photo:@rewardyfahmi // Unsplash

Fundamentals of Machine Learning

Machine Learning by Examples, Nearest Neighbor Classifier

11

Aykut Erdem // Hacettepe University // Fall 2019

When Do We Use Machine Learning?

ML is used when:

- Human expertise does not exist (navigating on Mars)
- Humans can't explain their expertise (speech recognition)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)

A classic example of a task that requires machine learning: It is very hard to say what makes a 2

00011(112

slide by Geoffrey Hinton

Machine Learning (by examples)

Pose Estimation

Collaborative Filtering

Top 10 for Alexander

Don't mix preferences on Netflix!

Customers Who Bought This Item Also Bought

\$65.78

Point Processes (Chapman & Hall / CRC Monographs on S... by D.R. Cox \$125.47

Probabilistic Graphica Models: Principles and T... by Daphne Koller ******* (5) \$71.52

Amazon books

Collaborative Filtering

BUSINESS INSIDER

RETAIL

Amazon is being forced to review its website after it reportedly recommended shoppers buy items that can create explosives

Should be careful

Kate Taylor ⊠ ♥ ③ Sep. 20, 2017, 11:51 AM 6,591

Frequently bought together

Fotal price: \$50.87

Add all three to Cart

Add all three to List

\$25.99
\$3.89
\$20.99

This chemical compound's "frequently bought together" suggestions are the necessary ingredients to create a dangerous reaction. Amazon.com

Amazon is doing some selfexamination after its website suggested customers purchase potentially dangerous groupings of products.

On Wednesday, Amazon told Reuters it was "reviewing its website" after the UK's Channel 4 News reported that the ecommerce giant's algorithm suggests that shoppers pair certain items with products that can be used to create homemade explosives.

Imitation Learning in Games

Reinforcement Learning

Game will be control Size 160-210 OK <type 'str'=""> 67200 <type 'numpy.ndarray<br="">S: 1 A: 0 R: 0 D: 0</type></type>	led thro	ough named FIFO pipes.			
Start				A.L.E. Viz	- + ×
action: 1 S: 2 A: 1 R: 1 D: 0	Reward	0		100 5	
action: 1 S: 3 A: 2 R: 2 D: 0	Reward	0			
action: 1 S: 4 A: 3 R: 3 D: 0	Reward	10 ·			
action NEURALNET: 3 S: 5 A: 4 R: 4 D: 1	Reward	θ			
action NEURALNET: J S: 6 A: 5 R: 5 D: 2	Reward	0			
action NEURALNET: 0 S: 7 A: 6 R: 6 D: 3	Reward	θ	and the second se		
action NEURALNET: 3 S: 8 A: 7 R: 7 D: 4	Reward	0			
action NEURALNET: 0 S: 9 A: 8 R: 8 D: 5	Reward	θ			
action NEURALNET: 3					

https://www.youtube.com/watch?v=lleRKHsJBJ0

Reinforcement Learning

https://www.youtube.com/watch?v=5iZlrBqDYPM

Spam Filtering

+Alex Search In	n ages Maps I	Play YouTube News G	mail Drive Calendar More -	
Google			~ Q	Alex Smola 0 + Share
Gmail -		C More -	ham	1-50 of 15,803 < >
COMPOSE Inbox (7,180) Important Sent Mail		Southwest Airlines	Your trip is around the corner! - You're all set for your San Jose	trip! My Account View My Itinerary Online 2:12 pm
	二 ☆ ≫	DiscountMags.com	\$3.99 Business & Finance Sale starts now! - Trouble Seeing Thi	s Email? View as Webpage STOP these e-m 12:03 pm
		support, Alex (3)	Your order has shipped please send to the address below for a	n exchange remotesremotes.com(exchange) 7:22 am
		American Airlines AAdvan.	AAdvantage eSummary - January 2013 - VIEW IN WEB BROWS	SER >> http://americanairlines.ed10.net/r/JC 1:17 am
Drafts (61)	🗆 🕁 😕	Taesup, Alex, Taesup (3)	Happy new year! - Hi Alex, Thanks for your condolence. I will arri	ve at Berkeley on 16th (wed) night. So, I car Jan 11

