Image: Jose-Luis Olivares

BABM406 Fundamentals of Machine Learning

Decture 17/2 Multi-layer Perceptron Forward Pass

Aykut Erdem // Hacettepe University // Fall 2019

Last time… **Linear Discriminant Function**

• Linear discriminant function for a vector **x** Linear discriminant function for a vector x Linear discriminant function for a vector x Linear discriminant function for a vector x

$$
y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0
$$

where w is called weight vector, and w_0 is a bias.

• The classification function is The classification function is The classification function is The classification function is $C(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x} + w_0)$ $C(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x} + w_0)$ $C(\mathbf{x}) = \text{sign}(\mathbf{w}^T\mathbf{x} + w_0)$
where step function sign(*·*) is defi

where step function sign(·) is defined as where step function sign(*·*) is defined as where step function signally

$$
\operatorname*{sign}(a) = \begin{cases} +1, & a \geq 0 \\ -1, & a < 0 \end{cases}
$$

Discriminant Functions Last time… **Properties of Linear** Properties of Linear Discriminant Function Construction Construction Construction Construction Construction Co
Properties of Linear Discriminant Construction Construction Construction Construction Construction Constructio

y(x) = 0 for x on the decision surface. The normal distance from the original distance **decision** in the only $y(x) = 0$ for x on the decision surface. The normal distance from the origin to the decision surface is w*^T* x

 $\frac{1}{2}$ \cdot So w_0 determines the location of the decision surface. $\frac{4}{3}$

slide by Ce Liu

Last time… **Multiple Classes: Simple Extension**

- **One-versus-the-rest** classifier: classify C_k and samples *One-versus-one* classifier: classify every pair of classes. not in *Ck*.
	- **One-versus-one** classifier: classify every pair of classes.

Last time… **Multiple Classes: K-Class Discriminant** Multiple Classes: K-Class Discriminant

• A single *K*-class discriminant comprising *K* linear functions A single *K*-class discriminant comprising *K* li A single *K*-class discriminant comprising *K* linear functions

$$
y_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0}
$$

• Decision function Decision function

$$
C(\mathbf{x}) = k, \text{ if } y_k(\mathbf{x}) > y_j(\mathbf{x}) \,\forall \, j \neq k
$$

• The decision boundary between class *Ck* and *Cj* is given by $y_k(\mathbf{x}) = y_j(\mathbf{x})$ $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ is given (w*^k* w*j*) *C***_{***k***} and** *C***_{***j***} is given by** *g***(x) is given** $\mathbf{y} \mathbf{y}(\mathbf{x}) = \mathbf{y}(\mathbf{x})$

$$
(\mathbf{w}_k - \mathbf{w}_j)^T \mathbf{x} + (w_{k0} - w_{j0}) = 0
$$

Last time...Fisher Last time…**Fisher's Linear Discriminant**

• Pursue the optimal linear projection on which the two classes can be maximally separated E Indianually Separated can be

$$
y = \mathbf{w}^T \mathbf{x}
$$

 $\sum_{C} \mathbf{A}_n$, $\mathbf{H} \mathbf{I}$

 $\mathbf{x}_n, \quad \mathbf{m}_2 =$

 $\frac{1}{1}$

1

*N*2

 \sum

 \sum

 $n \in C_2$

x*n*

*N*2

• The mean vectors of the two classes classif igari v The mean vectors of the tv $\begin{array}{r} \text{F}(\mathbf{S}, \mathbf{S}) = \mathbf{S}(\mathbf{S}, \mathbf{S}) = \mathbf{S}(\mathbf{S}, \mathbf{S}) \\\\ \text{F}(\mathbf{S}, \mathbf{S}) = \mathbf{S}(\mathbf{S}, \mathbf{S}) \end{array}$

 $\frac{1}{\sqrt{2}}$

 N_1 $\overline{m \in \mathcal{C}_1}$

 $\frac{1}{N_{A}}$

*N*1

1

 \sum

 $n \in C_1$

m¹ =

slide by Ce Liu

slide by Ce

 $\mathbf{m}_1 = \frac{1}{N_1} \sum$

x*n* dimensionality A way to view a linear classification model is in terms of reduction. = $\mathbf{w}^T\mathbf{S}_B\mathbf{w}$ $\mathbf{w}^T \mathbf{S}_W \mathbf{w}$

7

Last time… **Linear classification**

Last time… **Linear classification**

stretch pixels into single column

input image

Last time… **Linear classification**

$$
f(x_i, W, b) = W x_i + b
$$

 $[32x32x3]$ array of numbers 0...1 (3072 numbers total)

Interactive web demo time….

