

Last time... Boosting

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let the learned classifiers vote
- On each iteration t:
 - weight each training example by how incorrectly it was classified
 - Learn a hypothesis h_t
 - A strength for this hypothesis a_t
- Final classifier:
 - A linear combination of the votes of the different classifiers weighted by their strength $H(X) = \operatorname{sign}\left(\sum \alpha_t h_t(X)\right)$
- Practically useful
- Theoretically interesting

Last time.. The AdaBoost Algorithm

- **0)** Set $\tilde{W}_i^{(0)} = 1/n$ for $i = 1, \ldots, n$
- 1) At the m^{th} iteration we find (any) classifier $h(\mathbf{x}; \hat{\theta}_m)$ for which the weighted classification error ϵ_m

$$\epsilon_m = 0.5 - \frac{1}{2} \left(\sum_{i=1}^n \tilde{W}_i^{(m-1)} y_i h(\mathbf{x}_i; \hat{\theta}_m) \right)$$

is better than chance.

2) The new component is assigned votes based on its error:

$$\hat{\alpha}_m = 0.5 \log((1 - \epsilon_m)/\epsilon_m)$$

3) The weights are updated according to (Z_m) is chosen so that the new weights $\tilde{W}_i^{(m)}$ sum to one):

$$\tilde{W}_i^{(m)} = \frac{1}{Z_m} \cdot \tilde{W}_i^{(m-1)} \cdot \exp\{-y_i \hat{\alpha}_m h(\mathbf{x}_i; \hat{\theta}_m)\}$$

Today

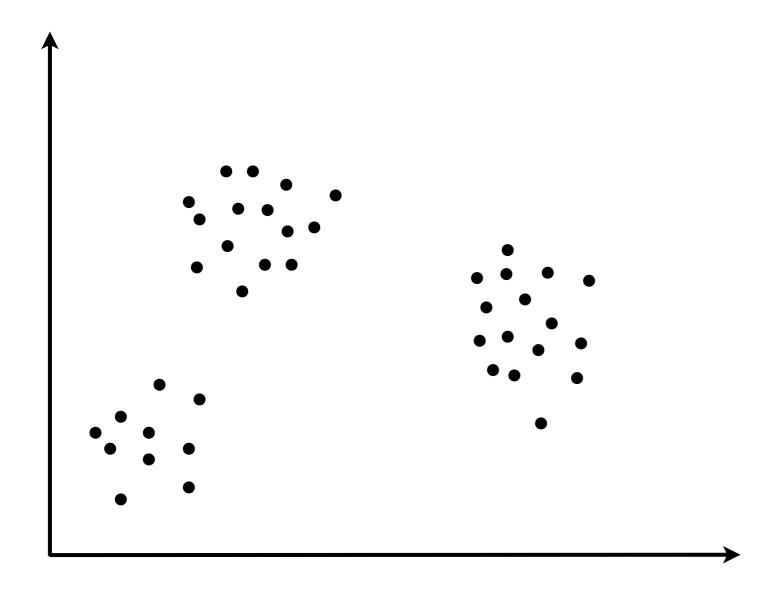
- What is clustering?
- K-means algorithm

What is clustering

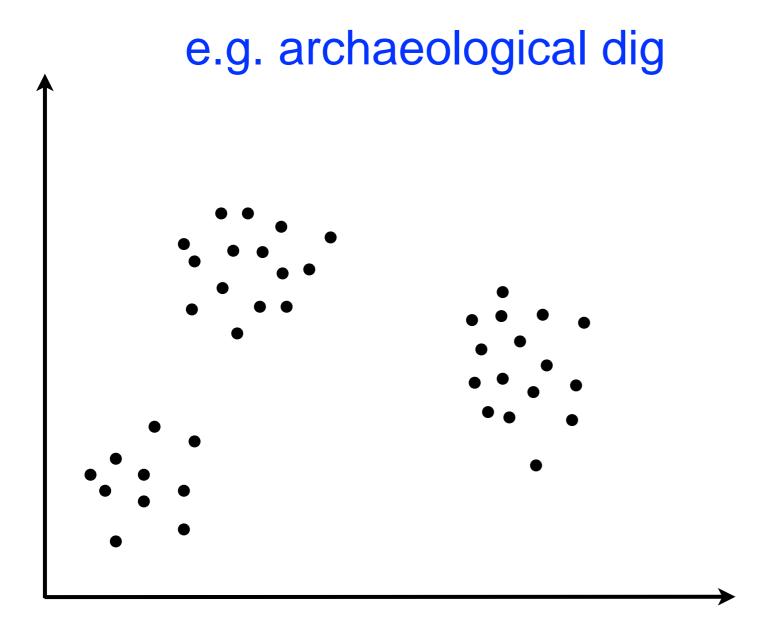
Grouping data according to similarity

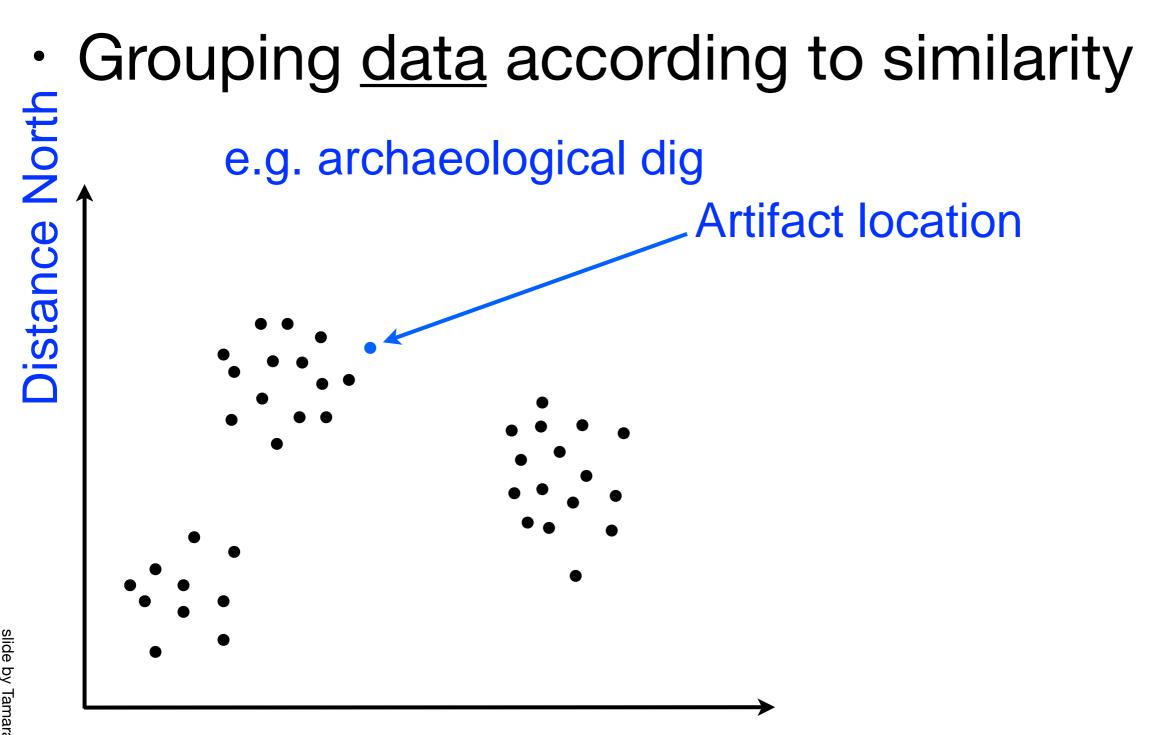
Grouping data according to similarity

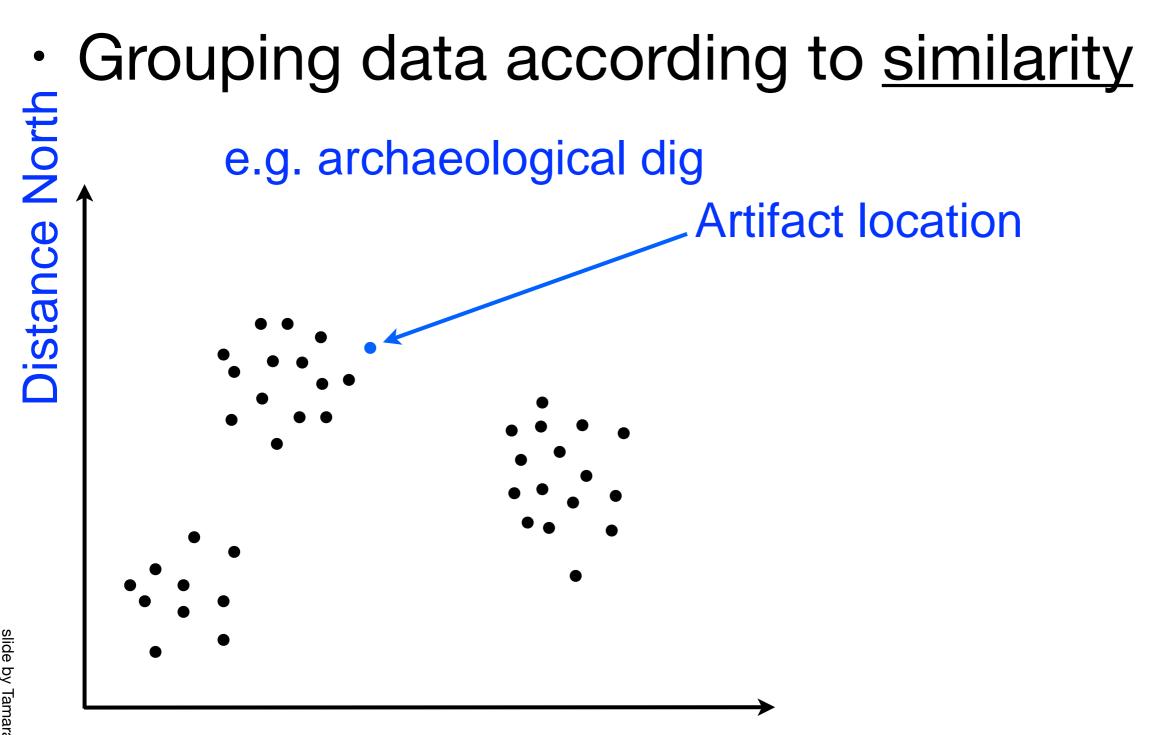
Grouping <u>data</u> according to similarity



