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Last time... Support Vector Machines
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Today

- Soft margin classification
- Multi-class classification
- Introduction to kernels



Soft Margin
Classification



Large Margin Classifier

linear separator
IS Impossible

linear function
f(x) =(w,z) +b
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Large Margin Classifier

mMinimum error separator

Theorem (Minsky & Papert) is impossible
Finding the minimum error separating hyperplane is NP hard



Adding Slack Variables

minimize amount
Convex optimization problem of slack



Convex Programs for Dummies

» Primal optimization problem

minimize f(x) subject to ¢;(z) <0

- Lagrange function
L(z,a) = f(z) + ) aici(x)
 First order optimality conditions in x
0. L(z,a) = +Za28 ci(x) =0

+ Solve for x and plug it back into L

maximize L(x(a), a)

(keep explicit constraints)



Adding Slack Variables

- Hard margin problem

1
minirglize 5 |w||? subject to y; [(w, z;) + b] > 1

« With slack variables

L
. . . _ C ,l:
minimize |w||” + % 3

subject to y; [(w,x;) +b] > 1—&; and & > 0

Problem is always feasible. Proof:
w=0and b=0and & =1 (also yields upper bound)



Dual Problem

*  Primal optimization problem

o] 2
minimize §HwH —I—C’Zfi

subject to y; [(w,z;) +b] > 1 —¢&; and & > 0
. Lagrange function
L(w,b, a) HwH +CZ§Z Zaz yi (@i, w) + 0] +& — 1] — Zm@

Optimality in w,b,&é is at saddle point with a,#
« Derivatives in w,b,& need to vanish



Dual Problem

. Lagrange function
L(w,b,a) = HwH +CZ& Z% yi (s, w) + 0] + & — 1] — ng@

« Derivatives in w, b need to vanish
OwL(w,b, &, a,m) = w — Zazyzxz =0

OpL(w,b, &, a,m) = Zazyz_o
afz‘ (wabagaaan) C_a’b T = 0
» Plugging terms back into L yields

i,J

subject to Zaiyi =0 and a; € |0, C]
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Karush Kuhn Tucker Conditions

1
maximize — - g ;oYY (X5, 25) + E o
(87
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subject to chiyz- =0 and a; € [0, C]
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Solving the optimization problem

Dual problem
. 1
maxclxmlze — 5 Z ;O YY <£E7;, £Ej> -+ Z ;
(2¥] (/

subject to Zaiyi =0 and «; € |0, (]

If problem is small enough (1000s of variables)
we can use off-the-shelf solver (CVXOPT,
CPLEX, OOQP, LOQO)

For larger problem use fact that only SVs
matter and solve in blocks (active set method).



Multi-class classification

46



Multi-class classification
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Multi-class classification

48



One versus all classification

e Learn 3 classifiers:
— -vs. {o,+}, weights w_
— +vs. {0,-}, weights w,

— 0 Vvs. {+,-}, weights w,

* Predict label using:

gj%argml?x Wy - * + by

 Any problems?

e Could we learn this dataset?

EREER
00000
R

Buix oug Aq apis
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Buix oug Aq apis

Multi-class SVM

 Simultaneously learn 3 sets
of weights:

* How do we guarantee the
correct labels?

e Need new constraints!

The “score” of the correct

class must be better than
the “score” of wrong classes:

Vi) T+ i) < W) .

50



Buix oug Aq apis

Multi-class SVM

 As forthe SVM, we introduce slack variables and maximize margin:

minimizey ;, >, w(¥) w(®) +C > &
W(yj).Xj + p¥) > w(y').xj 1) 11 — i, VY # y;, Vi

- _ p
To predict, we use:

Y < arg max wg - T + by
_ i y

\

Qo
lo

o0

Now can we learnit? =




Kernels

52



Non-linear features

* Regression

We got nonlinear functions by preprocessing

» Perceptron

- Map data into feature space = — ¢(x)
« Solve problem in this space
- Query replace (z,z') by (¢(z), 6(z')) for code

» Feature Perceptron

 Solution in span of ¢(=:)
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Non-linear features
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« Separating surfaces are
Circles, hyperbolae, parabolae




Solving XOR

(1,22, 172)

_+ XOR not linearly separable
: - Mapping into 3 dimensions makes It easily solvable

55



Quadratic Features

Quadratic Features in R?
d(x) = ($1,\/_:131:1:2,:1:2)
Dot Product

Insight

Trick works for any polynomials of ordervia (z, 2/}
: N 2 4
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SVM with a polynomial
Kernel visualization

Created by:
Udi Aharoni



Computational Efficiency

Problem

® Extracting features can sometimes be very costly.
® Example: second order features in 1000 dimensions.
This leads to 5 - 10° numbers. For higher order polyno-
mial features much worse.
Solution

Don’t compute the features, try to compute dot products
implicitly. For some features this works . ..

Definition
A kernel function k£ : X x X — R is a symmetric function
In its arguments for which the following property holds

k(x,2") = (O(x), d(2")) for some feature map o.
If k(z,2’) Is much cheaper to compute than ®(z) ...

