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Last time… Boosting
• Idea: given a weak learner, run it multiple times on (reweighted) 

training data, then let the learned classifiers vote 

• On each iteration t:


- weight each training example by how incorrectly it was classified

- Learn a hypothesis – ht

- A strength for this hypothesis – at 


• Final classifier: 

- A linear combination of the votes of the different classifiers 

weighted by their strength 


• Practically useful  
• Theoretically interesting 
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Last time.. The AdaBoost Algorithm
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Today
• What is clustering?

• K-means algorithm
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What is clustering
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Clustering
• Grouping data according to similarity
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Clustering vs. Classification
• Grouping data according to similarity
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Why use clustering…
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6

... instead of classification?
• Exploratory data analysis
• Classes are unspecified (unknown, changing 
too quickly, expensive to label data, etc)

... when the cartoon looks so easy?
• High-dimensional data
• Big data
• Data not numerical

[Krivitsky Handcock 2008]

[Krivitsky Handcock 2008]

Datum: a binary vector  
specifying whether a  
person has each  
interest

Similarity: the number  
of common interests of  
two people slide by Tam
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Topic Analysis
Datum: binary vector 
indicating document 
occurrence

Similarity: how many 
documents exist where two 
words co-occur
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... instead of classification?
• Exploratory data analysis
• Classes are unspecified (unknown, changing 
too quickly, expensive to label data, etc)

... when the cartoon looks so easy?
• High-dimensional data
• Big data
• Data not numerical

[Carpineto et al 2009]

Document clustering

Document clustering
Datum: vector of topic 
occurrences

Dissimilarity: distance 
between topic distributions 
of two documents
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Why use clustering…

…instead of classification

• Exploratory data analysis
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Image segmentation

Datum: pixel

Dissimilarity: difference in color + difference in location
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• Exploratory data analysis

• Classes are unspecified (unknown, changing too 

quickly, expensive to label data, etc) 

37[Fei-Fei 2011]

Image segmentation

Datum: pixel RGB values and pixel horizontal and 
vertical locations

Dissimilarity: difference in color + difference in location
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Clustering algorithms
• Partitioning algorithms 

- Construct various partitions 
and then evaluate them by  
some criterion 
• K-means

• Mixture of Gaussians

• Spectral Clustering


• Hierarchical algorithms 
- Create a hierarchical decomposition  

of the set of objects using some 
criterion 

- Bottom-up – agglomerative

- Top-down – divisive

38
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Desirable Properties of a 
Clustering Algorithm

• Scalability (in terms of both time and space)

• Ability to deal with different data types 

• Minimal requirements for domain 

knowledge to determine input parameters 

• Ability to deal with noisy data

• Interpretability and usability 


• Optional 

- Incorporation of user-specified constraints 39
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K-Means  
Clustering

40



K-Means Clustering
Benefits 
• Fast

• Conceptually straightforward

• Popular

41
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K means algorithm

Benefits
• Fast
• Fast
• Fast

Drawbacks
• Still not fast enough!

◊ KD-trees, triangle inequality, online version
• Only finds a local optimum

◊ Multiple initializations
• May not fit the problem...

[Ramasubramanian, Paliwal 1990; 
Moore 2000; Kanungo et al 2002]
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K-Means: Preliminaries
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K-Means AlgorithmK means algorithm • For k = 1,...,K
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K-Means AlgorithmK means algorithm • For k = 1,...,K
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◊ Randomly draw n from 
1,...,N without replacement
◊ 

• Repeat until convergence:
◊ Assign each data point to 
the cluster with the closest 
center.
◊ Assign each cluster 
center to be the mean of its 
cluster’s data points.