Grouping data according to similarity

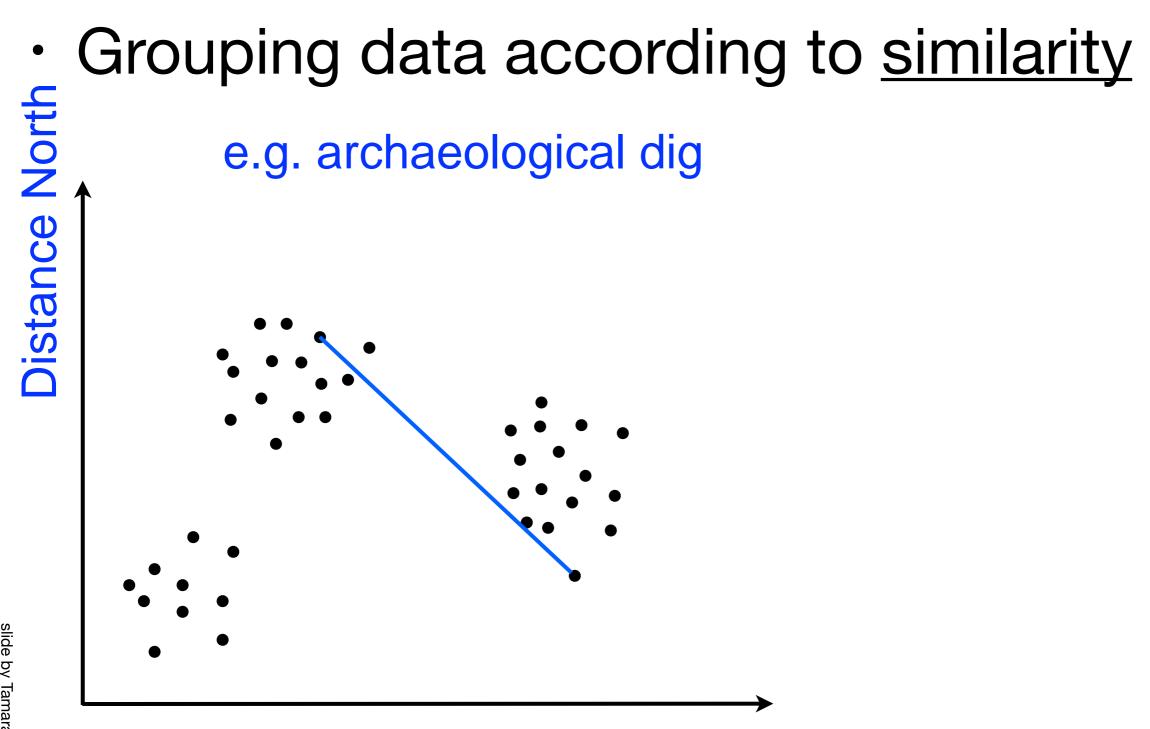


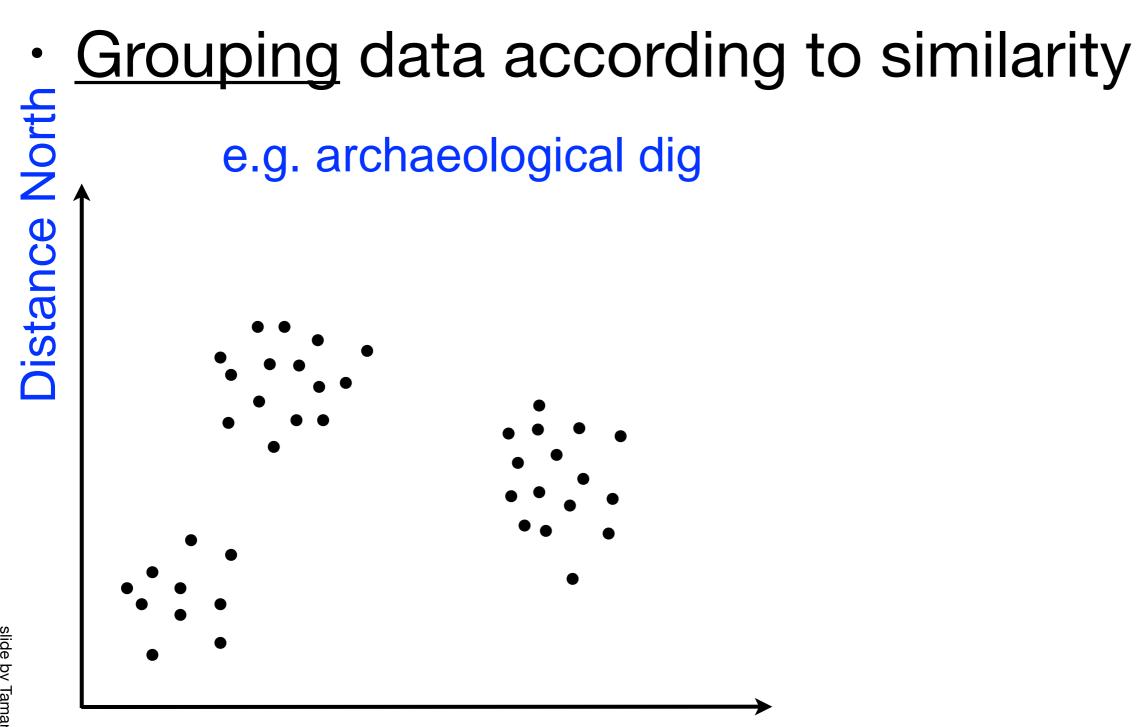


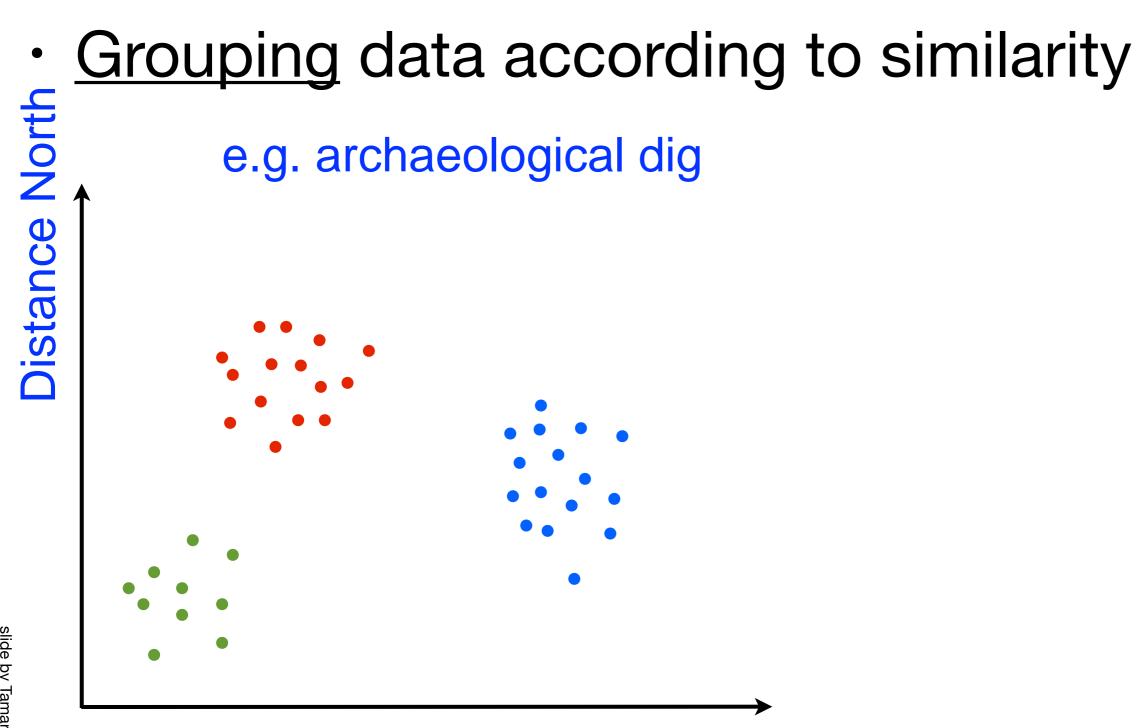


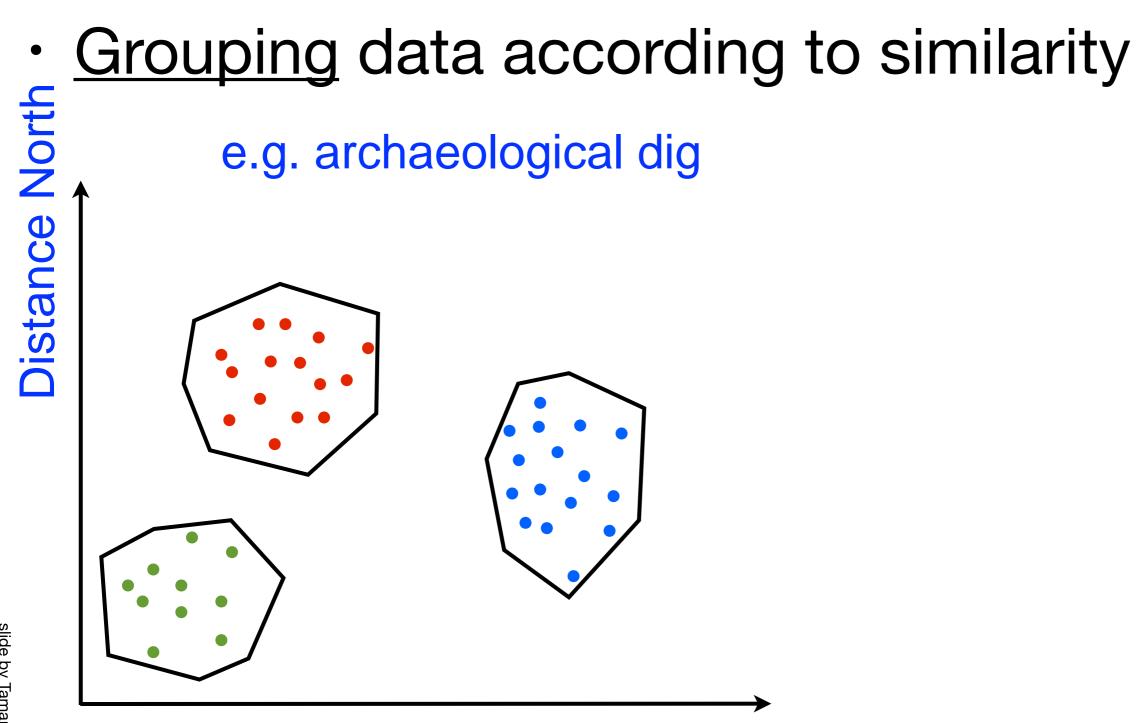
Grouping data according to similarity

e.g. archaeological dig







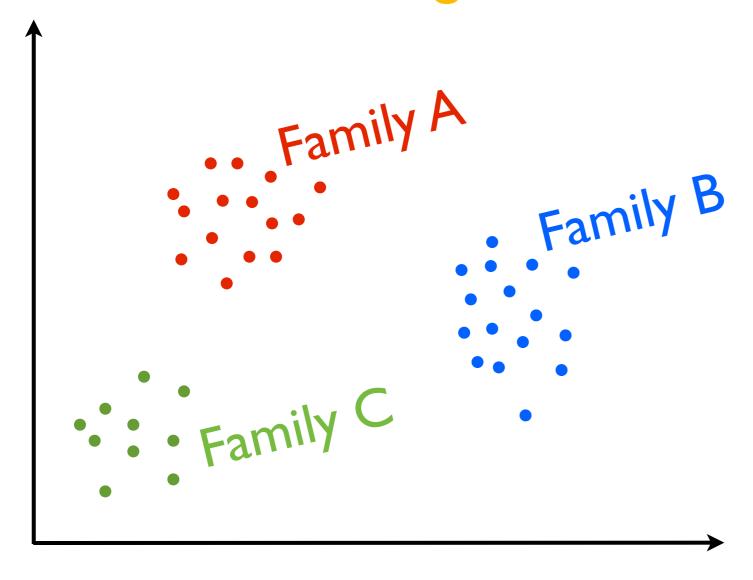


Clustering vs. Classification

Grouping data according to similarity
 Predicting new labels from old labels

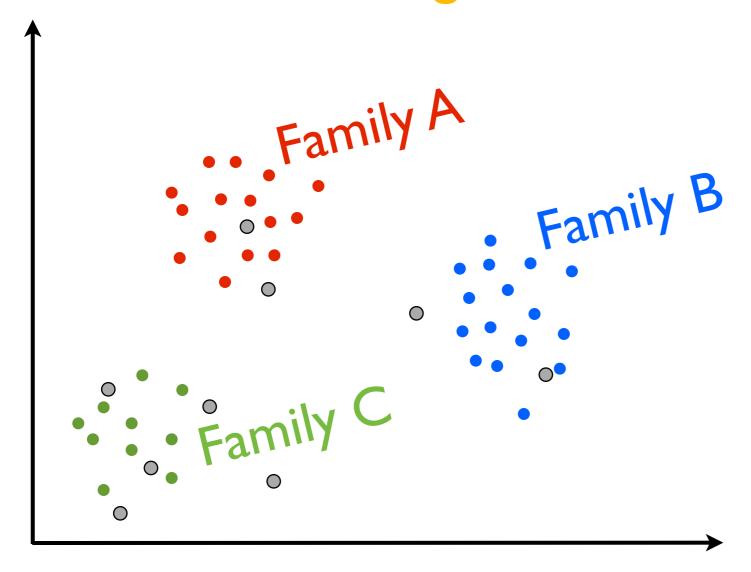
Clustering vs. Classification

Grouping data according to similarity
 Predicting new labels from old labels



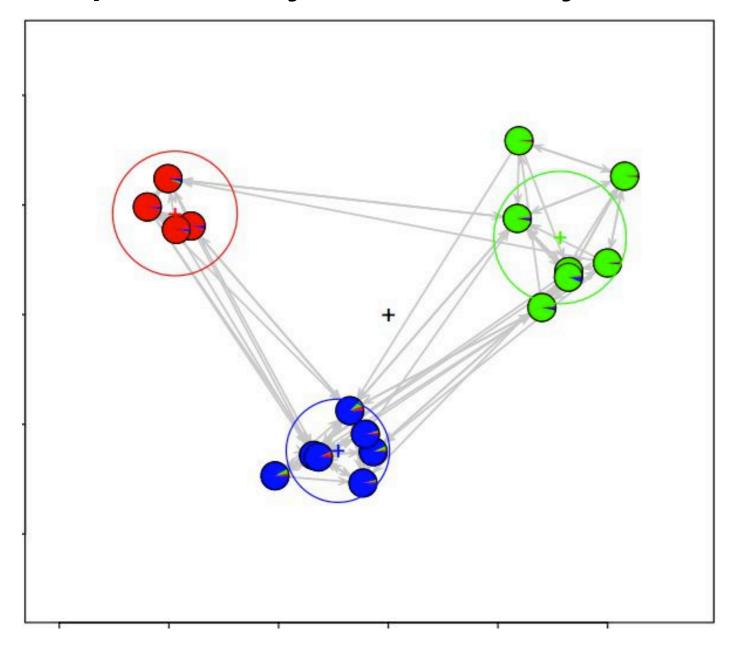
Clustering vs. Classification

Grouping data according to similarity
 Predicting new labels from old labels

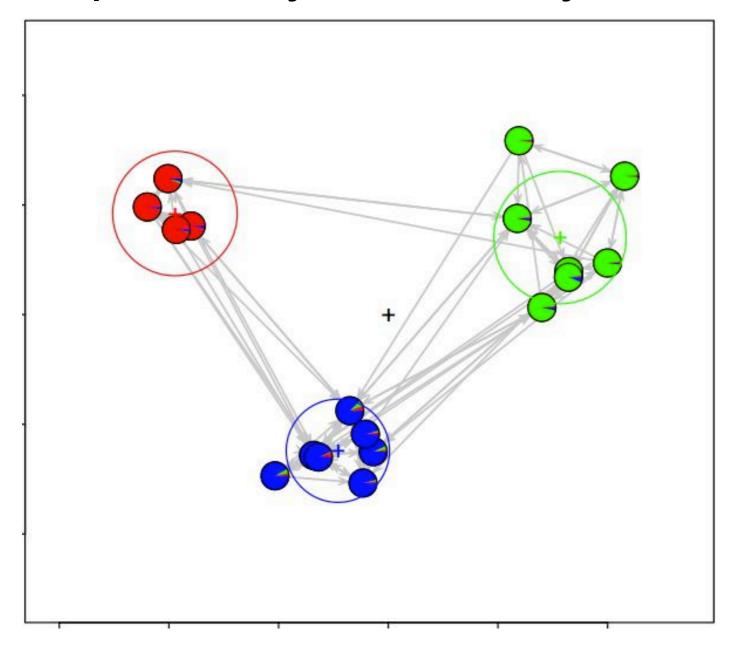


Exploratory data analysis

Exploratory data analysis



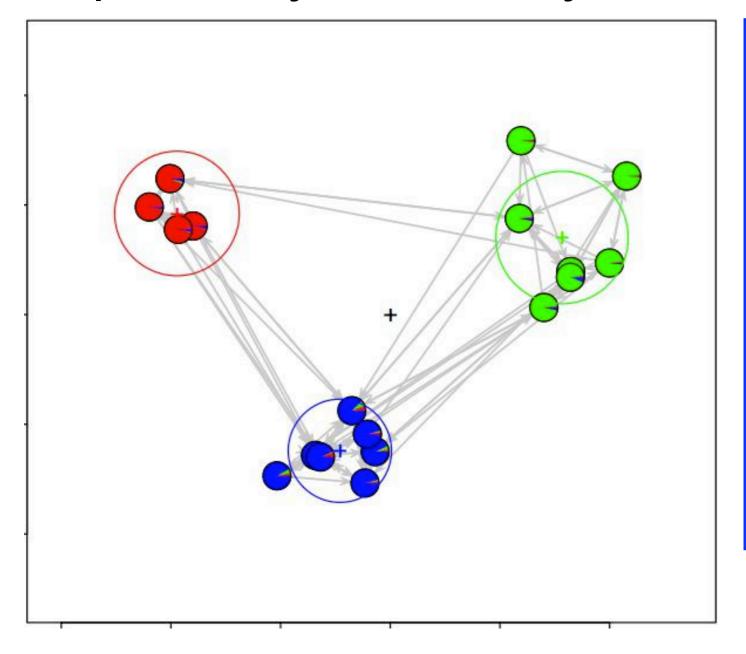
Exploratory data analysis



Datum: person

Similarity: the number of common interests of two people

Exploratory data analysis



Datum: a binary vector specifying whether a person has each interest

Similarity: the number of common interests of two people

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

- Exploratory data analysis
- Classes are unspecified (<u>unknown</u>, changing too quickly, expensive to label data, etc)

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

NEW MILLION SCHOOL CHILDREN FILM TAX WOMEN STUDENTS SHOW PROGRAM PEOPLE SCHOOLS MUSIC CHILD BUDGET EDUCATION MOVIE BILLION YEARS TEACHERS PLAY FEDERAL FAMILIES HIGH MUSICAL YEAR. WORK PUBLIC SPENDING BEST PARENTS TEACHER ACTOR NEW SAYS BENNETT FIRST STATE FAMILY MANIGAT YORK PLAN WELFARE NAMPHY OPERA MONEY MEN STATE THEATER PROGRAMS PERCENT PRESIDENT ACTRESS CARE ELEMENTARY GOVERNMENT LOVE CONGRESS LIFE HAITI

Topic Analysis

Philharmonic and Juilliard School. "Our board felt that we had a mark on the future of the performing arts with these grants an act our traditional areas of support in health, medical research, education Hearst Foundation President Randolph A. Hearst said Monday in incoln Center's share will be \$200,000 for its new building, which and provide new public facilities. The Metropolitan Opera Co. and will receive \$400,000 each. The Juilliard School, where music and

