
Aykut Erdem // Hacettepe University // Fall 2019

Lecture 19:

What is Ensemble Learning?

Bagging

Random Forests

BBM406

Fundamentals of  

Machine
Learning

Photo byUnsplash user @nathananderson

Last time… Decision Trees

2

Predic>ng&infec>on&using&decision&trees&

slide by David Sontag

Last time… Information Gain

3

Informa>on&gain&
•  Decrease&in&entropy&(uncertainty)&aper&spliong&

X1 X2 Y

T T T

T F T

T T T

T F T

F T T

F F F

In our running example:

IG(X1) = H(Y) – H(Y|X1)
 = 0.65 – 0.33

IG(X1) > 0  we prefer the split! slide by David Sontag

The&set&of&possible&thresholds&

•  Binary&tree,&split&on&aYribute&X&
–  One&branch:&X&<&t&
–  Other&branch:&X&≥&t&

•  Search&through&possible&values&of&t"
–  Seems&hard!!!&

•  But&only&a&finite&number&of&t’s&are&important:&

–  Sort&data&according&to&X&into&{x1,…,xm}&
–  Consider&split&points&of&the&form&xi&+&(xi+1&–&xi)/2&

–  Morever,&only&splits&between&examples&of&different&classes&maYer!&

(Figures&from&Stuart&Russell)&

Optimal splits for continuous attributes

Infinitely many possible split points c to define node test Xj > c ?

No! Moving split point along the empty space between two observed values
has no e�ect on information gain or empirical loss; so just use midpoint

X
j

c
1

c
2

Moreover, only splits between examples from di�erent classes
can be optimal for information gain or empirical loss reduction

X
j

c
2

c
1

CS194-10 Fall 2011 Lecture 8 26

t1 t2

Optimal splits for continuous attributes

Infinitely many possible split points c to define node test Xj > c ?

No! Moving split point along the empty space between two observed values
has no e�ect on information gain or empirical loss; so just use midpoint

X
j

c
1

c
2

Moreover, only splits between examples from di�erent classes
can be optimal for information gain or empirical loss reduction

X
j

c
2

c
1

CS194-10 Fall 2011 Lecture 8 26

t1 t2

Last time… Continuous features
• Binary tree, split on attribute X

- One branch: X < t

- Other branch: X ≥ t

• Search through possible values of t

- Seems hard!!!

• But only a finite number of t’s are important: 
 

• Sort data according to X into {x1,...,xm}

• Consider split points of the form xi + (xi+1 – xi)/2

• Moreover, only splits between examples from different

classes matter!  
 

4

The&set&of&possible&thresholds&

•  Binary&tree,&split&on&aYribute&X&
–  One&branch:&X&<&t&
–  Other&branch:&X&≥&t&

•  Search&through&possible&values&of&t"
–  Seems&hard!!!&

•  But&only&a&finite&number&of&t’s&are&important:&

–  Sort&data&according&to&X&into&{x1,…,xm}&
–  Consider&split&points&of&the&form&xi&+&(xi+1&–&xi)/2&

–  Morever,&only&splits&between&examples&of&different&classes&maYer!&

(Figures&from&Stuart&Russell)&

Optimal splits for continuous attributes

Infinitely many possible split points c to define node test Xj > c ?

No! Moving split point along the empty space between two observed values
has no e�ect on information gain or empirical loss; so just use midpoint

X
j

c
1

c
2

Moreover, only splits between examples from di�erent classes
can be optimal for information gain or empirical loss reduction

X
j

c
2

c
1

CS194-10 Fall 2011 Lecture 8 26

t1 t2

Optimal splits for continuous attributes

Infinitely many possible split points c to define node test Xj > c ?

No! Moving split point along the empty space between two observed values
has no e�ect on information gain or empirical loss; so just use midpoint

X
j

c
1

c
2

Moreover, only splits between examples from di�erent classes
can be optimal for information gain or empirical loss reduction

X
j

c
2

c
1

CS194-10 Fall 2011 Lecture 8 26

t1 t2

slide by David Sontag

Last time… Decision trees will overfit

• Standard decision trees have no learning bias

- Training set error is always zero!

• (If there is no label noise)

- Lots of variance

- Must introduce some bias towards simpler

trees 

• Many strategies for picking simpler trees

- Fixed depth

- Fixed number of leaves 

• Random forests
5

slide by David Sontag

Today
• Ensemble Methods

- Bagging

• Random Forests

6

Ensemble Methods
• High level idea 

– Generate multiple hypotheses 
– Combine them to a single classifier  

• Two important questions 
– How do we generate multiple hypotheses  
 • we have only one sample  
– How do we combine the multiple hypotheses  
 • Majority, AdaBoost, ...

