Illustration: lllustration: Benedetto Cristofani

—LEEAs!

LS

Aykut Erdem // Hacettepe University // Fall 2019

HACETTEPE
UNIVERSITY
COMPUTER
VISION LAB



A reminder about course projects
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- From now on, regular (weekly) blog posts about your
progress on the course projects!

- We will use medium.com



http://medium.com
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%% class ComputationalGraph(object):
('D L ] L ]
g activations #ii
o L def forward(inputs):
o “local # 1. [pass inputs to input gates...]
E gradient” # 2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
g f gate.forward()
e .’> 1. he final h h he 1
return loss # the final gate in the graph outputs the loss
0z oL -
S def backward():
0z
for gate in reversed(self.graph.nodes topologically sorted()):
gradlentS gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients

uosuyor unsnp g Ayredie



Last time... Training Neural Networks

Mini-batch SGD

Loop:

1.Sample a batch of data

2.Forward prop it through the graph, get loss
3.Backprop to calculate the gradients
4.Update the parameters using the gradient



This week

* Introduction to Deep Learning

- Deep Convolutional Neural Networks



What is deep learning”

Y. LeCun, Y Bengio, G. Hinton, "Deep Learning"”, Nature, Vol. 521, 28 May 2015

“Deep learning allows computational models that are composed
of multiple processing layers to learn representations of
data with multiple levels of abstraction.”

— Yann LeCun, Yoshua Bengio and Geoff Hinton
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1943 — 2000:;
A Prehistory of Deep Learning



1943: Warren McCulloch and Walter Pitts

* First computational model

* Neurons as logic gates
AND, OR, NOT)

e A neuron model that sums s

® Wanrken S McCutiocn ano Wanrex Pires
University of Ilkncis, College of Medicine.
Department of Peychiatey at the Tincic Neuropeychistrc Ine

1 1
University of Chicigo, Chicago, US A
Becaase of he “all-or-mon:” chancter of servows acuvity, aceral events asd e relations among
them cas betreated by means of ropostional logic. [t s found that thebebavior of every set cas
e described i these terms. with the addstion of more complicated logical meass for sets

coalaining sircies; and thai for any logical expressios sallsfying certain c0adiioss, oac cas fisd &
et behaving in the fashion it describes. 1115 shovn that many particular chores amog possible
acurepbysnlogcal sssumpts re equivalent, in the semse thet for every net beharing uwler
one assmmytion, there exits anither net which behaves under the (ther and gives the same
results, although perhaps not in the sme tine Variows sphcatons of the calculus are

If the sum exceeds R

. 7
assumptions. The nervous system is a ret of neurons. each having a soma and
an axon, Their adjunctions, or synapscs, are always between the axon of one
neuron asd the soma of another, At any iastant a neuron has some threshold.
which exzitation must exceed 10 Initiate an impulse. This, except for the fact

|
and the time of its occurence, is deicrmined by the neuron, not by the
r excitation. From the point of exatation the impulse is propagated to all parts of
the neuren. The velocity along the axon vanes directly with its diameter, from
, <1 ms" ' in thin axons, which are usually short, to > 150 ms ~* in thick axons,

which are usually long. The time for axcnal conduction is consequently of little
importance in determining the time of arnval of impulser at points unequally
remote from the same source. Excitation across synspses occurs predominant-

1 1y from axonal Ierminatioas 10 somat. It is still 3 Mmoot point whether this

n e l l | depends upon irreciprocity of individual synapses or merely spon prevalent

< To supp laiter ad hoc

a O rW and expliins known exceptions, but any assumption as to cause is compatible

with the calculus 10 come No case is known in which excitation through a
single synapse has dicited a nervous impuise in any neuron, whereas any
nesron may be excted by impulser arriving ot a suficient number of
neighboring synapses within the period of latent addition, which lasts
<025 ms. Observed temporal summation of impulses at greater intervals

(a) N_ (b) j ;g]
b
(c) 3:}'_ (d) %_



1958: Frank Rosenblatt’s Perceptron

* A computational model of a single
neuron

* Solves a binary classification
problem

e Simple training algorithm
* Built using specialized hardware

X Wey
%\
weight y s &
y > —> output
bias

F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain”,
. . 9
Psychological Review, Vol. 65, 1958




1969: Marvin Minsky and Seymour Papert

“ No machine can learn to recognize 3\ ‘\\
X unless it possesses, at |east
potentially, some scheme for
representing X.” (p. xiii)

* Perceptrons can only represent o | A
INnearly separable functions.