the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

"Education" "Arts" "Children" "Budgets" NEW CHILDREN SCHOOL MILLION FILM TAX WOMEN STUDENTS SCHOOLS SHOW PROGRAM PEOPLE MUSIC BUDGET CHILD EDUCATION MOVIE BILLION YEARS TEACHERS PLAY FEDERAL FAMILIES HIGH MUSICAL WORK YEAR PUBLIC BEST SPENDING PARENTS TEACHER ACTOR. NEW SAYS BENNETT FIRST STATE FAMILY MANIGAT YORK PLAN WELFARE NAMPHY OPERA MONEY MEN STATE PRESIDENT THEATER PROGRAMS PERCENT GOVERNMENT ACTRESS CARE ELEMENTARY LOVE CONGRESS LIFE HAITI

Topic Analysis

Philharmonic and Juilliard School. "Our board felt that we had a mark on the future of the performing arts with these grants an act our traditional areas of support in health, medical research, education Hearst Foundation President Randolph A. Hearst said Monday in incoln Center's share will be \$200,000 for its new building, which and provide new public facilities. The Metropolitan Opera Co. and will receive \$400,000 each. The Juilliard School, where music and

the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

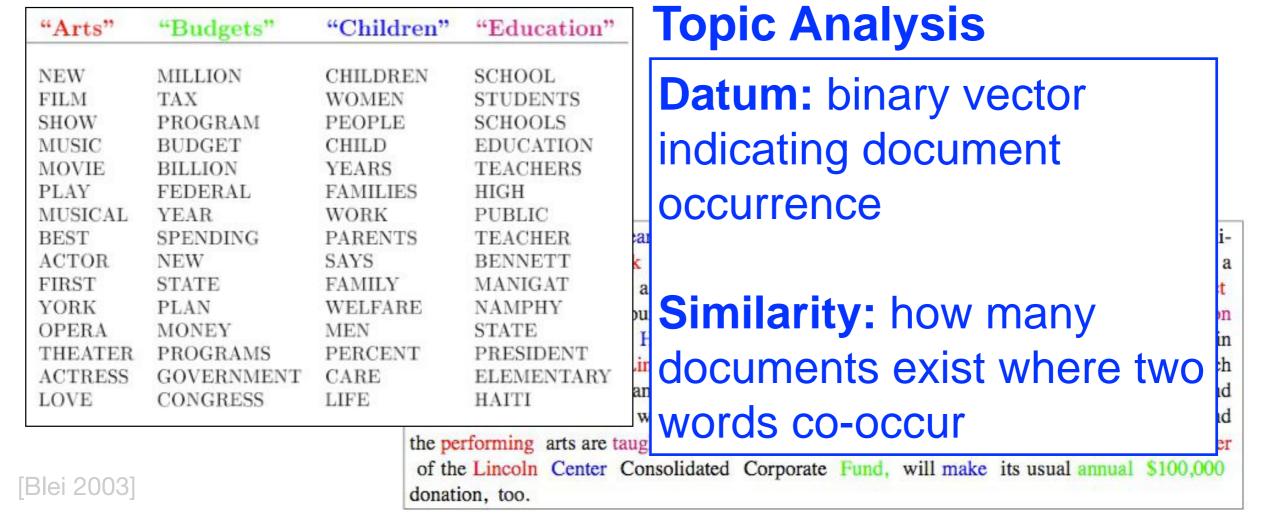
- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

"Arts"	"Budgets"	"Children"	"Education"	Topic Analysis
NEW	MILLION	CHILDREN	SCHOOL	Datum: word
FILM	TAX	WOMEN	STUDENTS	
SHOW	PROGRAM	PEOPLE	SCHOOLS	
MUSIC	BUDGET	CHILD	EDUCATION	
MOVIE	BILLION	YEARS	TEACHERS	
PLAY	FEDERAL	FAMILIES	HIGH	Similarity: how many
MUSICAL	YEAR	WORK	PUBLIC	
BEST	SPENDING	PARENTS	TEACHER	
ACTOR	NEW	SAYS	BENNETT	
FIRST	STATE PLAN	FAMILY WELFARE	MANIGAT NAMPHY	documents exist where two
OPERA	MONEY	MEN	STATE	WORDS CO-OCCUT incom Center's snare will be \$200,000 for its new building, which and provide new public facilities. The Metropolitan Opera Co. and will receive \$400,000 each. The Juilliard School, where music and
THEATER	PROGRAMS	PERCENT	PRESIDENT	
ACTRESS	GOVERNMENT	CARE	ELEMENTARY	
LOVE	CONGRESS	LIFE	HAITI	

slide by Tamara Broderick

28

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

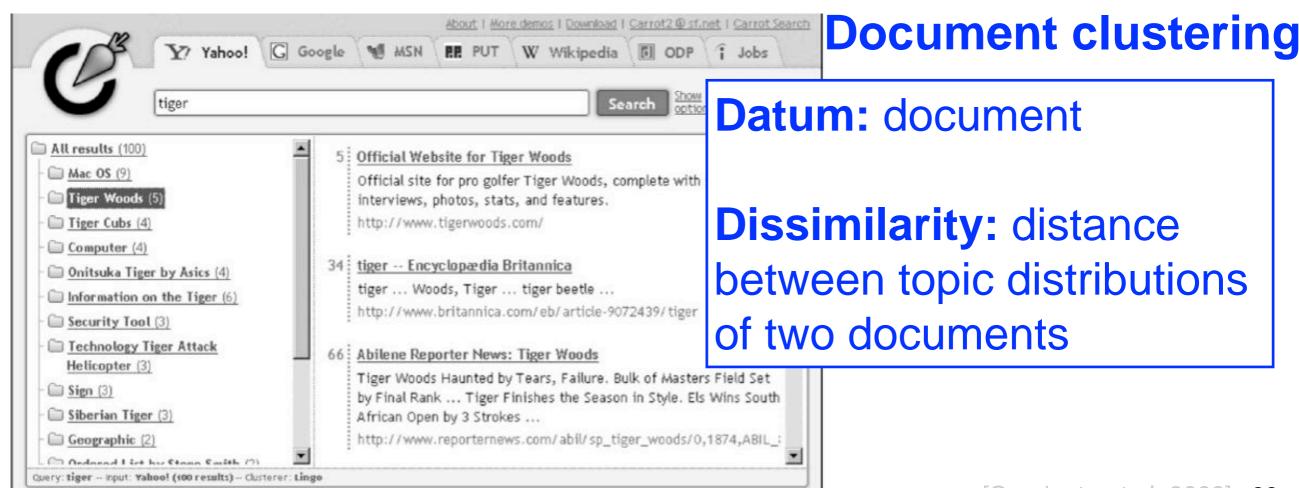


- Exploratory data analysis
- Classes are unspecified (unknown, <u>changing too</u> <u>quickly</u>, expensive to label data, etc)