+Alex Search Image	es Maps F	Play YouTube	News	Gmail	Drive	Calendar	More -							
Google	in:spam						- T	Q			Alex Smo	ola 0	+ Sh	are
Gmail -		C	More -			sp	am				1–50 of 244	< 1	>	\$ -
Delete all spam messages now (messages that have been in Spam more than 30 days will be automatically deleted)														
COMPOSE	二 ☆ ≫	maee		(Eið	STP In	dex)2013机	戒与自动化工程	国际会议征文:	[alex.smola@gn	nail.com] - 尊得	放的老师, 您好	F: 机械与	i	Jan 11
Inbox (7,180)		Dear Valued Cu	stomers,	Lov	v Interes	t Rate Loan	- Dear Valued (Customers, Do	you need a loan	or funding for a	any of the follo	wing reas	i	Jan 11
Important Sent Mail	口☆□	garjeti		Cal	for Res	earch Pape	rs - Global Ai	DVANCED RE	SEARCH JOURN	IAL OF ENGIN	EERING, TEC	HNOLOG	ŝ	Jan 11
Drafts (61)	□ ☆ ≫	Steven Cooke		Cor	ngratulat	tions Alex, \$	5150 awaits you	- Alex: IMPO	RTANT - NOTICE	E OF WINNING	S Please mak	ke sure yo	2	Jan 11
All Mail	□ ☆ ∞	paper18		[2	013-1-15	截稿】【201	3年机电与控制	工程亚太地区学	单术研讨会APCMC	E 2013] [E	【香港】【	不参-不要		Jan 10
Circles	口 ☆ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	First-Class Mail	Service	Tra	cking ID	(G)BGD35 8	349 603 4893 45	50 - Fed Ex O	order: JN-3339-28	981768 Order [Date: Thursday	, 3 Janua	1	Jan 10
- [Gmail]		garjeti		Cal	for Res	earch Pape	rs - Global Ai	DVANCED RE	SEARCH JOURN	IAL OF ENGIN	EERING, TEC	HNOLOG	ŝ	Jan 10
Done (1,006)	口公》	Candy.Li		中层	晨,不只当	老板的代言人							C	Jan 9
[Imap]/Sent	二 次 》	Ronan Morgan		Ror	nan Morg	gan just sen	t you a person	al message	LinkedIn Ronan	Morgan just se	nt you a privat	e messag	3	Jan 9
alex.smola@yah		RE/MAX®		201	3 Valuea	able Offer! -	Hello Friend, R	E/MAX® has is	ssued 2013 valua	ble property of	fer in your resi	dent from		Jan 9
\\ \\ \\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \		newsletter		new	vsletter V	WWW2013 -	Newsletter 6 - 3	See the Portug	juese and Spanis	h version right	after the Engli	sh versio	Č.	Jan 9
		CJCR editor		Chir	nese Jou	rnal of Canc	er Research (C.	JCR) has been	indexed by Pubr	ned and PMC	Click here if t	his e-mail		Jan 9
Search people		garjeti (2)		Cal	for Res	earch Pape	rs - Global Ai	DVANCED RE	SEARCH JOURN	AL OF ENGIN	EERING, TEC	HNOLOG	ć	Jan 9
Barak Pearlmut		Wayne Smith		Way	ne Smi	th has sent	you a message	- Linked In W	ayne Smith just a	sent you a mes	sage Date: 1/0	09/2013 h	1	Jan 9

1

slide by Alex Smola

Cheque Reading

segment image

Photograph Front of Check

Place the check on a dark background in a well-lit ar the camera steady and align the check's edges with the