<http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/>

Last time… **Perceptron**

This Week

- Multi-layer perceptron
- Forward Pass
- Backward Pass

Introduction

A brief history of computers

deep

kernel

methods

nets

- Data grows at higher exponent
- Moore's law (silicon) vs. Kryder's law (disks)
- Early algorithms data bound, now CPU/RAM bound

deep

nets

Not linearly separable data

- Some datasets are **not linearly separable**! - e.g. XOR problem
- Nonlinear separation is trivial

Addressing non-linearly separable data

- Two options:
	- Option 1: Non-linear features
	- Option 2: Non-linear classifiers

Option 1 — Non-linear features

- Choose non-linear features, e.g.,
	- Typical linear features: $w_0 + \sum_i w_i x_i$
	- Example of non-linear features:
		- Degree 2 polynomials, $w_0 + \Sigma_i w_i x_i + \Sigma_{ij} w_{ij} x_i x_j$
- Classifier h**w**(**x**) still linear in parameters **w**
	- As easy to learn
	- Data is linearly separable in higher dimensional spaces
	- Express via kernels

Option 2 — Non-linear classifiers

- Choose a classifier h**w**(**x**) that is non-linear in parameters **w**, e.g.,
	- Decision trees, neural networks,…
- More general than linear classifiers
- But, can often be harder to learn (non-convex optimization required)
- Often very useful (outperforms linear classifiers)
- In a way, both ideas are related

Biological Neurons

- Soma (CPU) Cell body - combines signals
- Dendrite (input bus) Combines the inputs from several other nerve cells

- Synapse (interface) Interface and **parameter store** between neurons
- Axon (cable) May be up to 1m long and will transport the activation signal to neurons at different locations

Recall: The Neuron Metaphor

- Neurons
	- accept information from multiple inputs,
	- transmit information to other neurons.
- Multiply inputs by weights along edges
- Apply some function to the set of inputs at each node

Logistic Neuron

slide by Dhruv Batra slide by Dhruv Batra

slide by Dhruv Batraslide by Dhruv Batra

Logistic Neuron

• Potentially more. Requires a convex loss function for gradient descent training.

25

Limitation

- A single "neuron" is still a linear decision boundary
- What to do?
- Idea: Stack a bunch of them together!

Nonlinearities via Layers

- Cascade neurons together
- The output from one layer is the input to the next
- Each layer has its own sets of weights

Nonlinearities via Layers

Representational Power

• Neural network with at least one hidden layer is a universal approximator (can represent any function). Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

The capacity of the network increases with more hidden units and more hidden layers 29

A simple example

- Consider a neural network with two layers of neurons.
	- neurons in the top layer represent known shapes.
	- neurons in the bottom layer represent pixel intensities.
- •A pixel gets to vote if it has ink on it.
	- Each inked pixel can vote for several different shapes.
- The shape that gets the most votes wins.

How to display the weights

Give each output unit its own "map" of the input image and display the weight coming from each pixel in the location of that pixel in the map.

Use a black or white blob with the area representing the magnitude of the weight and the color representing the sign.

How to learn the weights

Show the network an image and increment the weights from active pixels to the correct class.

Then decrement the weights from active pixels to whatever class the network guesses.

The learned weights

The details of the learning algorithm will be explained later.

Why insufficient

- •A two layer network with a single winner in the top layer is equivalent to having a rigid template for each shape.
	- The winner is the template that has the biggest overlap with the ink.
- The ways in which hand-written digits vary are much too complicated to be captured by simple template matches of whole shapes.
	- To capture all the allowable variations of a digit we need to learn the features that it is composed of.