- Exploratory data analysis
- Classes are unspecified (unknown, <u>changing too</u> <u>quickly</u>, expensive to label data, etc)

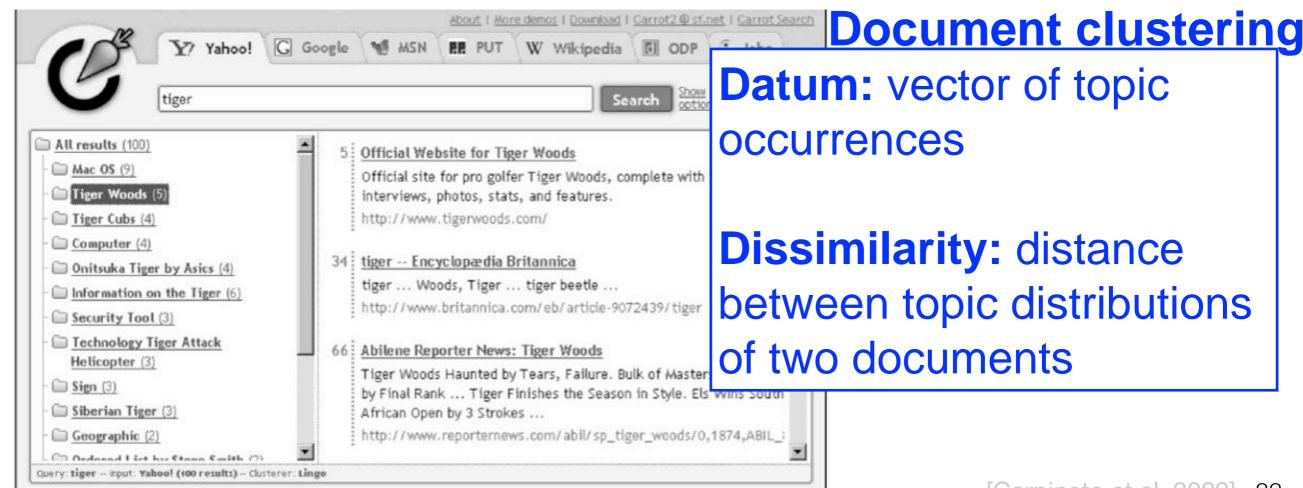
Document clustering

- Exploratory data analysis
- Classes are unspecified (unknown, <u>changing too</u> <u>quickly</u>, expensive to label data, etc)



© 2002-2006 Stanislaw Osinski, Dawid Web

- Exploratory data analysis
- Classes are unspecified (unknown, <u>changing too</u> <u>quickly</u>, expensive to label data, etc)

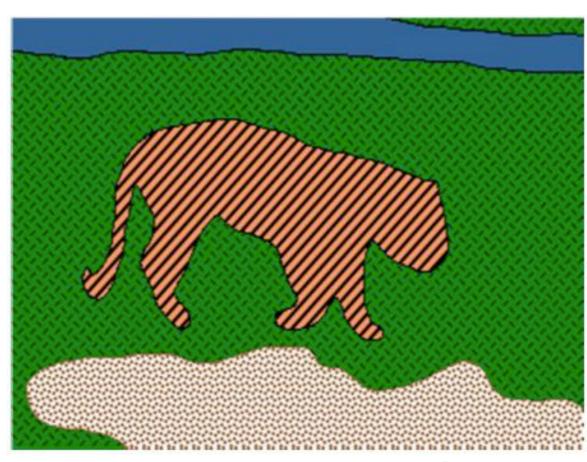


© 2002-2006 Stanislaw Osinski, Dawid Web

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, <u>expensive to label data</u>, etc)

- Exploratory data analysis
- · Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

Image segmentation



- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, <u>expensive to label data</u>, etc)

Image segmentation

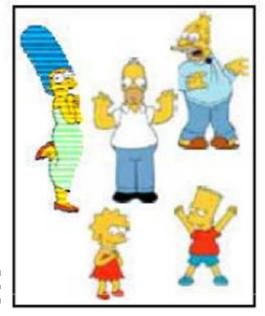
Why use clustering... ...instead of classification

- Exploratory data analysis
- · Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

Image segmentation

Clustering algorithms

- Partitioning algorithms
 - Construct various partitions and then evaluate them by
 - }
 - [
 - . (



Clustering a

- Hie
 - Cr of cri
 - Bc
 - To

- Hierarchical algorithms
 - Bottom up agglomerative
 - Top down divisive

Partition algorithms (Flat)



Desirable Properties of a Clustering Algorithm

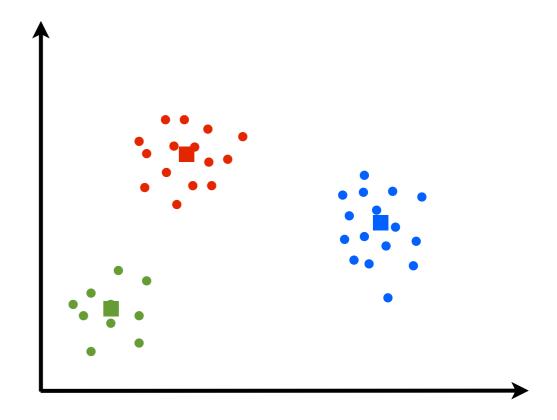
- Scalability (in terms of both time and space)
- Ability to deal with different data types
- Minimal requirements for domain knowledge to determine input parameters
- Ability to deal with noisy data
- Interpretability and usability
- Optional
 - Incorporation of user-specified constraints