- such as XOR Problem A

* Wrongly attributed as the reason
behind the Al winter, a period of —
reduced funding and interest in Al
research




1990s

* Multi-layer perceptrons can

theoretically learn any function
(Cybenko, 1989; Hornik, 1991)

ati hrough Time: What It
It

* Training multi-layer perceptrons T %
- Back-propagation -
(Rumelhart, Hinton, Williams, 1986) g
- Back-propagation through time (BPTT) = &
(Werbos, 1988)

e New neural architectures

- Convolutional neural nets (LeCun et al.,
1989)

- Long-short term memory networks "', .. o
(LSTM) (Schmidhuber, 1997) >0 Rl
R e



Why it failed then

Too many parameters to learn from few labeled
examples.

‘[ know my features are better for this task”.
Non-convex optimization”? No, thanks.
Black-lbox model, no interpretabllity.

Very slow and inefficient

Overshadowed by the success of SVMs
(Cortes and Vapnik, 1995)

Adapted from Joan Bruna 12



A major breakthrough in 2006



2006 Breakthrough:
Hinton and Salakhutdinov

Reducing the Dimensionality of
Data with Neural Networks

G. E. Hinton* and R. R. Salakhutdinov

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural FEDTEEDE e
network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent aﬁ. mg,',';eu‘:;rmw;(g of
can be used for fine-tuning the weights in such “autoencoder” networks, but this works well only if :
the initial weights are close to a good solution. We describe an effective way of initializing the
weights that allows deep autoencoder networks to learn low-dimensional codes that work much
better than principal components analysis as a tool to reduce the dimensionality of data. s

* The first solution to the vanishing gradient problem.

e Build the model in a layer-by-layer fashion using unsupervised
learning

- The features in early Ia%ers are already initialized or “pretrained” with some

suitable features (weight

- Pretrained features in early layers only need to be adjusted slightly during
supervised learning to achieve good results.

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks”,
Science, Vol. 313, 28 July 2006.

14



The 2012 revolution



ImageNet Challenge

- IMAGENET Large Scale Visual
RC)

- 1.2M training images with

Challenge (ILSV

1K categories

- Measure top-5 classification

error

Output
Scale
T-shirt

Drumstick
Mud turtle

Recognition

Easiest classes

red fox (100) hen-of-the-woods (100) ibex (100)  goldfinch (100) flat-coated retriever (100)
*)\ - : A

o

~ ,.‘-‘ <
- ) {
e
. |

Hardest classes

Output muzzle (71) hatchet (68) water bottle (68) velvet (68) loupe (66)
Scale ' Nt e o
T-shirt 8 ra »
Glaﬂt pgnda x hook (66) sptlight (66) ladle (65) restaurant (64) letter opener(Sé)
Drumstick -

Mud turtle

7z

J. Deng, Wei Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei , “ImageNet: A Large-Scale Hierarchical Image Database”, CVPR 2009.
O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge”, Int. J. Comput. Vis.,, Vol. 115, Issue 3, pp 211-252, 2015.

16



ILSVRC 2012 Competition

2012 Teams %Error
Supervision 15.3
(Toronto)

ISI (Tokyo) 26.1
VGG (Oxford) 26.9
XRCE/INRIA 27.0
UvVA (Amsterdam) 29.6
INRIA/LEAR 33.4