7

slide by Yishay M
ansour

Bias/Variance Tradeoff

8

Hastie, Tibshirani, Friedman “Elements of Statistical Learning” 2001

3

Bias/Variance&Tradeoff&

Hastie, Tibshirani, Friedman “Elements of Statistical Learning” 2001!

slide by David Sontag

Bias/Variance Tradeoff

9http://scott.fortmann-roe.com/docs/BiasVariance.html

Graphical illustration of bias and variance.

slide by David Sontag

http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html

Fighting the bias-variance tradeoff
• Simple (a.k.a. weak) learners are good

- e.g., naïve Bayes, logistic regression, decision
stumps (or shallow decision trees)

- Low variance, don’t usually overfit

• Simple (a.k.a. weak) learners are bad  
– High bias, can’t solve hard learning problems

10

slide by Aarti Singh

Reduce Variance Without Increasing Bias

• Averaging reduces variance:

• Average models to reduce model variance

• One problem:

- Only one training set

- Where do multiple models come from?

11

(when prediction
are independent)

slide by David Sontag

Bagging (Bootstrap Aggregating)
• Leo Breiman (1994)

• Take repeated bootstrap samples from training set

D.

• Bootstrap sampling: Given set D containing N

training examples, create D’ by drawing N
examples at random with replacement from D.

• Bagging:

- Create k bootstrap samples D1 ... Dk.

- Train distinct classifier on each Di.

- Classify new instance by majority vote / average.

12

slide by David Sontag

Bagging
• Best case:

• In practice:

- models are correlated, so reduction is smaller  

than 1/N

- variance of models trained on fewer training

cases usually somewhat larger

13

slide by David Sontag

Bagging Example

14

slide by David Sontag

CART* decision boundary

15* A decision tree learning algorithm; very similar to ID3

slide by David Sontag

100 bagged trees

16
• Shades of blue/red indicate strength of vote for particular classification

slide by David Sontag

Random Forests

17

Random Forests
• Ensemble method specifically designed for

decision tree classifiers

• Introduce two sources of randomness: “Bagging”

and “Random input vectors”

- Bagging method: each tree is grown using a

bootstrap sample of training data

- Random vector method: At each node, best split is

chosen from a random sample of m attributes
instead of all attributes

18

slide by David Sontag

Classification tree

19

Data in feature space

?"

?"

?"

Classification tree
training

Classification tree

[Criminisi et al, 2011][Criminisi et al., 2011]

slide by N
ando de Freitas

Use information gain to decide splits

20

Sp
lit
&1
&

Sp
lit
&2
&Be

fo
re
&sp

lit
&

Use information gain to decide splits

[Criminisi et al, 2011]

[Criminisi et al., 2011]

slide by N
ando de Freitas

Advanced: Gaussian information
gain to decide splits

21

Be
fo
re
&sp

lit
&

Sp
lit
&1
&

Sp
lit
&2
&

[Criminisi et al., 2011]

slide by N
ando de Freitas

22

Use information gain to decide splits

[Criminisi et al, 2011]

[Criminisi et al, 2011][Criminisi et al, 2011][Criminisi et al, 2011][Criminisi et al, 2011]

Sp
lit
&1
&

Sp
lit
&2
&

𝜽=1
𝜽=2

…

[Criminisi et al., 2011]

leaf%
leaf%

leaf%

Leaf model: probabilistic

Split node (train)

Node%weak%learner%

Split node (test)

slide by N
ando de Freitas

Alternative node decisions

23

Alternative node decisions

[Criminisi et al, 2011]

axis aligned oriented line conic section
examples of weak learners

slide by N
ando de Freitas

Building a random tree

24

Building a random tree

slide by N
ando de Freitas

Random Forests algorithm

25

Random Forests for classification or regression

[From the book of Hastie, Friedman and Tibshirani]

slide by N
ando de Freitas

Randomization

26

Randomization

[Criminisi et al, 2011]

slide by N
ando de Freitas

Building a forest (ensemble)

27

Building a forest (ensemble)

[Criminisi et al, 2011]

Tree t=1 t=2 t=3

slide by N
ando de Freitas

Effect of forest size

28

Effect of forest size

slide by N
ando de Freitas

Effect of forest size

29

slide by N
ando de Freitas

Effect of more classes and noise

30

Effect of more classes and noise

[Criminisi et al, 2011]

slide by N
ando de Freitas

Effect of more classes and noise

31

slide by N
ando de Freitas

Effect of tree depth (D)