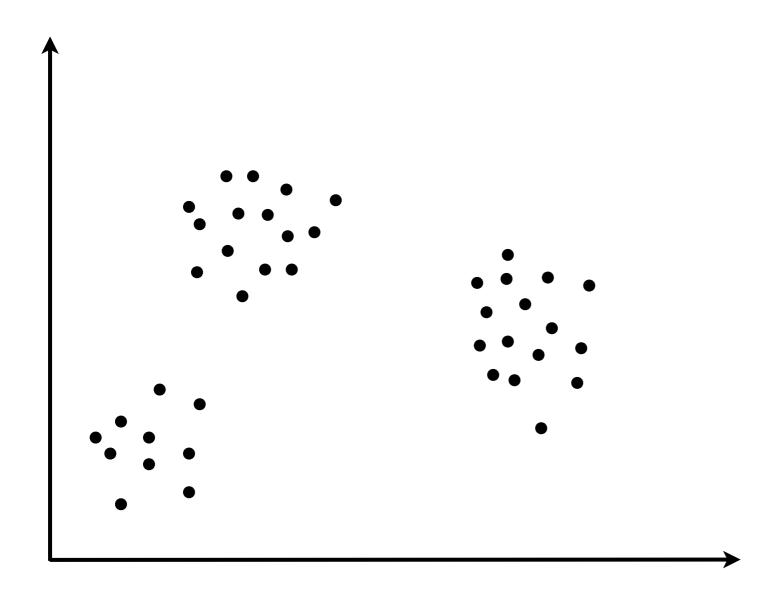
K-Means Clustering

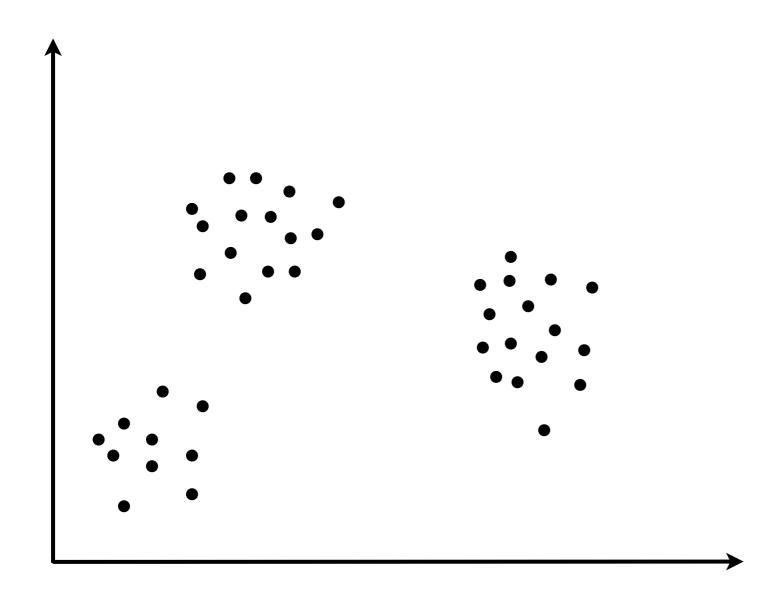
K-Means Clustering

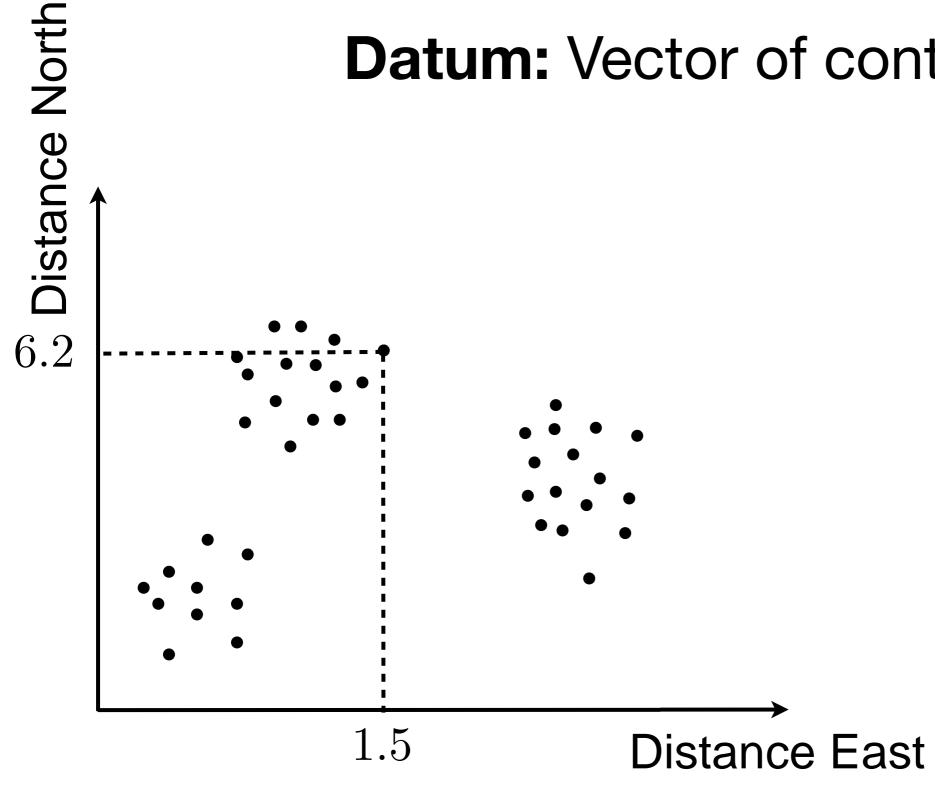
Benefits

- Fast
- Conceptually straightforward
- Popular



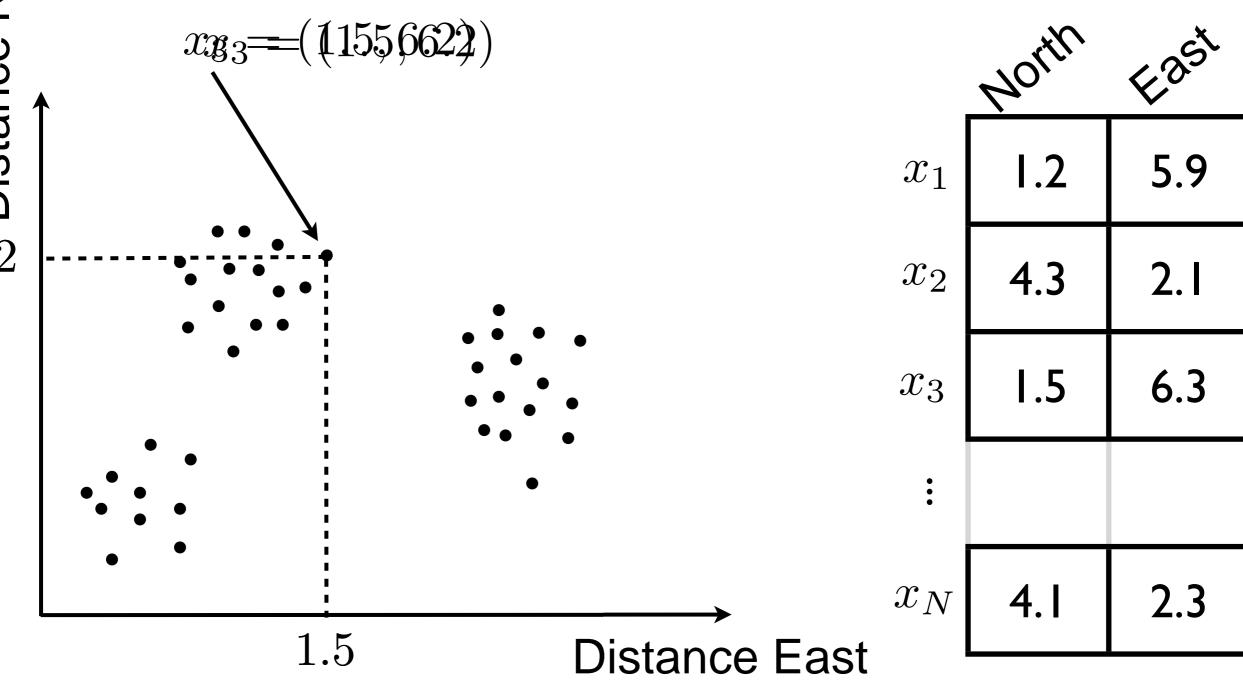


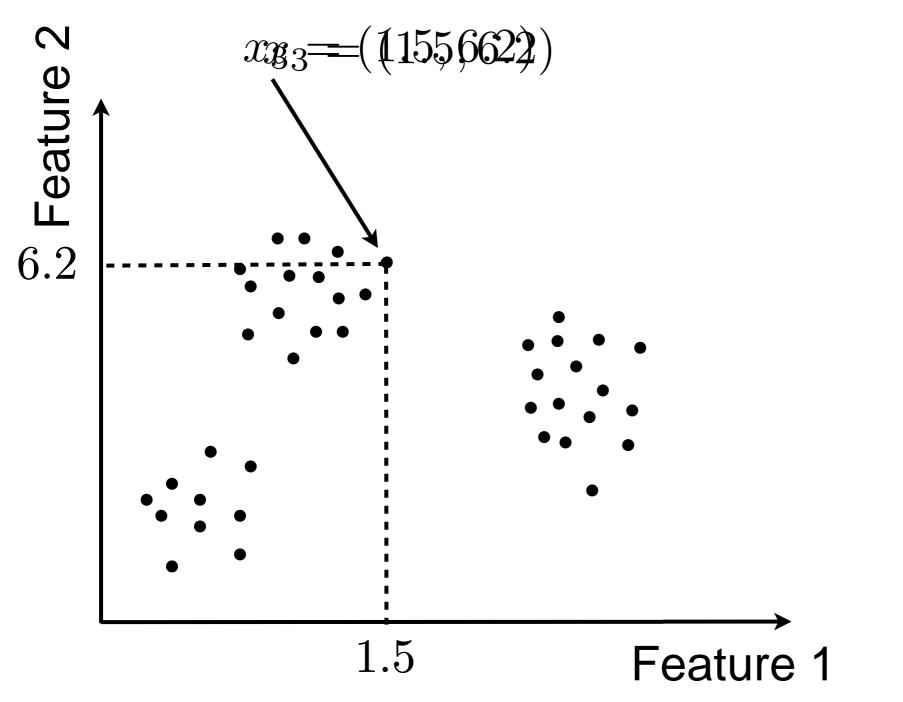




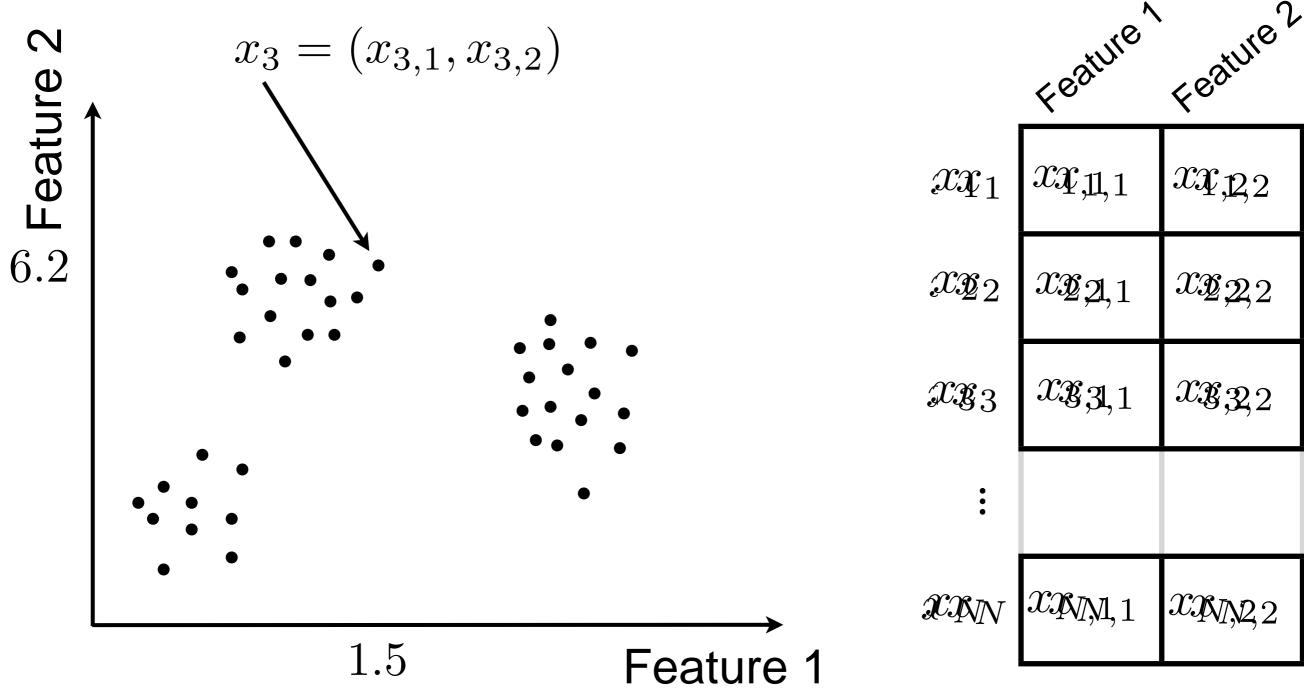
E. Distance North

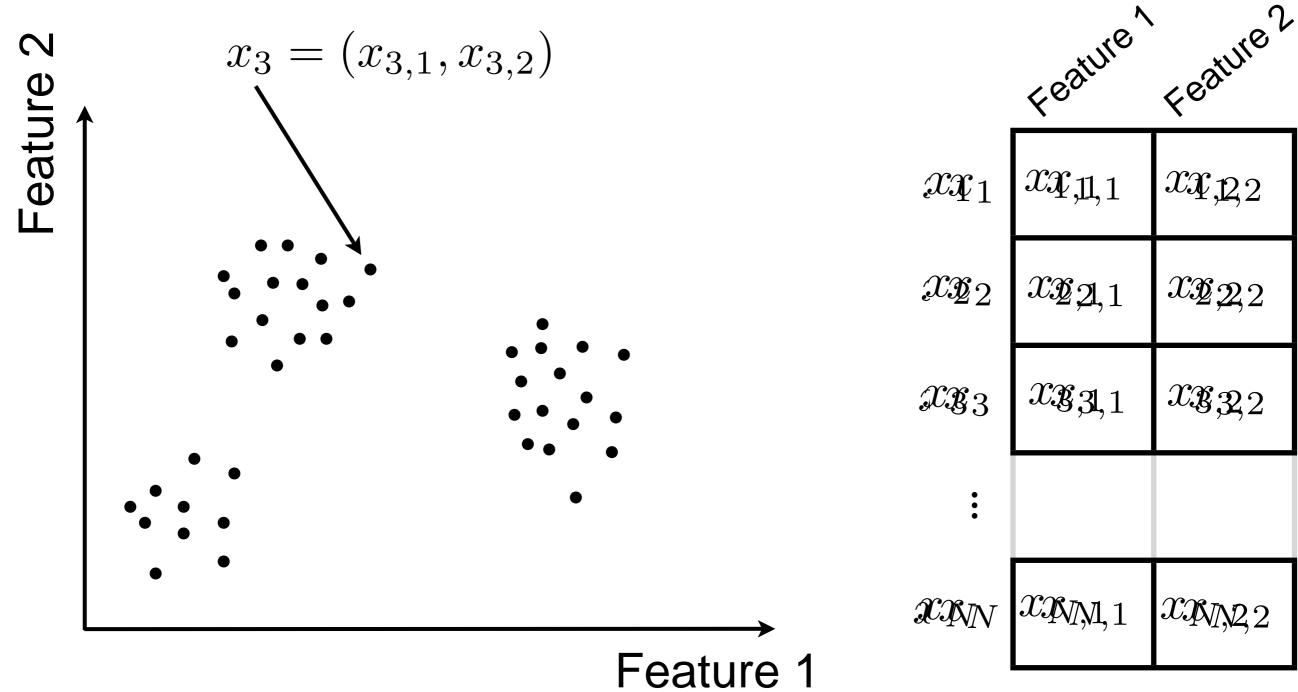