µk � xn

17

• For k = 1,…, K
✦ Randomly draw n from  

1,…,N without replacement
✦  

• Repeat until S1,…,Sk don’t 
change: 
✦ For n = 1,…N

✤ Find k with smallest 

✤ Put               (and no  
other Sj)

✦ For k = 1,…,K
✤

µk � xn

K means algorithm • For k = 1,...,K
◊ Randomly draw n from 
1,...,N without replacement
◊ 

• Repeat until convergence:
◊ Assign each data point to 
the cluster with the closest 
center.
◊ Assign each cluster 
center to be the mean of its 
cluster’s data points.

18

xn � Sk

dis(xn, µk)

• For k = 1,...,K
◊ Randomly draw n from 
1,...,N without replacement
◊ 

• Repeat until S1,...,SK don’t 
change:
◊ For n = 1,...,N

* Find k with smallest

* Put               (and no 
other Sj)

◊ Assign each cluster 
center to be the mean of its 
cluster’s data points.

µk � xn

K means algorithm

20

xn � Sk

dis(xn, µk)

• For k = 1,...,K
◊ Randomly draw n from 
1,...,N without replacement
◊ 

• Repeat until S1,...,SK don’t 
change:

◊ For n = 1,...,N
* Find k with smallest

* Put               (and no 
other Sj)

◊ Assign each cluster 
center to be the mean of its 
cluster’s data points.

µk � xn

K means algorithm

20

xn � Sk

dis(xn, µk)

µk � xn

K means algorithm • For k = 1,...,K
◊ Randomly draw n from 
1,...,N without replacement
◊ 

• Repeat until S1,...,SK don’t 
change:
◊ For n = 1,...,N

* Find k with smallest

* Put               (and no 
other Sj)

◊ For k = 1,...,K
* µk � |Sk|�1

�

n:n⇥Sk

xn

20

xn � Sk

dis(xn, µk)

µk � xn

K means algorithm • For k = 1,...,K
◊ Randomly draw n from 
1,...,N without replacement
◊ 

• Repeat until S1,...,SK don’t 
change:
◊ For n = 1,...,N

* Find k with smallest

* Put               (and no 
other Sj)

◊ For k = 1,...,K
* µk � |Sk|�1

�

n:n⇥Sk

xn

22



95

slide by Tam
ara Broderick

K-Means AlgorithmK means algorithm • For k = 1,...,K
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• Repeat until convergence:
◊ Assign each data point to 
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K-Means AlgorithmK means algorithm • For k = 1,...,K
◊ Randomly draw n from 
1,...,N without replacement
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◊ Assign each cluster 
center to be the mean of its 
cluster’s data points.
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K-Means: EvaluationK means algorithm • For k = 1,...,K
◊ Randomly draw n from 
1,...,N without replacement
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center.
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K-Means: EvaluationK means algorithm • For k = 1,...,K
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• Will it terminate?
Yes. Always.
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K-Means: EvaluationK means algorithm • For k = 1,...,K
◊ Randomly draw n from 
1,...,N without replacement
◊ 

• Repeat until convergence:
◊ Assign each data point to 
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center.
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center to be the mean of its 
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• Repeat until S1,...,SK don’t 
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• Will it terminate?
Yes. Always.

• Is the clustering any good?
Global dissimilarity only useful 
for comparing clusterings.



• Guaranteed to converge in a finite number 
of iterations


• Running time per iteration: 

1. Assign data points to closest cluster center  

O(KN) time 

2. Change the cluster center to the average of its 

assigned points  
O(N) time
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K-Means: Evaluation



Objective 

1. Fix μ, optimize C:


2. Fix C, optimize μ:


– Take partial derivative of μi and set to zero, we have
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K-Means takes an alternating optimization approach, each step is 
guaranteed to decrease the objective – thus guaranteed to converge 

slide by Alan Fern

K-Means: Evaluation



Demo time…
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• How to set k?

• Sensitive to initial centers


- Multiple initializations

• Sensitive to outliers

• Detects spherical clusters

• Assuming means can be computed


- It requires continuous, numerical features
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K-Means Algorithm: Some Issues



Next Lecture: 
K-Means Applications,


Spectral clustering,

Hierarchical clustering and 

What is a good clustering?
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