32

Training'points:'4.class'mixed'

D=3 D=6 D=15

slide by N
ando de Freitas

(underfitting) (overfitting)

Effect of bagging

33

Effect of bagging

[Criminisi et al, 2011]

no bagging => max-margin

slide by N
ando de Freitas

Random Forests and the Kinect

34

Motivation example 2: Kinect

slide by N
ando de Freitas

Random Forests and the Kinect

35

Real-Time Human Pose Recognition in Parts from Single Depth Images
Jamie Shotton Andrew Fitzgibbon Mat Cook Toby Sharp Mark Finocchio

Richard Moore Alex Kipman Andrew Blake
Microsoft Research Cambridge & Xbox Incubation

Abstract
We propose a new method to quickly and accurately pre-

dict 3D positions of body joints from a single depth image,
using no temporal information. We take an object recog-
nition approach, designing an intermediate body parts rep-
resentation that maps the difficult pose estimation problem
into a simpler per-pixel classification problem. Our large
and highly varied training dataset allows the classifier to
estimate body parts invariant to pose, body shape, clothing,
etc. Finally we generate confidence-scored 3D proposals of
several body joints by reprojecting the classification result
and finding local modes.

The system runs at 200 frames per second on consumer
hardware. Our evaluation shows high accuracy on both
synthetic and real test sets, and investigates the effect of sev-
eral training parameters. We achieve state of the art accu-
racy in our comparison with related work and demonstrate
improved generalization over exact whole-skeleton nearest
neighbor matching.

1. Introduction
Robust interactive human body tracking has applica-

tions including gaming, human-computer interaction, secu-
rity, telepresence, and even health-care. The task has re-
cently been greatly simplified by the introduction of real-
time depth cameras [16, 19, 44, 37, 28, 13]. However, even
the best existing systems still exhibit limitations. In partic-
ular, until the launch of Kinect [21], none ran at interactive
rates on consumer hardware while handling a full range of
human body shapes and sizes undergoing general body mo-
tions. Some systems achieve high speeds by tracking from
frame to frame but struggle to re-initialize quickly and so
are not robust. In this paper, we focus on pose recognition
in parts: detecting from a single depth image a small set of
3D position candidates for each skeletal joint. Our focus on
per-frame initialization and recovery is designed to comple-
ment any appropriate tracking algorithm [7, 39, 16, 42, 13]
that might further incorporate temporal and kinematic co-
herence. The algorithm presented here forms a core com-
ponent of the Kinect gaming platform [21].

Illustrated in Fig. 1 and inspired by recent object recog-
nition work that divides objects into parts (e.g. [12, 43]),
our approach is driven by two key design goals: computa-
tional efficiency and robustness. A single input depth image
is segmented into a dense probabilistic body part labeling,
with the parts defined to be spatially localized near skeletal

depth image body parts 3D joint proposals

Figure 1. Overview. From an single input depth image, a per-pixel
body part distribution is inferred. (Colors indicate the most likely
part labels at each pixel, and correspond in the joint proposals).
Local modes of this signal are estimated to give high-quality pro-
posals for the 3D locations of body joints, even for multiple users.

joints of interest. Reprojecting the inferred parts into world
space, we localize spatial modes of each part distribution
and thus generate (possibly several) confidence-weighted
proposals for the 3D locations of each skeletal joint.

We treat the segmentation into body parts as a per-pixel
classification task (no pairwise terms or CRF have proved
necessary). Evaluating each pixel separately avoids a com-
binatorial search over the different body joints, although
within a single part there are of course still dramatic dif-
ferences in the contextual appearance. For training data,
we generate realistic synthetic depth images of humans of
many shapes and sizes in highly varied poses sampled from
a large motion capture database. We train a deep ran-
domized decision forest classifier which avoids overfitting
by using hundreds of thousands of training images. Sim-
ple, discriminative depth comparison image features yield
3D translation invariance while maintaining high computa-
tional efficiency. For further speed, the classifier can be run
in parallel on each pixel on a GPU [34]. Finally, spatial
modes of the inferred per-pixel distributions are computed
using mean shift [10] resulting in the 3D joint proposals.