K-Means: Preliminaries

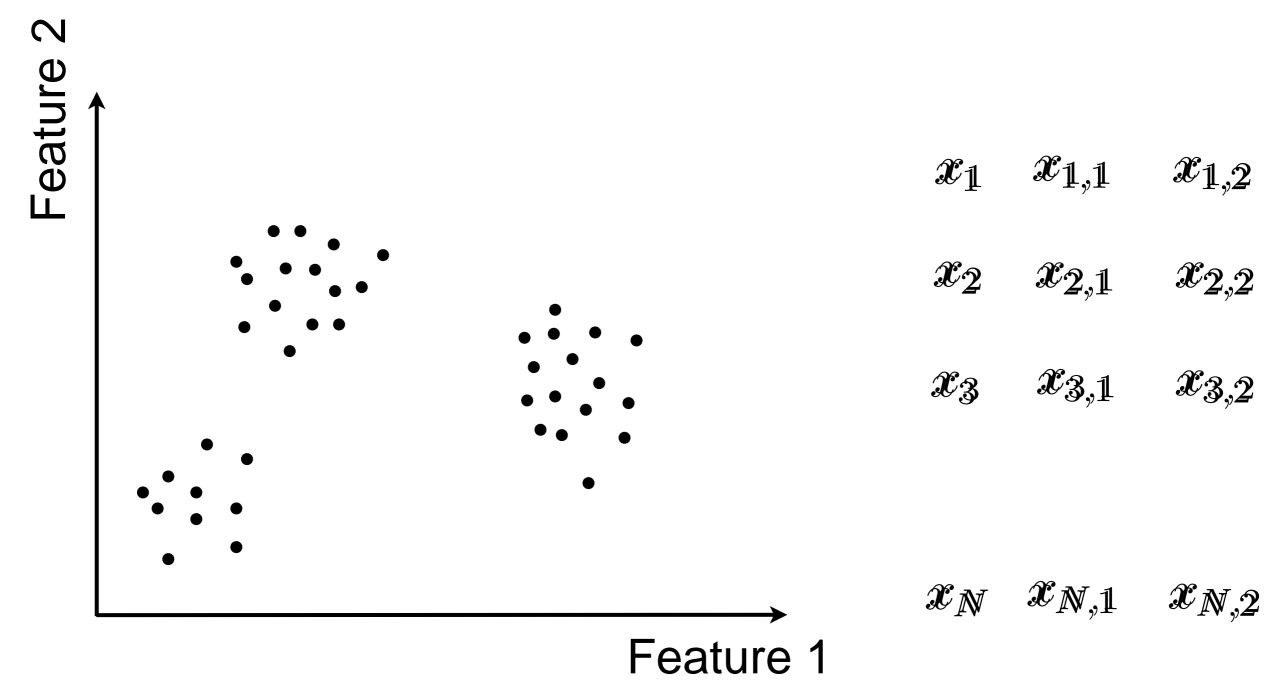




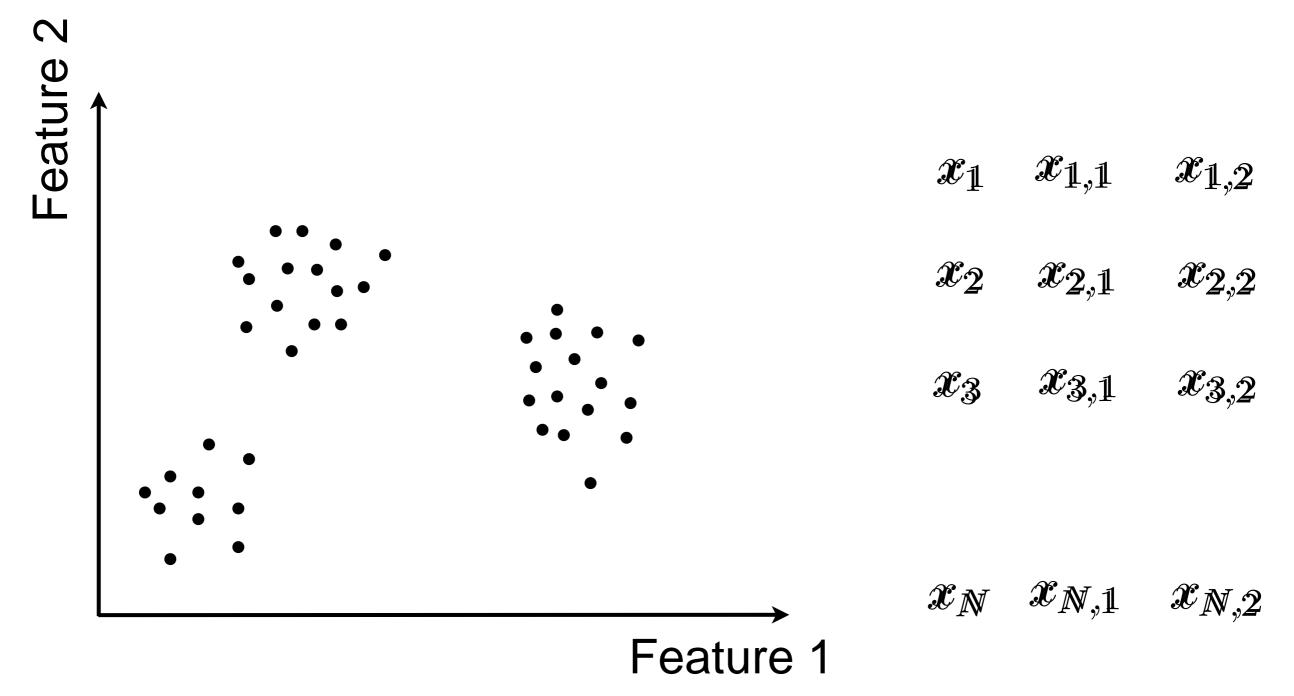
	Feature	Feature
x_1	1.2	5.9
x_2	4.3	2.1
x_3	1.5	6.3
•		
x_N	4 . I	2.3



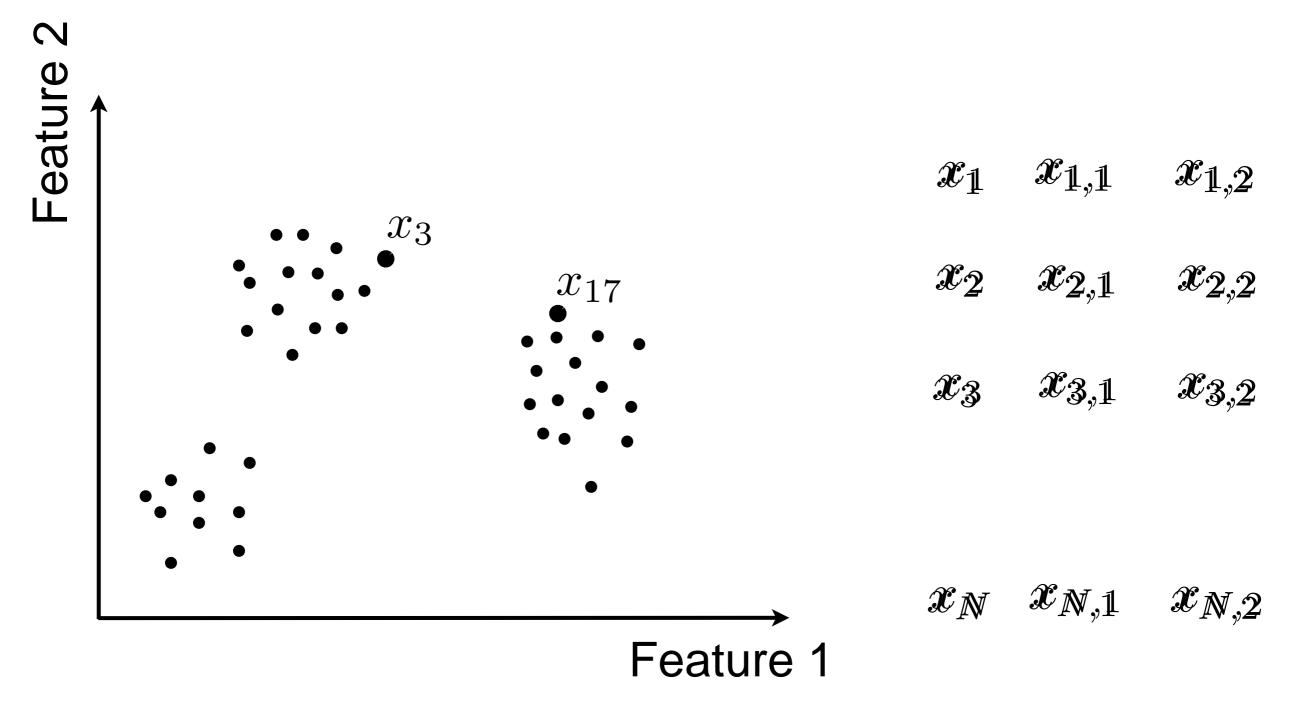




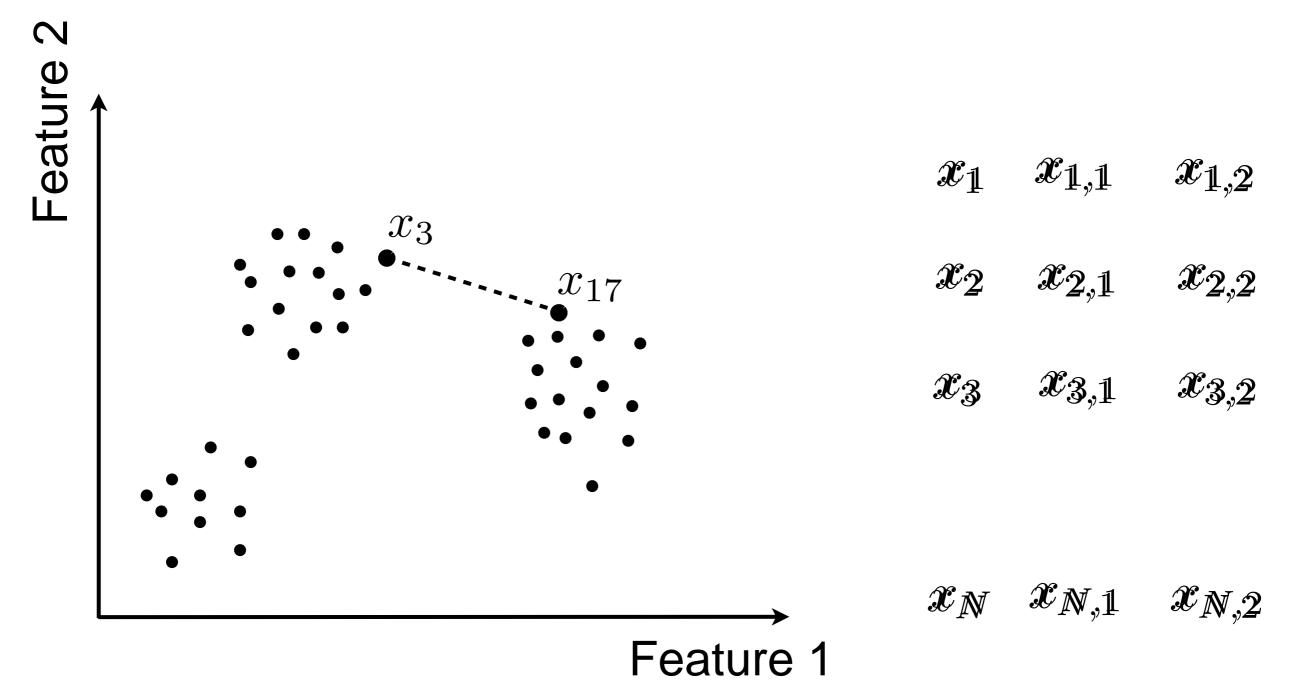
Dissimilarity: Distance as the crow flies



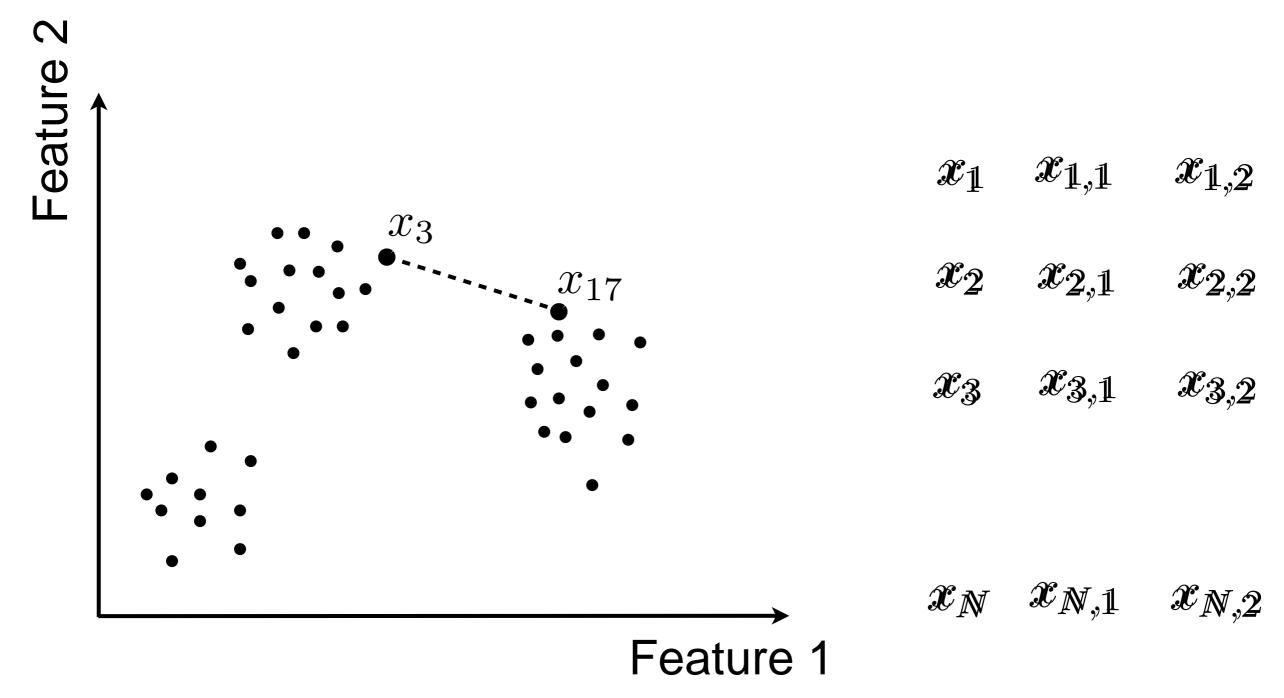
Dissimilarity: Distance as the crow flies