; f \ . — \ 3“ ‘\ 3\\ K A
’ “-\\ 5‘\\“ \.1 . 13\ \\\1 o 3 N\ 3 \
(I | I
\ 3 3 \ ' L L
5 \ P 192 192 128 2048 2048 \dense
3 g7 128 K ] ]
XA \3 13 ‘ 13
224n \\\ 5’ J J 3] [ 13 3""\“‘ ‘\l > 3} dense’| |dense i
\ | NZ 1 \\ I \AZ "
113 ] 3 '
| " | 1000
\ 192 192 128 Max L L
\ . 2048
224\ {liStride Max 128 Max pooling 2048
Uof 4 pooling pooling
3 48

* The success of AlexNet, a deep
convolutional network

- 7 hidden layers (not counting some max
pooling layers)

- BOM
e Combi

- RelU

parameters

ned several tricks

activation function, data augmentation,

dropout

A. Krizhevsky, I. Sutskever, G.E. Hinton “lmageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012 17



2012 — now
Deep Learning Era



Amodei et al., "Deep Speech 2: End-to-End

Je suis étudiant —

i i_ i_i Speech Recognition in English and Mandarin", In
H-1H- CoRR 2015
i_*_*_*_*_.*_*_* M.-T. Luong et al., "Effective Approaches to

am & student - Je  sus étudiant Attention-based Neural Machine Translation”,

Machine Translation EMNLP 2015

M. Bojarski et al., “End to End Learning for Self-
Driving Cars”, In CoRR 2016

D. Silver et al., "Mastering the game of Go with

deep neural networks and tree search", Nature
529, 2016

L. Pinto and A. Gupta, “Supersizing Self-
supervision: Learning to Grasp from 50K Tries
and 700 Robot Hours” ICRA 2015

H. Y. Xiong et al., "The human splicing code
reveals new insights into the genetic
determinants of disease", Science 347, 2015

M. Ramona et al., "Capturing a Musician's
Groove: Generation of Realistic

Accompaniments from Single Song Recordings",
In IUCAI 2015

Genomics And many more... iq



Why now?



GLOBAL INFORMATION STORAGE CAPACITY

IN OPTIMALLY COMPRESSED BYTES

SVMs

ConvNets dominate
Developed — NIPS
1986 -
:.:‘:iigvres : m :

DIGITAL
0.02 EXABYTES 2002
“BEFINNING OF

f\} THE DIGITAL AGE”
OR:=

MNGITAL

1% 3% 25% 94 %

Source: Hilbert, M, & Lopez, P. (2011). The World's Technological Capacity
to Store, Communicate, andCompute Information. Science, 332 (6025),.
60-65. martinhilbert.net/worldinfocapacity.html

2007

ANALOG

19 EXABYTES

- Paper, film, audiotape and vinyl: 6%

- Analog videotapes (VHS, etc): 94% ANALOG A
- Portable media, flash drives: 2% DIGITAL VWV

- Portable hard disks: 2.4%
- CDs & Minidisks: 6.8%

- Computer Servers and Mainframes: 8.9%

- Digital Tape: 11.8%

- DVD/Blu-Ray: 22.8%

- PC Hard Disks: 44.5% A
123 Billion Gigabytes ()

- Others: < 1% (incl. Chip Cards, Memory Cards, Floppy Disks,
Mobile Phones, PDAs, Cameras/Camcorders, Video Games)

DIGITAL
280 EXABYTES

Slide credit: Neil Lawrence 21



Datasets vs. Algorithms

Year Breakthroughs in Al Datasets (First Available) Algorithms (First
Proposed)
1994 Human-level spontaneous speech Spoken Wall Street Journal articles  Hidden Markov Model
recognition and other texts (1991) (1984)
1997 |IBM Deep Blue defeated Garry 700,000 Grandmaster chess Negascout planning
Kasparov games, aka “The Extended algorithm (1983)

Book” (1991)
2005 Google’s Arabic-and Chinese-to- 1.8 trillion tokens from Google Web  Statistical machine

English translation and News pages (collected in 2005) translation algorithm
(1988)

2011 IBM Watson became the world 8.6 million documents from Mixture-of-Experts

Jeopardy! champion Wikipedia, Wiktionary, and Project  (1991)
Gutenberg (updated in 2010)

2014 Google’s GoogleNet object ImageNet corpus of 1.5 million Convolutional Neural
classification at near-numan labeled images and 1,000 object Networks (1989)
performance categories (2010)