Multilayer Perceptron

Layer Representation

 x_i $x_{i+1} = \sigma(y_i)$

- (typically) iterate between linear mapping Wx and nonlinear function $y_i = W_i$
 $x_{i+1} = \sigma(y)$

(typically) iterate

linear mapping

nonlinear functi

Loss function *l(*

to measure qua

estimate so far
- Loss function $l(y, y_i)$ to measure quality of

Forward Pass

Forward Pass: What does the Network Compute? Forward Pass: What does the Network C Forward Pass: What does the Network Com

• Output of the network can be written as: Output of the network can be written as: Output of the network can be written as:

$$
h_j(\mathbf{x}) = f(v_{j0} + \sum_{i=1}^D x_i v_{ji})
$$

$$
o_k(\mathbf{x}) = g(w_{k0} + \sum_{j=1}^J h_j(\mathbf{x})w_{kj})
$$

(j indexing hidden units, k indexing the output units, D number of inputs) • Activation functions f , g : sigmoid/logistic, tanh, or rectified linear (ReLU) Activation functions *f* , *g*: sigmoid/logistic, tanh, or rectified linear (ReLU)

$$
\sigma(z)=\frac{1}{1+\exp(-z)},\;\; \tanh(z)=\frac{\exp(z)-\exp(-z)}{\exp(z)+\exp(-z)},\;\;\mathrm{ReLU}(z)=\max(0,z)_{_{42}}
$$

Forward Pass in Python

• Example code for a forward pass for a 3-layer network in Python:

forward-pass of a 3-layer neural network: $f =$ lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid) $x = np.random.randn(3, 1)$ # random input vector of three numbers (3x1) h1 = $f(np.dot(W1, x) + b1$) # calculate first hidden layer activations (4x1) $h2 = f(np.dot(W2, h1) + b2)$ # calculate second hidden layer activations (4x1) out = np.dot(W3, h2) + b3 $#$ output neuron (1x1)

- Can be implemented efficiently using matrix operations
- Example above: W_1 is matrix of size 4×3 , W_2 is 4×4 . What about biases and W_3 ?

Special Case

• What is a single layer (no hiddens) network with a sigmoid act. function? wat is a single layer (no maderic) network with a sigmi-

Example Example&applica3on&

• Classify image of handwritten digit (32x32 pixels): 4 vs non-4 mage of handwritten (\mathcal{L}

$$
o_k = \frac{1}{1 + \exp(-z_k)}
$$

$$
z_k = (w_{k0} + \sum_{j=1}^J h_j(x)v_{kj})
$$

- . How would you build your network? a you bulla yo
- For example, use one hidden layer and the sigmoid activation function: How would you build y For example, use one hidden layer and the sigmoid activation function:

$$
o_k(\mathbf{x}) = \frac{1}{1 + \exp(-z_k)}
$$

$$
z_k = w_{k0} + \sum_{j=1}^J h_j(\mathbf{x})w_{kj}
$$

• How can we train the network, that is, adjust all the parameters **w**? W can we train the network, that is, adjust all the

Training Neural Neu
Neural Neural Neura Training Neural Networks Training Neural Networks Training Neural Networks <u>Training</u>

Find weights: Find weights: • Find weights: u weights.

$$
\mathbf{w}^* = \underset{\mathbf{w}}{\text{argmin}} \sum_{n=1}^{N} \text{loss}(\mathbf{o}^{(n)}, \mathbf{t}^{(n)})
$$

where υ ζ , w_i is the output of a neural network where $\mathbf{o} = f(\mathbf{x}; \mathbf{w})$ is the output of a neural network where \bullet *f* (x; w) is the surput of a neural

- D child a loss function, D · Define a loss function, e.g.: Define a loss function, eg:
	- I quared loss: \sum_{k} - Squared loss: $\sum_{k} \frac{1}{2} (o_k^{(n)} - t_k^{(n)})^2$ $(\varphi_k^{(n)} - t_k^{(n)})^2$ (*n*)
	- Cross-entropy 1 ² (*o*(*n*) *^k t* $\begin{pmatrix} k \\ k \end{pmatrix}$ (*n*) *^k* log *^o*(*n*) - Cross-entropy loss: $\overline{} - \sum_k t_k^{(n)} \log o_k^{(n)}$ **Cross-entrony** I $\frac{1}{2}$ $\frac{k}{k}$ $\frac{k}{k}$
 x $\frac{k}{k}$ $\frac{k}{k}$ *k t* $\frac{1}{k}$ is k is $\frac{1}{k}$
	- Gradient descent: I Cross-entropy 1888.

$$
\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \frac{\partial E}{\partial \mathbf{w}^t}
$$

@w*^t*

where if is the learning rate (and *E* is en where *η* is the learning rate (and *E* is error/loss) w here α is the learning rate (and Γ is e $U_{\text{max}} = 0.1$
 $W_{\text{max}} = 0.1$
 $W_{\text{max}} = 0.04$
 W

Useful derivatives