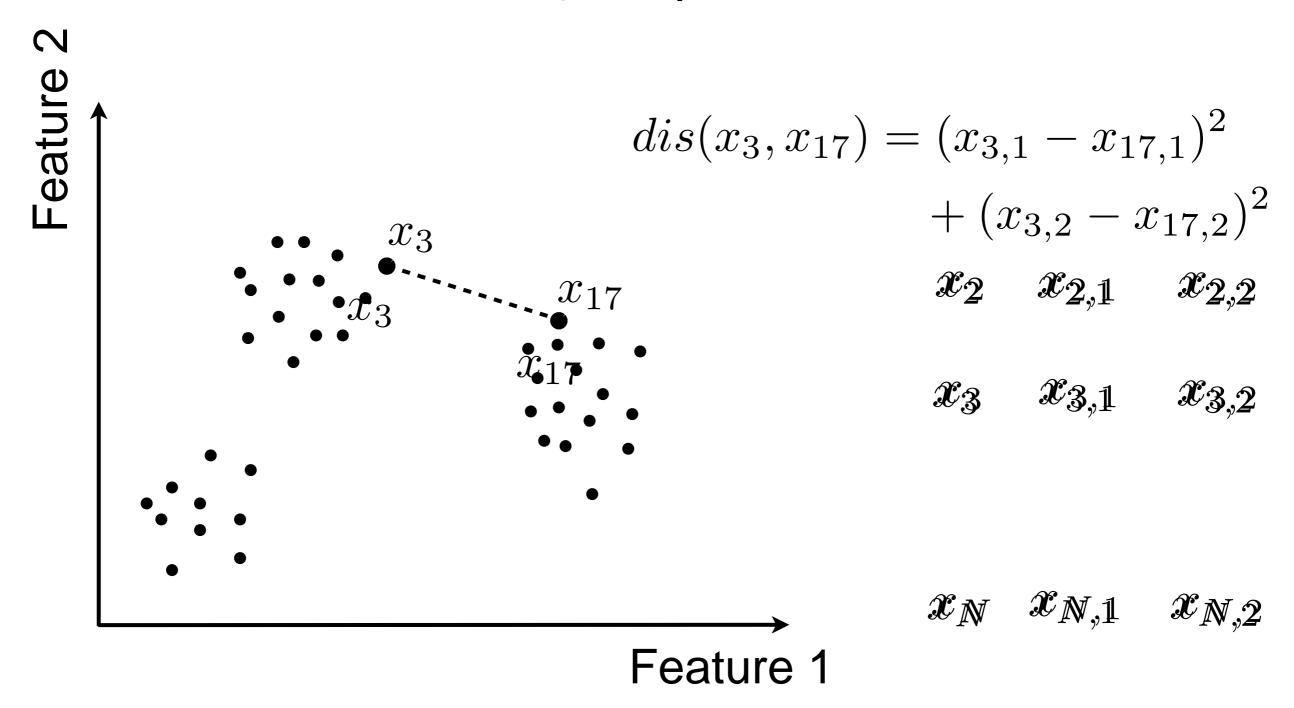
Dissimilarity: Distance as the crow flies



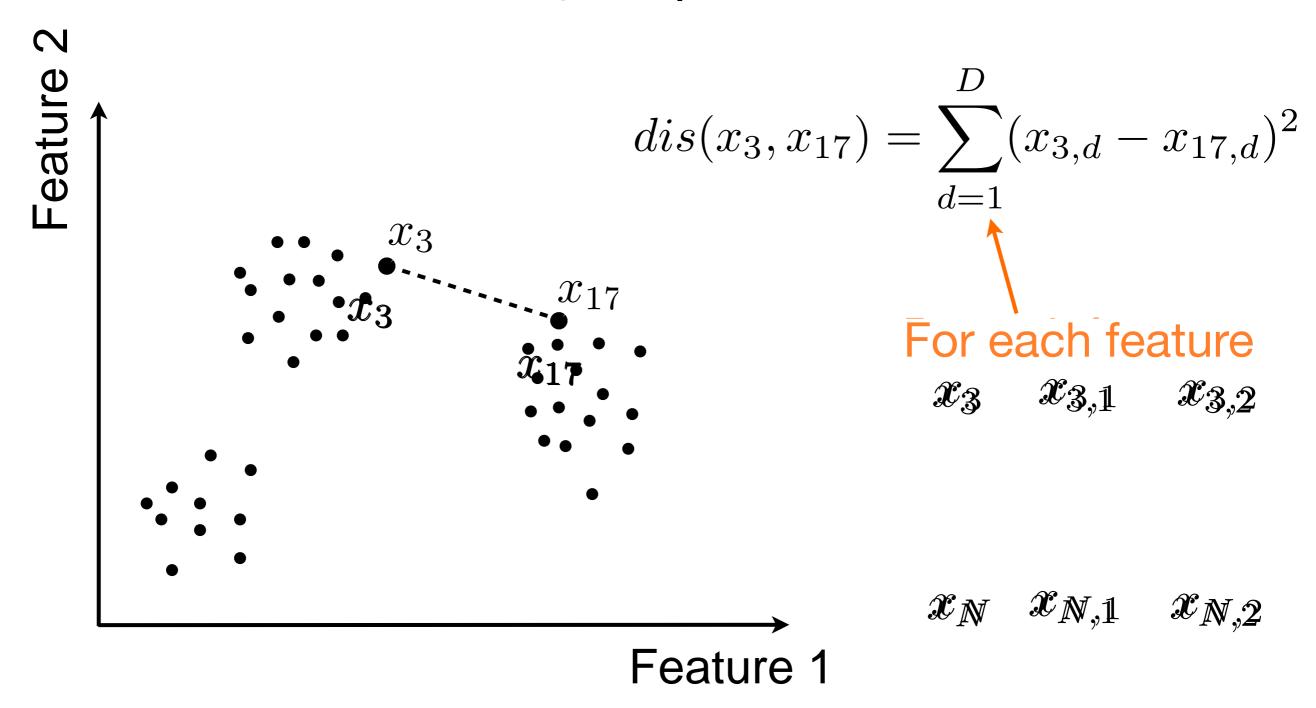
Dissimilarity: Euclidean distance



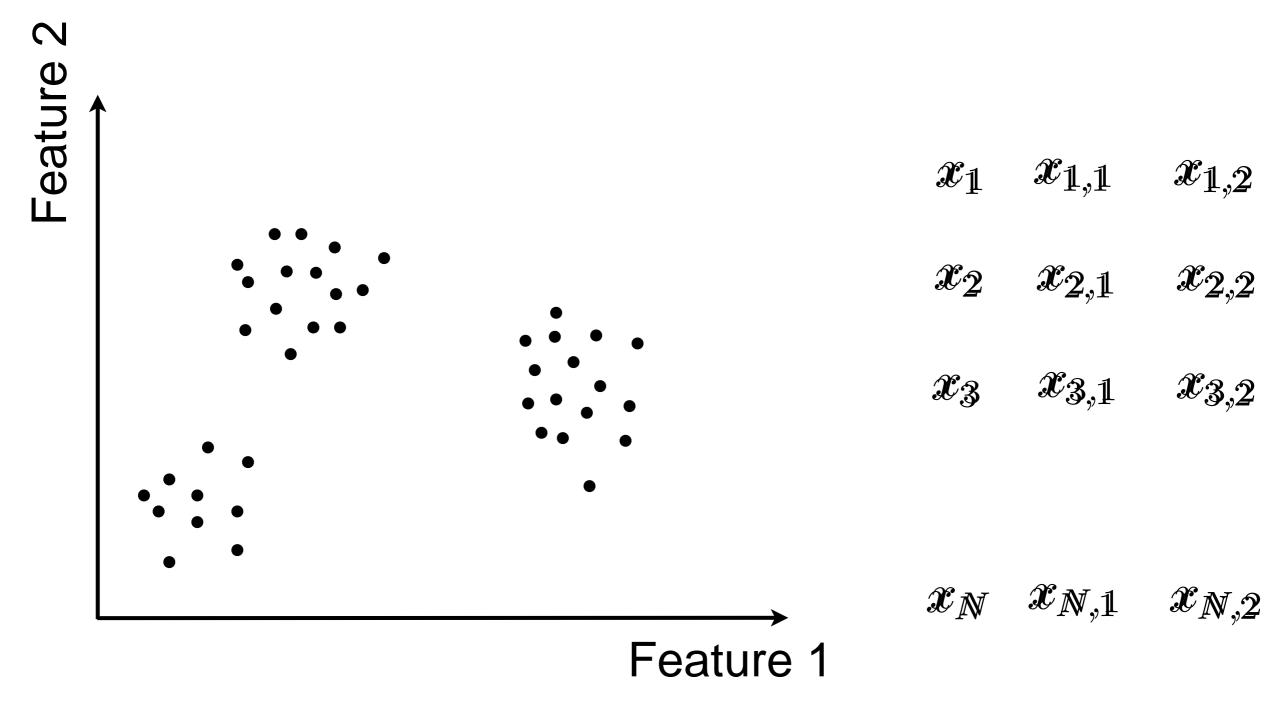
Dissimilarity: Squared Euclidean distance

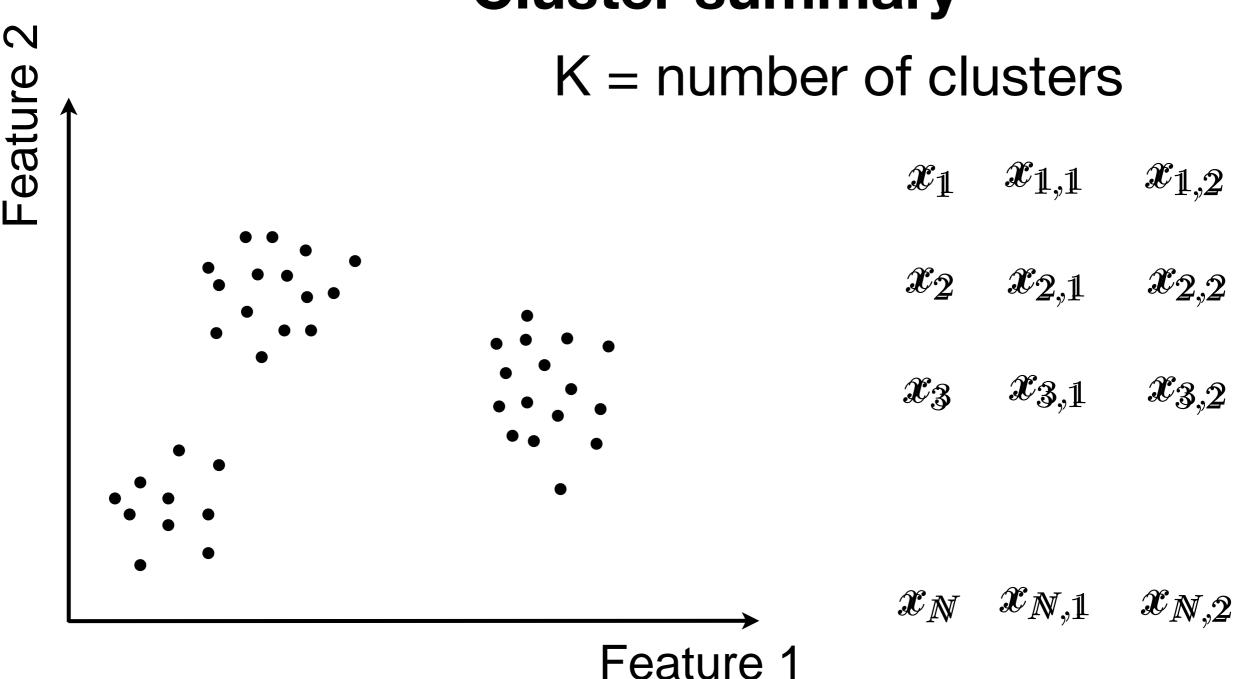


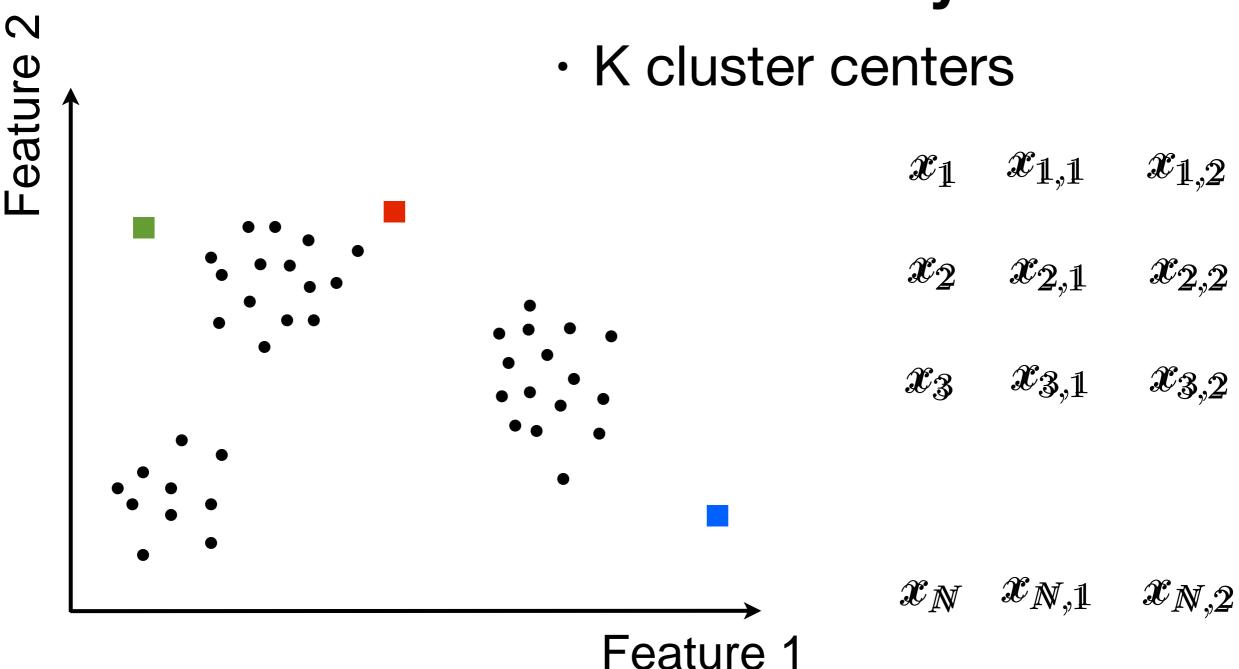
Dissimilarity: Squared Euclidean distance