2015 Google’s DeepMind achieved Arcade Learning Environment Q-learning (1992)

human parity in playing 29 Atari  dataset of over 50 Atari games
games by learning general control (2013)
from video

Average No. of Years to Breakthrough: 3 years 18 years

Table credit; Quant Quanto



Powerful Hardware

GOOGLE DATACENTER l STANFORD Al LAB NVIDIA DGX-1
A\ yL = WORLD’S FIRST DEEP LEARNING SUPERCOMPUTER

§ T Saassssssnt” — |

Meanin

. —

! I e’ |

Mranen o

£ —— 170 TFLOPS FP16
f&i T e— 8x Tesla P100 16GB

£y  S—— | oamn = NVLink Hybrid Cube Mesh
| @ Al Accelerates Major Al Frameworks
| \..§ Al Dual Xeon

1,000 CPU Servers 600 kWatts 3 GPU-Accelerated Servers 4 kWatts = = = FIB 330 Deep Learning Cache
00 Ehlls 16, (00 axes SRS 5 000,000 12 GRLS =45, 432 cores $33,000 Dual 10GbE, Quad IB 100Gb
3RU - 3200W
GPU Ac;elerator —
CPU Optimized for '
Optimized for Parallel Tasks |

Serial Tasks SENEEEEE ENENEEEE it

SESENEES EEEEEESE TITAN X '

EEEEEEEE EEEEEEEE THE WORLD’S FASTEST GPU | 8 ‘
8 Billion Transistors il

SESEBEES BEEESEES 3,072 CUDA Cores

ODONOOEE COCOROND 7 TFLOPS SP / 0.2 TFLOPS DP

SESSEEES EEEEEEEE 12GB Memory

Slide credit <2nvipiA.

23



150,000

CUDA Downloads

27

CUDA Apps

60

Universities
Teaching

4,000
Academic
Papers

6,000
Tesla GPUs

77

Supercomputing
Teraflops

2008

(&

10X GROWTH IN GPU COMPUTING

2015
VIS5 833388333§ Ml
¢ DR D2C DXE IXE R YRE DX YRC NXC MEC ORC Ao

TTesTTTETETTETT Ty OO

Universities Teaching

60,000

Academic Papers

() (A O ) ) R N D O ) () O I O (O (' (') 450,000
) O 0 ) ) ) O () T ) ) 0 o) )l ) ) ol (8] Tesla GPUSs
HHH e e 54’000
HARRRRRRRRARREERRRRsnsatA AN ERRRSRRPAAAARERMIRRVIRRRPOAIANEIMIRRRRSSRNOORDIINIIRIRSRRORAEURMNIRMIRRRRDMALEMMMAARRSY Supercomouning

Slide credit <2nvibiA.
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Working ideas on how to train deep

architectures

Dropout: A Simple Way to Prevent Neural Networks from

Nitish Srivastava
Geoffrey Hinton

Alex Krizhevsky

Ilya Sutskever

Ruslan Salakhutdinov

Overfitting

Abstract

NITISHQCS.TORONTO.EDU
HINTON@QCS.TORONTO.EDU
KRIZQCS. TORONTO.EDU
ILYAQCS. TORONTO.EDU
RSALAKHU@QCS.TORONTO.EDU

Deep neural nets with a large number of parameters are very powerful machine learning
systems. However, overfitting is a serious problem in such networks. Large networks are also
slow to use, making it difficult to deal with overfitting by combining the predictions of many
different large neural nets at test time. Dropout is a technique for addressing this problem.
The key idea is to randomly drop units (along with their connections) from the neural
network during training. This prevents units from co-adapting too much. During training,
dropout samples from an exponential number of different “thinned” networks. At test time,

* Better Learning

Dropout: A Simple Way to Prevent Neural Networks from
Overfitting

Nitish Srivastava
Geoffrey Hinton
Alex Krizhevsky
Tlya Sutskever

Ruslan Salakhutdinov
Depe  C. 3

Abstract

Regularization (e.g. Dropout)