NOT NEGOTIABLE - DO NOT CASH JAMES C. MORRISON MARY A. MORRISON 1765 SHERDAN DR YOUR CITY, STATE 10099	NO. 123 2/27/03 00-5753/000
ONDER OF BOB'S C2r W234-Petr	esmith , 50 00
FITTY 200 100 NOTNEGE SAMPLE	OTIABLE DOLLA
**************************************	, 000000 5000,
PP I be USATION SKOW	1.00 cm

CANCEL

recognize handwriting

Image Layout

Raw set of images from several cameras
Joint layout based on image similarity

Search Ads

Self-Driving Cars

Image: <u>https://medium.com/waymo/simulation-how-one-flashing-yellow-light-turns-into-thousands-of-hours-of-experience-a7a1cb475565</u>

Speech Recognition

Given an audio waveform, robustly extract & recognize any spoken words

- Statistical models can be used to
 - Provide greater robustness to noise
 - Adapt to accent of different speakers
 - Learn from training

Natural Language Processing

Face Detection

Yang et al., From Facial Parts Responses to Face Detection: A Deep Learning Approach, ICCV 2015

Scene Labeling via Deep Learning

[Farabet et al. ICML 2012, PAMI 2013]

Topic Models of Text Documents

Genomics: group individuals by genetic similarity

individuals

genes

4/

Learning - revisited

Learning - revisited

Programming with Data

- Want adaptive robust and fault tolerant systems
- Rule-based implementation is (often)
 - difficult (for the programmer)
 - brittle (can miss many edge-cases)
 - becomes a nightmare to maintain explicitly
 - often doesn't work too well (e.g. OCR)
- Usually easy to obtain examples of what we want IF x THEN DO y
- Collect many pairs (x_i, y_i)
- Estimate function f such that $f(x_i) = y_i$ (supervised learning)
- Detect patterns in data (unsupervised learning)

Objectives of Machine Learning

- Algorithms: design of efficient, accurate, and general learning algorithms to
 - deal with large-scale problems.
 - make accurate predictions (unseen examples).
 - handle a variety of different learning problems.
- Theoretical questions:
 - what can be learned? Under what conditions?
 - what learning guarantees can be given?
 - what is the algorithmic complexity?

Definitions and Terminology

- Example: an object, instance of the data used.
- Features: the set of attributes, often represented as a vector, associated to an example (e.g., height and weight for gender prediction).
- Labels: in classification, category associated to an object (e.g., positive or negative in binary classification); in regression real value.
- Training data: data used for training learning algorithm (often labeled data).

Definitions and Terminology (cont'd.)

- Test data: data used for testing learning algorithm (unlabeled data).
- Unsupervised learning: no labeled data.
- Supervised learning: uses labeled data.
- Weakly or semi-supervised learning: intermediate scenarios.
- Reinforcement learning: rewards from sequence of action.

Supervised Learning

- **Binary classification** Given x find y in {-1, 1}
- **Multicategory classification** Given x find y in {1, ... k}
- **Regression** Given x find y in R (or R^d)
- Sequence annotation Given sequence $x_1 \dots x_l$ find $y_1 \dots y_l$
- Hierarchical Categorization (Ontology) Given x find a point in the hierarchy of y (e.g. a tree)
- Prediction

Given x_t and $y_{t-1} \dots y_1$ find y_t

often with loss l(y, f(x))

