\ A 10 numbers,
\ indicating class
\\ scores
\

B
parameters, or “weights”
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Last time... Linear classification

stretch pixels into single column

0.2 | -05| 0.1 2.0 56 fi -06 8 cat score

19 | 13 | 23 | 00 231 4 32 | . | 437.9 dog score

e O (025)| 0.2 | -0.3 -1. :
input image 24 = 61.95 ship score
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Last time... Linear classification

deer classifier

[32x32x3]
array of numbers 0...1
(3072 numbers total)

10
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Interactive web demo time....

pe oa g =rolil izl y s[0] | | s[1] || s(2] L
[ 1 |
-06 ;1-“} =0:%21 |0.50]|0.40 0 1.20| | 06.01 | | 0.22 [f| 0.02

A &0'”1 G.GO}

v v Y .80 0.30 0 1.67 0.33 1.10 0.44
wii,0) %3 bitl

-—‘7-], A A |o0.30|]|0:.80 0 1.38| | -0.80] |-1.05|]| 0.00

0.44 1,82 | 0.52 | y _

|22 |-ocarf | oist| | -0.40] | 0.30 1 ~0.80| | -0.20( | ~1.62(8| 0.39
v v v

» xi{2,1) bizZ} -0.30 C--:C | '0.01 "G. 88 '2-21 1.87
A A A =

f i l 1 |=0.70] ]| 0.20 1 =1.57 | =-0.15] | =2.10 0.00
2.27| -2.04 -0.10
Sc] ] [ 0.70 | | -0.40] | 2 0-43||1.55||2.31 [f| 0.25
v v v

0.50 -0.60 2 -0.28] | 1.83 2.26 0.57
- B -

Step size: 0,10000 -0.40| | -0.50 2 -1.98| | 1.26 | | 0.01 2.24
Singie parameter update mean
Start repeated update Total data loss: 0.64 0.64

Regularization loss: 1,92
Stop Total loss: 2.9
Ransomize parameters

L2 Regularization strength: 0.10000

http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/
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Last time... Perceptron

L1 L9 L3 A Ln,
w1 W,
synaptic
weights

output

flx) = szﬂiz = (w, z)

12



This Week

- Multi-layer perceptron
- Forward Pass

- Backward Pass

13



Introduction

14
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A brief history of computers

1970s 1980s 1990s 2000s 2010s

102 108 105 108 1011
? 1MB 100MB  10GB 1TB
? 10MF 1GF 100GF  1PF GPU

deep kernel deep

- Data grows nets methods nets
at higher exponent

- Moore’s law (silicon) vs. Kryder’s law (disks)
» Early algorithms data bound, now CPU/RAM bound

15




Not linearly separable data

- Some datasets are not linearly separable!
- e.g9. XOR problem

: + Nonlinear separation is trivial

16



Addressing non-linearly
separable data

+ Two options:

- Option 1: Non-linear features
- Option 2: Non-linear classifiers

17



Option 1 — Non-linear features

» Choose non-linear features, e.qg.,
- Typical linear features: wo + 2i Wi X;
- Example of non-linear features:
» Degree 2 polynomials, wo + 2i Wi Xi + 2ij Wij Xi X

 Classifier hw(x) still linear in parameters w
- As easy to learn
- Data is linearly separable in higher dimensional
spaces
- Express via kernels

18



Option 2 — Non-linear classifiers

* Choose a classifier hw(x) that is non-linear in

parameters w, e.g.,
- Decision trees, neural networks,...

» More general than linear classifiers

- But, can often be harder to learn (non-convex
optimization required)

» Often very useful (outperforms linear classifiers)

 |n a way, both ideas are related

19
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+ Dendrite (input bus)

- Synapse (interface)

Biological Neurons

- Soma (CPU)

Cell body - combines signals - <" @

Nerve cell

\
)

Combines the inputs from ~ Swmaes
several other nerve cells

Dendrite

Interface and parameter store between neurons

+ Axon (cable)

May be up to 1Tm long and will transport the
activation signal to neurons at different locations

20



Recall: The Neuron Metaphor

- Neurons
- accept information from multiple inputs,
- transmit information to other neurons.

- Multiply inputs by weights along edges

-+ Apply some function to the set of inputs at each
node

Sort :wnk t' oo . ._01 1
:1:') O 9 . | 9
oooooo = T . 0
pu— -~-4..__¥__,V_\
e z, N — f(x
0 = e
% cccccccc : .
LT a2



0p

Types of Neuron

f(Z,0)

y:90+zﬂiz‘9¢

Linear Neuron

22



Types of Neuron

1
04 0o
O N f(Z.9)
QD Yy = 9() -+ Z 213@(9@
Linear Neuron ¢
1
04 0o

O RE—£(,0)

1 itz>0

® Perceptron Yy :{ 0 otherwise

23
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Types of Neuron

0o i
“f(Z,0) | AR P
HD Y = (90 —+ Z .CBZ(QZ (90
Linear Neuron i S /o
f(Z,0)
0p
Logistic Neuron
B 17; it z>0
Perceptron y = 0  otherwise o4



Types of Neuron
z =0y + szﬁi
"1

9f(fv‘g) yzl—l—e_z

Up y =00+ Z 0 i

Linear Neuron

“f(x,0)
0, Op

— Logistic Neuron
f(@,0)
_ - Potentially more. Requires a convex
Op = %7 Z,,: v loss function for gradient descent

(1 ifz>0 training.
Perceptron Y = 0 otherwise 05

eqreg Anuyq Aqg aplis



Limitation

* A single “neuron” Is still a linear decision
boundary

- What to do?