N. Srivastava, G. Hinton, A. Krizhevsky, |. Sutskever, R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural

Networks from Overfitting”,

JMLR Vol. 15, No. 1,

25



Working ideas on how to train deep
architectures

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift

Sergey loffe
Google Inc., sioffe@google.com

Abstract

Training Deep Neural Networks is complicated by the fact
that the distribution of each layer’s inputs changes during
training, as the parameters of the previous layers change.
This slows down the training by requiring lower learning
rates and careful parameter initialization, and makes it no-
toriously hard to train models with saturating nonlineari-
ties. We refer to this phenomenon as internal covariate
shift, and address the problem by normalizing layer in-
puts. Our method draws its strength from making normal-
ization a part of the model architecture and performing the
normalization for each training mini-batch. Batch Nor-

e Better Optimization Conditioning (e.g. Batch Normalization)

Christian Szegedy
Google Inc., szegedy @google.com

Using mini-batches of examples, as opposed to one exam-
ple at a time, is helpful in several ways. First, the gradient
of the loss over a mini-batch is an estimate of the gradient
over the training set, whose quality improves as the batch
size increases. Second, computation over a batch can be
much more efficient than m computations for individual
examples, due to the parallelism afforded by the modern
computing platforms.

While stochastic gradient is simple and effective, it
requires careful tuning of the model hyper-parameters,
specifically the learning rate used in optimization, as well
as the initial values for the model parameters. The train-
ing is complicated by the fact that the inputs to each layer

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift

Sergey loffe
Guogle Inc., siofle@google.com

Abstract

Training Deep Neural Networks is complcated by the fact
that the disiribution of each layer's inputs changes during
training, as the parameters of the previous layers change.
This slows down the uaining by requiring lower leaming
rates and careful parameter initialization, and makes it no-
toriously hard to train models with satsating aonlineari-
ties, We refer to this phenomenos as interna covariate
shift, and address the problem by normalizing layer in-
puts. Our method draws its srength from making normal

ization a pact of the model architecture and performing the
normalization for each iraining mini-batch. Batch Nor-
mulization allows us to use much higher lsarning rutes and
be less careful about izitialization. It also acts us a regu-
larizer, in some cases climinating the need for Dropout.
Applied to a state-of-the-art image classifi madel,
Batch Normalizetion achieves the same sccurscy with 14
times fewer tr J
by u significan

normalizednet mprove upon the bee publ

Christian Szegedy
Google Inc., secgedy @google.com

Using mind-batches of examples, s opposed to one exam-
ple at a time, is kelpful in several ways. First, the gradient
of the loss over ¢ mini-batch is an estimate of the gradient
over the training set, whose quality improves as the batch
size incresses. Second, computation over 4 hatch can be
much more efficient than m computations for individual
examples, due to the parallelism sfforded by the moden
camputing platforms.

While stochastic gradiert is simple and eftective. it
requires careful tuning of the model hyper-parameters,
specifically the learning rate used in aptimization, as well
as the initial values for the model parameters. The train-
ing is complicated hy the fact that the inputs to each layer
are affected hy the parameters of @1 preceding layers — so
that small changes to the network purameters smplify us
the retwork becomes deeper.

The change in the distributions of layers’ aputs
presents a problem becavse the layers need to continu-

el oucly adapt to the now distibution. When the input dis
- wibution to a leaming svstem changes, il is saxd to experi-
hed :

result on ImageNet classification: reaching 4.9% top-5
validation error {and 4.8%% test emor), exceeding the ne-
caracy of haman raters.