An optimized implementation of our algorithm runs in
under 5ms per frame (200 frames per second) on the Xbox
360 GPU, at least one order of magnitude faster than exist-
ing approaches. It works frame-by-frame across dramati-
cally differing body shapes and sizes, and the learned dis-
criminative approach naturally handles self-occlusions and

1

[Jamie Shotton et al., 2011]

adopted from
 N

ando de Freitas

Random Forests and the Kinect
• Use computer graphics to generate plenty of data

36[Jamie Shotton et al., 2011]

sy
nt

he
tic

 (t
ra

in
 &

 te
st

)

re
al

 (t
es

t)

Figure 2. Synthetic and real data. Pairs of depth image and ground truth body parts. Note wide variety in pose, shape, clothing, and crop.

simplify the task of background subtraction which we as-
sume in this work. But most importantly for our approach,
it is straightforward to synthesize realistic depth images of
people and thus build a large training dataset cheaply.

2.2. Motion capture data
The human body is capable of an enormous range of

poses which are difficult to simulate. Instead, we capture a
large database of motion capture (mocap) of human actions.
Our aim was to span the wide variety of poses people would
make in an entertainment scenario. The database consists of
approximately 500k frames in a few hundred sequences of
driving, dancing, kicking, running, navigating menus, etc.

We expect our semi-local body part classifier to gener-
alize somewhat to unseen poses. In particular, we need not
record all possible combinations of the different limbs; in
practice, a wide range of poses proves sufficient. Further,
we need not record mocap with variation in rotation about
the vertical axis, mirroring left-right, scene position, body
shape and size, or camera pose, all of which can be added
in (semi-)automatically.

Since the classifier uses no temporal information, we
are interested only in static poses and not motion. Often,
changes in pose from one mocap frame to the next are so
small as to be insignificant. We thus discard many similar,
redundant poses from the initial mocap data using ‘furthest
neighbor’ clustering [15] where the distance between poses
p1 and p2 is defined as maxj kpj1�p

j
2k2, the maximum Eu-

clidean distance over body joints j. We use a subset of 100k
poses such that no two poses are closer than 5cm.

We have found it necessary to iterate the process of mo-
tion capture, sampling from our model, training the classi-
fier, and testing joint prediction accuracy in order to refine
the mocap database with regions of pose space that had been
previously missed out. Our early experiments employed
the CMU mocap database [9] which gave acceptable results
though covered far less of pose space.

2.3. Generating synthetic data
We build a randomized rendering pipeline from which

we can sample fully labeled training images. Our goals in
building this pipeline were twofold: realism and variety. For
the learned model to work well, the samples must closely
resemble real camera images, and contain good coverage of

the appearance variations we hope to recognize at test time.
While depth/scale and translation variations are handled ex-
plicitly in our features (see below), other invariances cannot
be encoded efficiently. Instead we learn invariance from the
data to camera pose, body pose, and body size and shape.

The synthesis pipeline first randomly samples a set of
parameters, and then uses standard computer graphics tech-
niques to render depth and (see below) body part images
from texture mapped 3D meshes. The mocap is retarget-
ting to each of 15 base meshes spanning the range of body
shapes and sizes, using [4]. Further slight random vari-
ation in height and weight give extra coverage of body
shapes. Other randomized parameters include the mocap
frame, camera pose, camera noise, clothing and hairstyle.
We provide more details of these variations in the supple-
mentary material. Fig. 2 compares the varied output of the
pipeline to hand-labeled real camera images.

3. Body Part Inference and Joint Proposals
In this section we describe our intermediate body parts

representation, detail the discriminative depth image fea-
tures, review decision forests and their application to body
part recognition, and finally discuss how a mode finding al-
gorithm is used to generate joint position proposals.
3.1. Body part labeling

A key contribution of this work is our intermediate body
part representation. We define several localized body part
labels that densely cover the body, as color-coded in Fig. 2.
Some of these parts are defined to directly localize partic-
ular skeletal joints of interest, while others fill the gaps or
could be used in combination to predict other joints. Our in-
termediate representation transforms the problem into one
that can readily be solved by efficient classification algo-
rithms; we show in Sec. 4.3 that the penalty paid for this
transformation is small.

The parts are specified in a texture map that is retargetted
to skin the various characters during rendering. The pairs of
depth and body part images are used as fully labeled data for
learning the classifier (see below). For the experiments in
this paper, we use 31 body parts: LU/RU/LW/RW head, neck,
L/R shoulder, LU/RU/LW/RW arm, L/R elbow, L/R wrist, L/R
hand, LU/RU/LW/RW torso, LU/RU/LW/RW leg, L/R knee,
L/R ankle, L/R foot (Left, Right, Upper, loWer). Distinct

adopted from
 N

ando de Freitas

Reduce Bias2 and Decrease Variance?
• Bagging reduces variance by averaging

• Bagging has little effect on bias

• Can we average and reduce bias?

• Yes: Boosting

37

slide by David Sontag

Next Lecture:
Boosting

38