Binary Classification

+Alex	Search	Images	Maps	Play	YouTube	News	
Go	ogle						
Gma	il +		•		C	More 👻	4
CO	MPOSE		57 ×	Sou	thwest Airlin	nes	
			X	Disc	countMags.co	om	
Inbox (7,180)		1 1 ×	sup	oort, Alex (3)		
Sent Ma	ail		XX	Ame	erican Airlin	es AAdv	
Drafts ((61)		1 th 💌	Tae	sup, Alex, Ta	esup (3)	2
+Alex	Search	Images	Maps	Play	YouTube	News	
Go	ogle	; [i	n:spam				
Gma	il -				C	More 💌	0
					De	elete all s	
	OMPOSE		1 1X 1X	mae	e		
Inbox (7,180)] ☆ E	Dea	r Valued Cu	stomers,	
Importa Sent M	int ail	[] ☆ E	garj	eti		2
Drafts ((61)	[1 1X 1X	Stev	ven Cooke		632
All Mail		E	XX	pap	er18		
Circles	8	[XX	Firs	t-Class Mail	Service	
F [Gmail]				garj	eti		
Done [[man]/]	e (1,006) Drafts	[1 the Im	Can	dy.Li		4
[Imap]/	Sent		XX	Ron	an Morgan		
alex.sm	nola@yah]☆ [RE/	MAX®		
14	C	3] ☆ [new	sletter		
	• •		XX	CJC	R editor		
Search	people	ſ		aari	oti (2)		

slide by Alex Smola

Multiclass Classification + Annotation

Regression

Sequence Annotation

given sequence

gene finding speech recognition activity segmentation named entities

Ontology

* ·····

dmoz open directory proj	ject	In partnership with Aol Search.		mo lecular_function
	about dmoz dmoz blog	suggest URL help link editor login	binding	catalytic enzyme transp regulator transp
webpages	Search	advanced	carbohydrate	hydrolase enzyme lip activity transp
Arts	Business	Computers		
Movies, Television, Music	Jobs, Real Estate, Investing	Internet, Software, Hardware		[]
Games	Health	Home	binding	activity acti
Video Games, RPGs, Gambling	Fitness, Medicine, Alternative	Family, Consumers, Cooking	{	
Kids and Teens	News	Recreation	mo nosaccharide binding	endopeptidase activity
Arts, School Time, Teen Life	Media, Newspapers, Weather	Travel, Food, Outdoors, Humor		$\langle \rangle$
Reference	Regional	Science		serine-type endopeptidase
Maps, Education, Libraries	US, Canada, UK, Europe	Biology, Psychology, Physics		activity
Shopping	Society	Sports		
Clothing, Food, Gifts	People, Religion, Issues	Baseball, Soccer, Basketball		chymotrypsin activity
World				
Català, Dansk, Deutsch, Español,	Français, Italiano, 日本語, Nederla	<u>ands, Polski, Русский, Svenska</u>		
				genes
Become an Editor Help build the la	rappt human-edited directory of the	web		

5,114,083 sites - 96,877 editors - over 1,014,849 categories

Copyright © 2013 Netscape

Prediction

tomorrow's stock price 35

Unsupervised Learning

slide by Alex Smola
Unsupervised Learning

- Given data x, ask a good question ... about x or about model for x
- **Clustering** Find a set of prototypes representing the data
- Principal Components
 Find a subspace representing the data
- Sequence Analysis
 Find a latent causal sequence for observations
 - Sequence Segmentation
 - Hidden Markov Model (discrete state)
 - Kalman Filter (continuous state)
- Hierarchical representations
- Independent components / dictionary learning Find (small) set of factors for observation

Novelty detection Find the odd one out

Clustering

- Documents
- Users
- Webpages
- Diseases
- Pictures
- Vehicles

slide by Alex Smola

Principal Components

Variance component model to account for sample structure in genome-wide association studies, Nature Genetics 2010

Hierarchical Grouping

Independent Components

find them automatically

Separated Sources

Novelty detection

typical

atypical

Important challenges in ML

- How important is the actual learning algorithm and its tuning
- Simple versus complex algorithm
- Overfitting
- Model Selection
- Regularization

Your 1st Classifier: Nearest Neighbor Classifier

Concept Learning

- Definition: Acquire an operational definition of a general category of objects given *positive* and *negative* training examples.
- Also called *binary classification*, *binary supervised learning*

Concept Learning Example

	CORRECT (complete, partial, guessing)	color (yes, no)	original (yes, no)	presentation (clear, unclear, cryptic)	binder (yes, no)	A+
1	complete	yes	yes	clear	no	yes
2	complete	no	yes	clear	no	yes
3	partial	yes	no	unclear	no	no
4	complete	yes	yes	clear	yes	yes

- Instance Space X: Set of all possible objects describable by attributes (often called *features*).
- Concept *c* : Subset of objects from *X* (*c* is unknown).
- Target Function f: Characteristic function indicating membership in c based on attributes (i.e. *label*) (f is unknown).
- Training Data S : Set of instances labeled with target function.