1 Introduction

Deep learning has dramatically advanced the state of the
art in vision, speech, and many other areas. Stochas-
tic gradient descent (SGD) has proved to he an effec-
tive way of training deep retworks, and SGD vasants
such a8 momentum (Sotskever et al., 2013) ard Adagrad
(Duchi et al., 2011} have beea used to achieve state of the
art performance. SGD optimizes the parametess © of the
network, s0 as o minimize the loss

c 1
O =agmin Z‘:l.[x,‘ 8)

where x; i is the truining data set. With SGD, the train-
ing proceeds in steps, and at cach siep we consider a mini-
batchx;_,, of size m. The mini-batch is used to approx-
imate the gradient of the loss function with respect o the
parameters, by computing

1 9¢(x;,8)

m 80

ence shifi (St irs, 2000). This is typically
handled via domain adaptaion (Jiang, 2008). However,
the notion of covasiate shift can be extended beyond the
Jearning systemas a whole, 1o apply to its pants, such as a
sub-network or # layer. Consider @ network computing

£ = (K, 0,),05)

where Fy and ¥y are arbitrary transformations, and the
parameters 61,85 are to be leamed so as © minimize
the loss £, Leamning B2 cin be viewed as if the mputs

x = Fi(u,0,] we fed into the sub-network
£= Fafx. 64).

For example, a gradient descent step

0 BFy(x,, Oa)

P e
(for batch size m and learning rate cr) is exactly equivalent
1o that for a stard-alote network 7 with input x. There-
fore, the inpuot distribstion properties that make taining
more efficient - such as having the same distribution be-
tween the training and test data - apply (o Uainie the
sub-netwirk as well. As such it s adwntageous for the
distribution of x to remain fixed over time. Then, G5 does

S. loffe, C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”,

In ICML 2015
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Working ideas on how to train deep

architectures

Deep Residual Learning for Image Recognition

Kaiming He

Xiangyu Zhang

Shaoqing Ren Jian Sun

Microsoft Research
{kahe, v-xiangz, v-shren, jiansun} @microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8x
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error

W || i N
l&\/\ . 56-layer

20-layer

20-layer

training error (%)
test error (%)

o

" iter. (led) " iter. (led)
Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

Deep Residual Learning for Image Recognition

Kaiming Ile Xiangyu Zhang

Shaoging Ren Jian Sun

Microsoft Research
{kabe, v-xiangz, v-shuen, jlansun @ micosoftcom

Abstract

Desper reural networks are move diffcwit to traiv. We
present a residual learring framework to ease the troining
of aetworks that ure substaniially desper than those wed
previously. We emplicitly reformulate the layers as learn-
ing residual funcions with reference to the layer inpads, in-
stead uf leurning wneeferzaced functions. We provide com-
prehensive empirical evidence showing that these residual
nerworks are easier to optimize, and can gain accwracy from
considerably incrrased depth. On the ImageNer dataret we
evaluate residual nets with a depth of up w 152 luyers—8x
deeper than VGG nets [41] ba still having lower corplex-
iry. Ar ensemble cf these resicual nets achieves 1.57% error
o the ImageNes t2st set. This resultwon the 151 place on the
TISVRC 2015 clasification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depih of represenzations is of central importance
for many vieal meognition tasks. Solely due to owr ex
emely deep representarions, we obtain ¢ 28% relative im-
provement on the COCO wbject ditection dateser. Deep
residual nets are frndations of our submissions to JIISVRC
& COCO 2015 competitions', where we also won the 15t
places on the tasks of InageXer detection, ImageNe: local-
izarion, COUO daection, and COCO i

sz 11 1)
Figure 1. Traming ermor (left) and test emor (rght) cn CIFAR-10
with 20-layee Sé-layee “plain” networks. The deeper petwork
has higher trining sTror, and hus test emor. Similr phenomena
on ImggeNet is presented in Fig. 4.

greatly bencfited from very deep medels.

Drven by the sgnificance of depth, a question srises: Js
learning beder networks as easy ay slacking more loyers?
An ohstacle to answering this guestion was the notorious
problem of vanishinglexplodng gadients [1, 0], which
hamper comvergesce from the beginning, This provlem,
hawever, ha: heen largely addreseed hy normalized initial-
ization (23, 9, 37, 13] and intermediate normalization luyers
[16], which enuble networks with tens of layers to stust con-
vergirg for stochastic pradieat descent (SGD) with back-
propagation [22].