BloWS X9y AQ aplIs
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Recap: Ihe Perceptron

initialize w =0and b =0
repeat
if y; [(w,z;) + 0] <0 then
w4+ w—+ y;x; and b <+ b+ y;
end if

until all classified correctly

» Nothing happens if classified correctly
- Weight vector is linear combination w =) y;z;

» Classifier is linear Combination of el

inner products f(z) =) y; (z;,x
el

BloWS X9y AQ aplIs
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Recap: The Perceptron on features

initialize w, b = 0
repeat
Pick (ZCZ', yz) from data
w = w+ y;P(x;)
b = b+,
until y;(w - ®(x;) +b) > 0 for all ¢

- Nothing happens if classified correctly
+ Weight vector is linear combination w =" y:¢(x:)
- Classifier is linear Combination of i€l

inner products f(z) =) i (¢(x:), ¢(x)) + b

el 60



The Kernel Perceptron

initialize f =0
repeat
Pick (ZEZ', Z/@) from data
F() = FO) +yiklzi, ) +
until y; f(x;) > 0 for all

Nothing happens if classified correctly

Weight vector is linear combination w =) _yié(x;)

el
Classifier is linear combination of inner products

="y (d@), (@) + b= yik(ws,x) + b

el el
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Processing Pipeline

A
X 2 O .
7 X
[ O \ 1
\ ) -
\ #

- Original data

- Data in feature space (implicit)

+ Solve in feature space using kernels
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Polynomial Kernels

ldea
® We want to extend k(x, 2') = (z,2')* to

k(xz,2') = ({z,2") + c)d where ¢ > 0 and d € N.

® Prove that such a kernel corresponds to a dot product.

Proof strategy
Simple and straightforward: compute the explicit sum
given by the kernel, I.e.

k. o') = ({z,2') + o = fj () (-

Individual terms ({z, '))" are dot products for some @;(z).

63
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Kernel Conditions

Computability
We have to be able to compute k(z, 2’) efficiently (much
cheaper than dot products themselves).

“Nice and Useful” Functions
The features themselves have to be useful for the learn-
Ing problem at hand. Quite often this means smooth
functions.

Symmetry
Obviously k(x,z") = k(2', x) due to the symmetry of the
dot product (®(z), d(z')) = (d(2'), P(x)).

Dot Product in Feature Space
Is there always a ® such that & really i1s a dot product?

BloWS X9y AQ aplIs

64



Mercer’s Theorem

The Theorem
For any symmetric function £ : X x X — R which Is
sguare integrable in X x X and which satisfies

/ k(. 2) f(2) (2 )dzda’ > 0 for all | € Ly(%)

Xx X

there exist ¢; : X — R and numbers \; > 0 where
k(z,2) = Nigi(x)g;(2') for all 2,2’ € X.

Interpretation
Double integral is the continuous version of a vector-
matrix-vector multiplication. For positive semidefinite
matrices we have

S: S: ]C(.CIZ‘Z, ij)()éf,;()éj Z 0

BloWS X9y AQ aplIs
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Properties

Distance in Feature Space
Distance between points in feature space via

d(z,2')* = 0(x) — &)
=(0(x), D(z)) — 2(P(x), D(z)) + (P(2'), D(2))
=k(x,z)+ k(2',2") — 2k(x, x)
Kernel Matrix

To compare observations we compute dot products, so
we study the matrix K given by

Ky = (@), ®(x,)) = k(x,,z)

where z; are the training patterns.

Similarity Measure
The entries K; tell us the overlap between &(x;) and
d(z,), SO k(z;, x;) is a similarity measure.

BloWS X9y AQ aplIs
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Properties

K I1s Positive Semidefinite
Claim: o' Ka > 0 for all « € R™ and all kernel matrices
K € R™ " Proof:

Z%%‘K@j = ZO@O@ P(z))
<Z% T;), Z CID(:UJ)> ZO%@(%‘)

Kernel Expansion
If w is given by a linear combination of ®(x;) we get

— <Z &i®(xi),®(x)> — Z@z‘k(%aflf)

67
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Examples

Examples of kernels k(z, 2')

Linear (x,2")

Laplacian RBF exp (—A||x — 2'|)

Gaussian RBF exp (—A|lz — 2'||%)
Polynomial (z,2) +c))",e>0, d €N
B-Spline Boyii(x — ')

c)p(a’|c)]

Simple trick for checking Mercer’s condition
Compute the Fourier transform of the kernel and check
that It Is nonnegative.

Cond. Expectation E.|p(x

68



Linear Kernel

69

1=X 10} (A*X)Y
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Laplacian Kernel
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Kernel
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Polynomial of order 3
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Kernel

Spline

B3
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Kernels in Computer Vision

- Features x = histogram (of color, texture, etc)

- Common Kernels
- |Intersection Kernel
- Chi-square Kernel

Kintersect (’U,, ’U) — Z min(uz’a vi)
)

2u,,;vz-

KX2(U,’U) ~ Z Ui + v;
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Koo XY) = XY

Km(x.y) = min(x.y)

Image credit: Subhransu Maji

sz = 2Xy/(X+Y)
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Next Lecture:
Kernel Trick for SVMSs,
Support Vector Regression