Concept Learning as Learning A Binary Function

Task

- Learn (to imitate) a function $f: X \rightarrow \{+1, -1\}$

Training Examples

- Learning algorithm is given the correct value of the function for particular inputs → training examples
- An example is a pair (x, y), where x is the input and y = f(x) is the output of the target function applied to x.

• Goal

– Find a function

$$h: X \rightarrow \{+1, -1\}$$

that approximates

$$f: X \rightarrow \{+1, -1\}$$

as well as possible.

Supervised Learning

• Task

– Learn (to imitate) a function $f: X \rightarrow Y$

Training Examples

- Learning algorithm is given the correct value of the function for particular inputs → training examples
- An example is a pair (x, f(x)), where x is the input and y=f(x) is

the output of the target function applied to *x*.

• Goal

– Find a function

$$h: X \to Y$$

that approximates

$$f: X \to Y$$

as well as possible.

Supervised / Inductive Learning

- Given
 - examples of a function (x, f(x))
- Predict function f(x) for new examples x
 - Discrete f(x): Classification
 - Continuous f(x): Regression
 - f(x) = Probability(x): Probability estimation

Image Classification: a core task in Computer Vision

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

· cat

The problem: semantic gap

Images are represented as 3D arrays of numbers, with integers between [0, 255].

E.g. 300 x 100 x 3

(3 for 3 color channels RGB)

Challenges: Viewpoint Variation

Challenges: Illumination

Challenges: Deformation

Challenges: Occlusion

Challenges: Background clutter

Challenges: Intraclass variation

An image classifier

def predict(image):
 # ????
 return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Attempts have been made

Data-driven approach:

1.Collect a dataset of images and labels2.Use Machine Learning to train an image classifier3.Evaluate the classifier on a withheld set of test images

```
def train(train_images, train_labels):
    # build a model for images -> labels...
    return model
def predict(model, test_images):
```

```
# predict test_labels using the model..
return test_labels
```

Example training set

First classifier: Nearest Neighbor Classifier

Remember all training images and their labels

Predict the label of the most similar training image

Example dataset: CIFAR-10

10 labels

50,000 training images, each image is tiny: 32x32 10,000 test images.

Example dataset: CIFAR-10 10 labels 50,000 training images 10,000 test images.

For every test image (first column), examples of nearest neighbors in rows

How do we compare the images? What is the **distance metric**?

L1 distance:

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

	test i	mage	
56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

pixel-wise absolute value differences

	46	12	14	1	
	82	13	39	33	add
=	12	10	0	30	- 456
	2	32	22	108	

```
import numpy as np
class NearestNeighbor:
  def init (self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
      # using the L1 distance (sum of absolute value differences)
      distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
      min index = np.argmin(distances) # get the index with smallest distance
      Ypred[i] = self.ytr[min index] # predict the label of the nearest example
```

Nearest Neighbor classifier

```
import numpy as np
class NearestNeighbor:
  def init (self):
    pass
  def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
  def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
      # find the nearest training image to the i'th test image
      # using the L1 distance (sum of absolute value differences)
      distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
      min index = np.argmin(distances) # get the index with smallest distance
      Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

Nearest Neighbor classifier

remember the training data

return Ypred

Nearest Neighbor classifier

for every test image: - find nearest train image with L1 distance

 predict the label of nearest training image