When deeper networks are able to start convergmg, a

L. Introduction

Dezp convolutionsl neural networks [22, 21] have led
o a series of for image classifcution (21,
50, 40]. Deep nctworks naturally integrate low/midhigh-
level feamres [50] and classifiers n an end-to-end malti-
layer tushion, and the “levels” of features cun be ensiched
by the number of stacked layers {(depth). Recent evidence
[41, 44] reveals that network depth s of cruciul impenance,
and the Jeading results [41, 44, 13, 16] cu the challenging
ImageNet dataset [36] all exploit “very deep” [41] madels,
with o depth of sicteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] hawe also

Better neural achitectures (e.g. Residual Nets

5 problem has been exposed: with the network
depth incressing, accuracy gets satarated {which might be
unsurprising) and then degrades mpldiy.  Unexpectedly,
such degracation is not caused by overfitting, and adding
mare layess to & saitably deep model leads to higher train-
ing ervor, asreported in [11, 42] and thoroughly verified by
pur experiments. Mg, | shows a typreal example.

The degradation (of training accwracy) indicetes that not
all systems are similarly easy to optmnize. Let us consider a
hall hi and its deeper that adds
more Juyers onto x. There exists a solution by construction
to the deeper model: the added layers are idensity mapping.
and the ather layess are copied from the learned shallower
maodel. The existence of this constructed solution indicates
that a deeper model shoald produce no higher training error
than ite shalower countarpart. Rut experiment: chow that
our current solvers an hand are unable to find selutiors that

K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image Recognition”, In CVPR 2016
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SO what Is deep learning?
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Three key Ideas

- (Hierarchical) Compositionality

- End-to-End Learning

- Distributed Representations

29
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Three Key Ideas

* (Hierarchical) Compositionality
- Cascade of non-linear transformations
- Multiple layers of representations

30
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Traditional Machine Learning

VISION

D ucarn

SPEECH |

‘”""\" l hand-crafted _
J\* l\bw =>| features . d & p\
“‘, MECC
fixed learned

NLP

. _ hand-crafted _
This burrito place —p| features your TE}VOFIte
is yummy and fun! | gag-of-words classifier

fixed learned

31



It's an old paradigm

- The first learning machine:
the Perceptron

- Built at Cornell in 1960

- The Perceptron was a linear classifier on
top of a simple feature extractor

Wi

‘ 1010BeNX3 emmej‘

- The vast majority of practical applications
of ML today use glorified linear classifiers

N
or glorified template matching. y=sign Z W. E. (X )_|_ b
I I
=1

- Designing a feature extractor requires
considerable efforts by experts.

unDeT UueA ‘Olezuey oljainy,oJel Aq opljs
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Hierarchical Compositionality

VISION

pixels=» edge=>» texton=—» motif =» part =» object

SPEECH

sample =» S%ectcrjal — formant —> motif =» phone = word
an

NLP
character =» word =» NP/VP/.=» clause=» sentence=»> story

unDaT UuUBA ‘O1eZURY Oljainy 2Je|\ AQ api|s
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Building A Complicated Function

Given_a library of simple functions

Compose into a

| 4
complicate function

34



v.o1eN Ag epils

Building A Complicated Function

Given_a library of simple functions

H \

—/

4

ldea 1: Linear Combinations

Compose intoa * Boosting

e Kernels

complicate function® ---

f(z) = Z o gi ()

35
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A ‘Olezu

unoHaT uue

Building A Complicated Function

Given_a library of simple functions

|dea 2: Compositions
Composeintoa * Deep Learning
> - Grammar models
complicate function® Scattering transforms...

f(z) = g1(g2(.. . (gn(x)...))

36



ey oljainy, oJe\ Aq epis

A ‘Olezu

unoHaT uue

Building A Complicated Function

Given_a library of simple functions

|dea 2: Compositions
Composeintoa * Deep Learning
 Grammar models
complicate fun(;tion' Scattering transforms...