- |dea: Stack a bunch of them together!

20



Nonlinearities via Layers

+ Cascade neurons together
- The output from one layer is the input to the next
- Each layer has its own sets of weights

\NXOREDIRKOIREIRKXIK X
\}Qg‘ae;w:wezwzwzw%/
W, Y \
Yi1i
) ,T))

\\‘V{@W
= k(x;, )

optimize
all weights -~




Nonlinearities via Layers
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Representational Power

- Neural network with at least one hidden layer is a universal

approximator (can represent any function).
Proof in: Approximation by Superpositions of Sigmoidal Function,
Cybenko, paper

3 hidden neurons 6 hidden neurons 20 hidden neurons

~J ~
(&) D |

l ® ®
@ | @ @ @ @ |
|
|

+ The capacity of the network increases with more hidden
units and more hidden layers 29
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* A pixel gets to vote if it has

- The shape that gets the

A simple example

.Consider a neural network QU@ OO DE®©

with two layers of neurons. /

- heurons In the top layer SN
represent known shapes.

- heurons in the bottom layer
represent pixel intensities.

Ink on It.

- Each inked pixel can vote
for several different shapes.

most votes wins.




How to display the weights

PPPPITTDIDY

iImage
Give each output unit its own “map” of the input image and
display the weight coming from each pixel in the location of
that pixel in the map.

Use a black or white blob with the area representing the

uolulH Aaiyosr) Aq apiis

magnitude of the weight and the color representing the sign.

31



How to learn the weights

PPPPITTDIDY

Show the network an image and increment the weights from
active pixels to the correct class.

Then decrement the weights from active pixels to whatever
class the network guesses.

uolulH Aaiyosr) Aq apiis
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The image

33



The image

34



The image

35



The image

36



The image

37



The learned weights

A

PIE T

e,

The image

The details of the learning algorithm will be explained
later.

38



uolulH Aaiyosr) Aq apiis

Why insufficient

* A two layer network with a single winner in the top

layer Is equivalent to having a rigid template for

each shape.

- The winner Is the template that has the biggest
overlap with the Ink.

 The ways in which hand-written digits vary are

much too complicated to be captured by simple
template matches of whole shapes.

- To capture all the allowable variations of a digit we
need to learn the features that it is composed of.

39



Multilayer Perceptron

Layer Representation

i = Wiz,
Y

Li+1 = U(yi)

(typically) iterate between
linear mapping Wx and

nonlinear function -
y.
Loss function [(y, y;)

to measure quality of
estimate so far

2

40



Forward Pass

41
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Ja|pi4 elueg ‘jowaz pJieyoly ‘unse

Forward Pass: What does the Network Compute?

input layer

hidden layer 1 hidden layer 2
- Output of the network can be written as:

D
hi(x) = f(vo+ ) xivi)
=1

J
ok(x) = g(Wko+Zhj(X)ij)

(j indexing hidden units, k indexing the output units, D number of inputs)

- Activation functions f , g : sigmoid/logistic, tanh, or rectified linear (RelLU)

o(z) = 1 tanh(z) — exp(z) — exp(—2z)

1+ exp(—z)’ exp(z) + exp(—2z)’ ReLU(z) = max(0, z)

42
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Forward Pass in Python

- Example code for a forward pass for a 3-layer network in Python:

output layer

input layer
hidden layer 1 hidden layer 2

f = lambda x: 1.0/(1.0 + np.exp(-x))
X = np.random.randn(3, 1)

hl = f(np.dot(Wl, x) + bl)

h2 = f(np.dot(W2, hl) + b2)

out = np.dot(W3, h2) + b3

-+ Can be implemented efficiently using matrix operations

- Example above: W1 is matrix of size 4 x 3, W2 is 4 x 4. What about
biases and /37

[http://cs231n.github.io/neural-networks-1/] 43
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Special Case

- What is a single layer (no hiddens) network with a sigmoid act.
function?

Input Output
Layer Layer
- Network: .
O\ X =
) 1+ exp(—z«)
J
Zx = Wk T Z Xj Wj
Jj=1

- Logistic regression!

44
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Example

- Classify image of handwritten digit (32x32 pixels): 4 vs non-4

- How would you build your network?
+ For example, use one hidden layer and the sigmoid activation function:

1
oulx) = 1+ exp(—2z«)
J
Z, = Wyo + Z hj(X)ij
j=1

- How can we train the network, that is, adjust all the parameters w?

45
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Ja|pi4 elueg ‘jowaz pJieyoly ‘unse

Training Neural Networks

- Find weights:

N
w" = argmin Z loss(o!™, (M)
W n=1

where o = f(x;w) is the output of a neural network

- Define a loss function, e.g.:

- Squared loss: Y, (0" — ")

- Cross-entropy loss: — Y, t\” log o\

- GGradient descent:

t+1 OE

t
w T =w —17
owt

where n is the learning rate (and E is error/loss)

46



Ja|pi4 elueg ‘jswaz pJieyoly ‘unseun |enbey Aq aplis

Useful derivatives

name function derivative
Sigmoid o(z) = 1—|—exp1)(—z) o(z)-(1—o(z2))
Tanh tanh(z) = SEA=SE= 1/ cosh?(z)

( .
RelU ReLU(z) = max(0, z) <\(1): :]:j z 8

47