```
import numpy as np
```

```
class NearestNeighbor:
    def __init__(self):
        pass
```

```
def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
```

```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
```

```
# loop over all test rows
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

Nearest Neighbor classifier

Q: how does the classification speed depend on the size of the training data?

```
import numpy as np
class NearestNeighbor:
   def __init__(self):
        pass
```

```
def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
```

```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
```

```
# loop over all test rows
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

Nearest Neighbor classifier

Q: how does the classification speed depend on the size of the training data?

Aside: Approximate Nearest Neighbor find approximate nearest neighbors quickly

ANN: A Library for Approximate Nearest Neighbor Searching

David M. Mount and Sunil Arya Version 1.1.2 Release Date: Jan 27, 2010

What is ANN?

ANN is a library written in C++, which supports data structures and algorithms for both exact and approximate nearest neighbor searching in arbitrarily high dimensions.

In the nearest neighbor problem a set of data points in d-dimensional space is given. These points are preprocessed into a data structure, so that given any query point q, the nearest or generally k nearest points of P to q can be reported efficiently. The distance between two points can be defined in many ways. ANN assumes that distances are measured using any class of distance functions called Minkowski metrics. These include the well known Euclidean distance, Manhattan distance, and max distance.

Based on our own experience, ANN performs quite efficiently for point sets ranging in size from thousands to hundreds of thousands, and in dimensions as high as 20. (For applications in significantly higher dimensions, the results are rather spotty, but you might try it anyway.)

The library implements a number of different data structures, based on kd-trees and box-decomposition trees, and employs a couple of different search strategies.

The library also comes with test programs for measuring the quality of performance of ANN on any particular data sets, as well as programs for visualizing the structure of the geometric data structures.

FLANN - Fast Library for Approximate Nearest Neighbors

Home	
News	

- Publications
- DownloadChangelog

Repository

What is FLANN?

- FLANN is a library for performing fast approximate nearest neighbor searches in high dimensional spaces. It contains a collection of algorithms we found to work best for nearest neighbor search and a system for
 - automatically choosing the best algorithm and optimum parameters depending on the dataset.
 - FLANN is written in C++ and contains bindings for the following languages: C, MATLAB and Python.

News

- (14 December 2012) Version 1.8.0 is out bringing incremental addition/removal of points to/from indexes
- (20 December 2011) Version 1.7.0 is out bringing two new index types and several other improvements.
- You can find binary installers for FLANN on the Point Cloud Library
 project page. Thanks to the PCL developers!
- Mac OS X users can install flann though MacPorts (thanks to Mark Moll for maintaining the Portfile)
- New release introducing an easier way to use custom distances, kd-tree implementation optimized for low dimensionality search and experimental MPI support
- · New release introducing new C++ templated API, thread-safe search, save/load of indexes and more.
- The FLANN license was changed from LGPL to BSD.

How fast is it?

In our experiments we have found FLANN to be about one order of magnitude faster on many datasets (in query time), than previously available approximate nearest neighbor search software.

Publications

More information and experimental results can be found in the following papers:

- Marius Muja and David G. Lowe: "Scalable Nearest Neighbor Algorithms for High Dimensional Data". Pattern Analysis and Machine Intelligence (PAMI), Vol. 36, 2014. [PDF] @ [BibTeX]
- Marius Muja and David G. Lowe: "Fast Matching of Binary Features". Conference on Computer and Robot Vision (CRV) 2012. [PDF] & [BibTeX]
- Marius Muja and David G. Lowe, "Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration", in International Conference on Computer Vision Theory and Applications (VISAPP'09), 2009 [PDF] @ [BibTeX]

The choice of distance is a hyperparameter common choices:

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2) = \sqrt{\sum_p \left(I_1^p - I_2^p
ight)^2}$$

k-Nearest Neighbor

find the k nearest images, have them vote on the label

http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
K-Nearest Neighbor (kNN)

- Given: Training data $\{(x_1, y_1), ..., (x_n, y_n)\}$
 - Attribute vectors: $x_i \in X$
 - Labels: $y_i \in Y$
- Parameter:
 - Similarity function: $K : X \times X \rightarrow R$
 - Number of nearest neighbors to consider: k
- Prediction rule
 - New example x'
 - K-nearest neighbors: k train examples with largest $K(x_i, x')$

1-Nearest Neighbor

4-Nearest Neighbors

4-Nearest Neighbors Sign

slide by Thorsten Joachims

4-Nearest Neighbors Sign

Example dataset: CIFAR-10 10 labels 50,000 training images 10,000 test images.

For every test image (first column), examples of nearest neighbors in rows

What is the best **distance** to use? What is the best value of **k** to use?

i.e. how do we set the hyperparameters?

We will talk about this later!

If we get more data

- 1 Nearest Neighbor
 - Converges to perfect solution if clear separation
 - Twice the minimal error rate 2p(1-p) for noisy problems
- k-Nearest Neighbor
 - Converges to perfect solution if clear separation (but needs more data)
 - Converges to minimal error min(p, 1-p) for noisy problems if k increases

Demo

Weighted K-Nearest Neighbor

- Given: Training data $\{(x_1, y_1), ..., (x_n, y_n)\}$
 - Attribute vectors: $x_i \in X$
 - Target attribute $y_i \in Y$
- Parameter:
 - Similarity function: $K : X \times X \rightarrow R$
 - Number of nearest neighbors to consider: k
- Prediction rule
 - New example x'
 - K-nearest neighbors: k train examples with largest $K(x_i, x')$

More Nearest Neighbors in Visual Data

Where in the World? [Hays & Efros, CVPR 2008]

A nearest neighbor recognition example

slide by James Hays

Where in the World? [Hays & Efros, CVPR 2008]

Where in the World? [Hays & Efros, CVPR 2008]

6+ million geotagged photos by 109,788 photographers

Annotated by Flickr users

6+ million geotagged photos by 109,788 photographers

Annotated by Flickr users

Scene Matches

Madrid

Croatia

Latvia

england

Italy

europe

heidelberg

Macau

Barcelona

France

Austria

Scene Matches

Scene Matches

The Importance of Data

Scene Completion [Hays & Efros, SIGGRAPH07]

... 200 total

Context Matching

Hays and Efros, SIGGRAPH 200799

Graph cut + Poisson blending

slide by James Hays

Hays and Efros, SIGGRAPH 2007100

Hays and Efros, SIGGRAPH 2007102

Hays and Efros, SIGGRAPH 2007103

Weighted K-NN for Regression

- Given: Training data $\{(x_1, y_1), ..., (x_n, y_n)\}$
 - Attribute vectors: $x_i \in X$
 - Target attribute $y_i \in \mathcal{R}$
- Parameter:
 - Similarity function: $K : X \times X \rightarrow \mathcal{R}$
 - Number of nearest neighbors to consider: k
- Prediction rule
 - New example x'
 - K-nearest neighbors: k train examples with largest $K(x_i, x')$

$$h(\vec{x}') = \frac{\sum_{i \in knn(\vec{x}')} y_i K(\vec{x}_i, \vec{x}')}{\sum_{i \in knn(\vec{x}')} K(\vec{x}_i, \vec{x}')}$$

Collaborative Filtering

(Q) 1000 (+	Constant and a 2011 O Torbust Marsal O Nation					
Rating Matrix	m1	m ₂	m ₃	m ₄	m ₅	m ₆
u ₁		1	5		3	5
u ₂		5	1	1	3	1
u ₃		2	4		1	5
u	?	1	4	?	?	?
Rec	antly Watched Top	10 for Thorsten		MI-5	BEAST	
Overview of Nearest Neighbors

- Very simple method
- Retain all training data
 - Can be slow in testing
 - Finding NN in high dimensions is slow
- Metrics are very important
- Good baseline

Next Class:

Linear Regression and Least Squares