37
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Deep Learning = Hierarchical
Compositionality

“Car”

38
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Deep Learning = Hierarchical
Compositionality

Low-Level

Mid-Level | |High-Level Trainable | car’
Feature

Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
39
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Face detectors

T e
B = I

‘g-%.r, of edges)

SN F
NEE=EL

;;d;mfzdu_‘“:. .
=11C11mE

Sparse DBNs
[Lee et al. ICML ‘09]
Figure courtesy: Quoc Le

40
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Three Key Ideas

 End-to-End Learning
- Learning (goal-driven) representations
- Learning to feature extract

41
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Traditional Machine Learning

VISION

D ucarn

SPEECH
Iih

| ‘\' . hand-crafted _
J\* ll\bw =] features . d & p\
i MECC
fixed learned

NLP

. _ hand-crafted _
This burrito place —p| features your favorite
is yummy and fun! | gag-of-words classifier

fixed learned

|
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Traditional Machine Learning
(more accurately)

VISION Learned

K-Means/

e | siFT/HOG -
. pooling

classifier ju=p “car”

fixed unsupervised | supervised
SPEECH |
1 VI :
{~ [u. l\ Iy =»|MFCC Mixture of | _J .| ssifierf=p \' &
“| W\ WN”W Gaussians \d € p\

| fixed unsupervised | supervised

NLP

This burrito place _, | Parse Tree

. : n-grams
IS yummy and fun! Syntactic

classifier jm=p OFR)

unDaT UuUBA ‘O1eZURY Oljainy 2Je|\ AQ api|s

fixed unsupervised ' supervised 43
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Deep Learning = End-to-End
Learning

“Learned”
VISION
& K-Means/ .
_> “Car”
fixed unsupervised | supervised
SPEECH |
HI\'}"] “ _ Mixture of | . . )
w w | H > Gaussians classifier e p\
|
fixed unsupervised | supervised
NLP
This burrito place _, Parse Tree n-arams classifier m=p « , »
IS yummy and fun! : +

fixed unsupervised ' supervised
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Deep Learning = End-to-End
Learning

* A hierarchy of trainable feature transforms

- Each module transforms its input representation into a
higher-level one.

- High-level features are more global and more invariant
- Low-level features are shared among categories

unDaT UuUBA ‘O1eZURY Oljainy 2Je|\ AQ api|s

Trainable Trainable Trainable

P Feature_ ..................... > Feature- —_— Featu re-
Transform / X Transform / T Transform /

Classifier Classifier Classifier

1

Learned Internal Representations
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“Shallow” vs Deep Learning

e “Shallow” models

hand-crafted
Feature Extractor

fixed

Trainable

| Feature-
Transform /

Classifier

“Simple” Trainable

Classifier

learned
Trainable Trainable
Feature- N Feature- .
Transform / T Transform /
Classifier Classifier

1

Learned Internal Representations
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Three Key Ideas

* Distributed Representations
- No single neuron “encodes” everything
- Groups of neurons work together

47
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L ocalist representations

* The simplest way to represent things
with neural networks is to dedicate one @

heuron to each thing.

- Easy to understand.
- Easy to code by hand

e Often used to represent inputs to a net

- Easy to learn
* This is what mixture models do.
 Each cluster corresponds to one neuron

- Easy to associate with other representations
Or responses.

But localist models are very inefficient
whenever the data has componential
structure.

no pattern O O O O

@000

o] JYele
) coeo
< 000@

Image credit: Moontae Lee 48
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Distributed Representations

e Fach neuron must represent
something, so this must be a local
representation.

* Distributed representation means a
many-to-many relationship between
two types of representation (such as
concepts and neurons).

- Each concept is represented by many
Neurons

- Each neuron participates in the
representation of many concepts

Local @ @ O @ = VR+HR+HE = ?
Distributed @ @ O @ = V+H+E = O

~
34
b ~ S

\
§
N
no pattern O O O O

_Jo Yo

of X Jo
) ecoe
< 000@

Image credit: Moontae Lee 49



Power of distributed representations!

Scene Classification

bedroom ’

mountain

e Possible internal representations:

- Objects ,,
- Scene attributes --= -E
P R Y
m

- Object parts D. N
- Textures &‘ﬁ 'ﬂ“.

Simple elements & colors Object part

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba “Object Detectors Emerge in Deep Scene CNNs”, ICLR 2015
50
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Next Lecture:

Convolutional Neural Networks