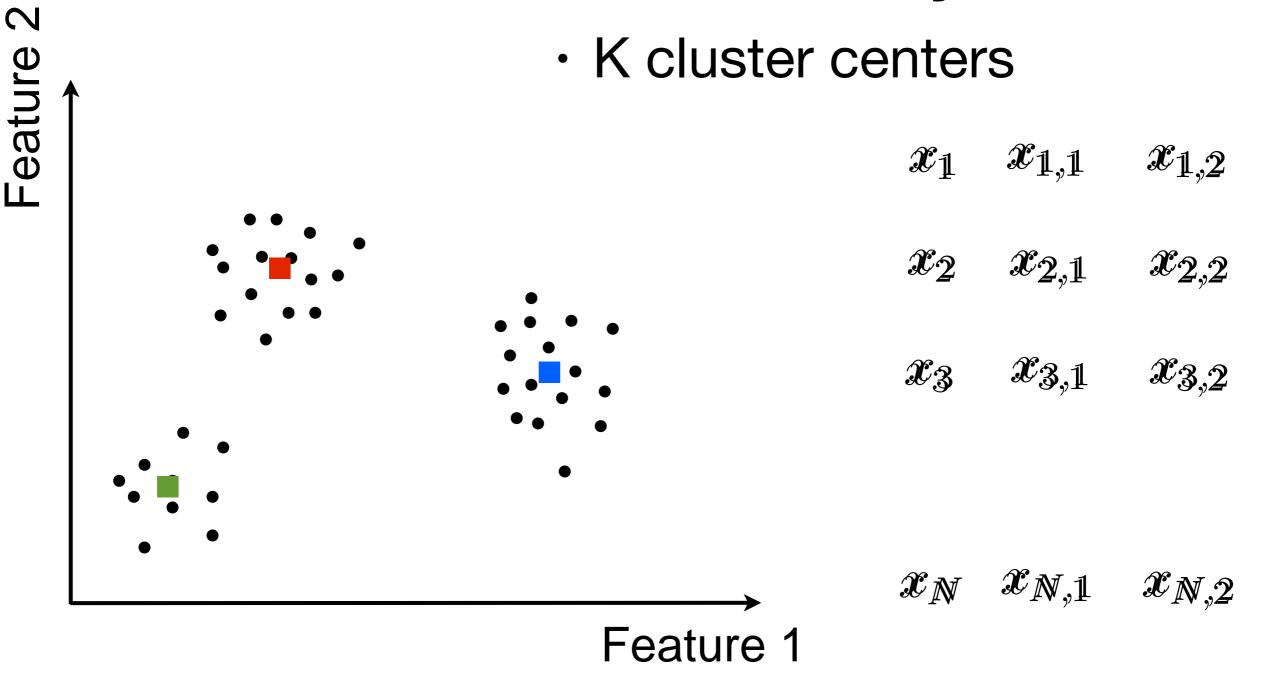


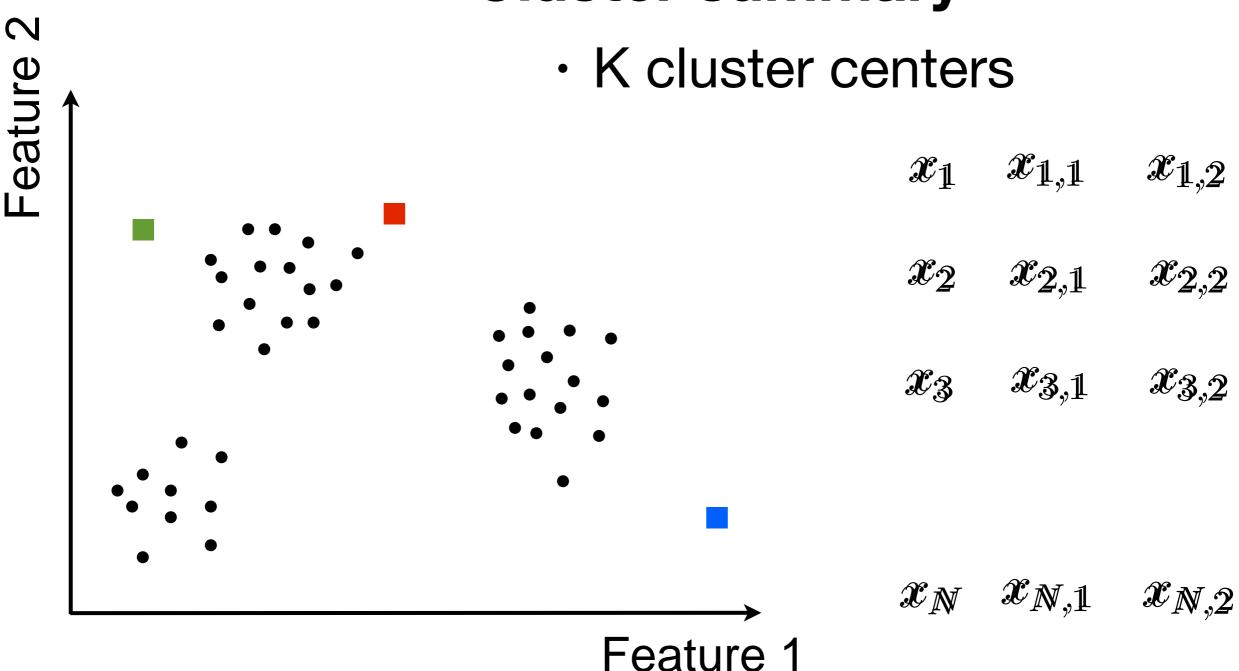
K-Means: Preliminaries Dissimilarity

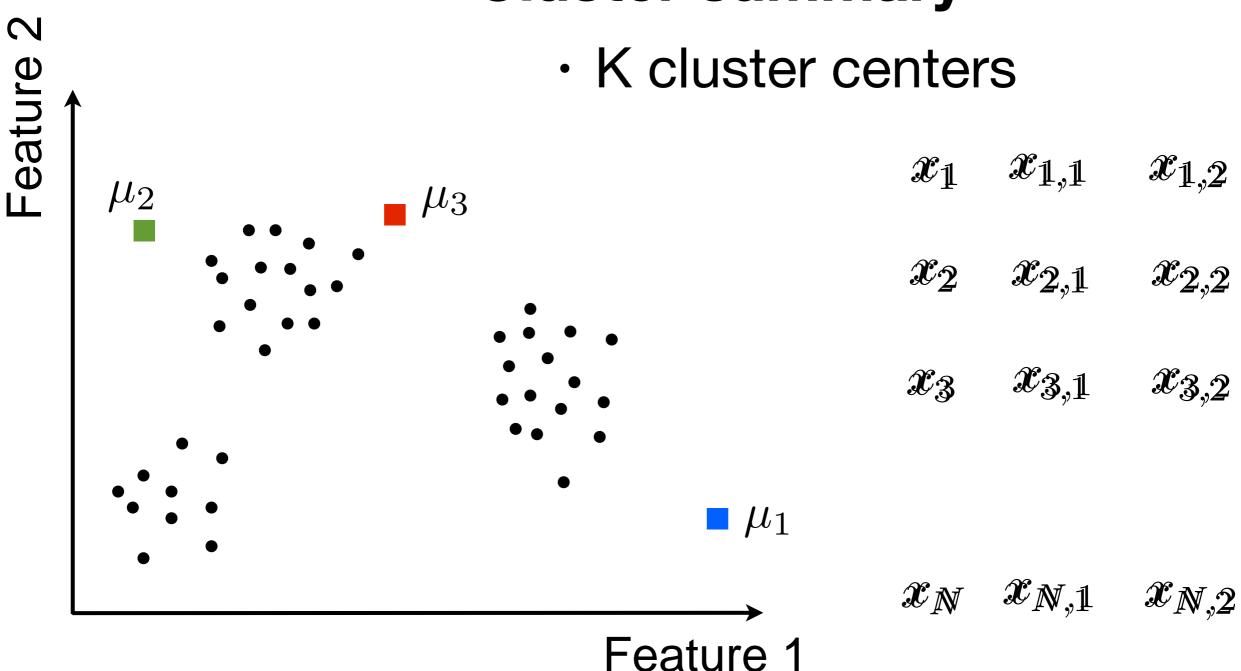


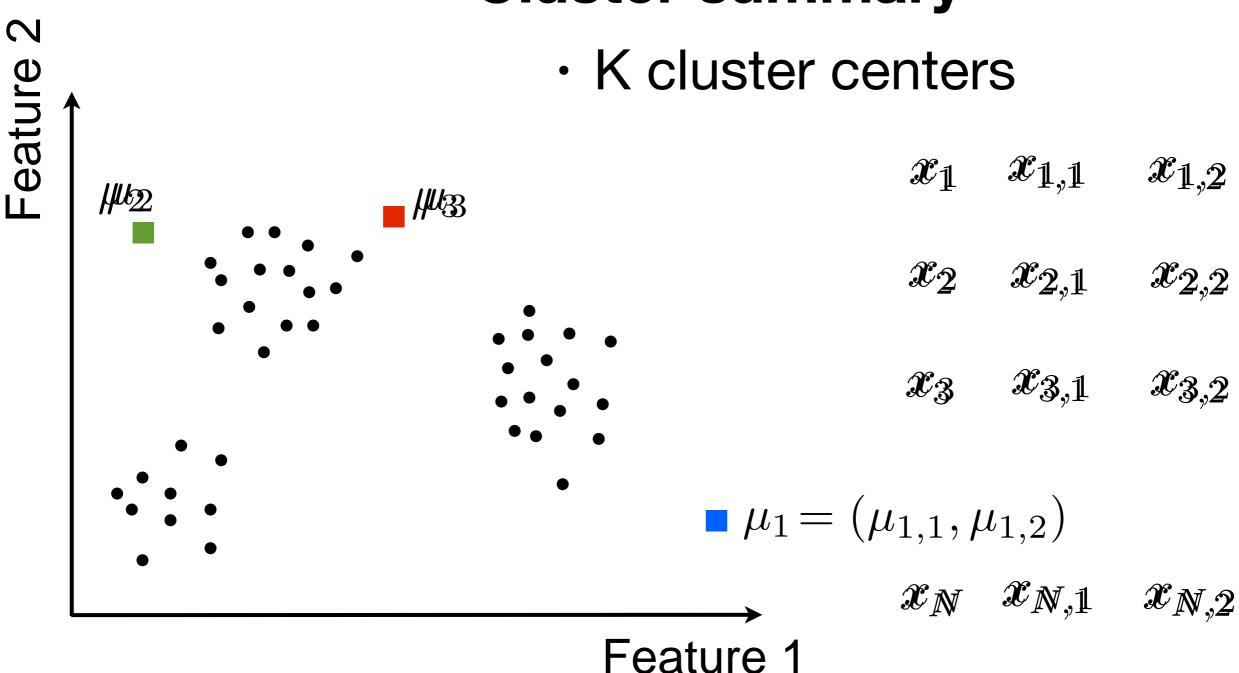


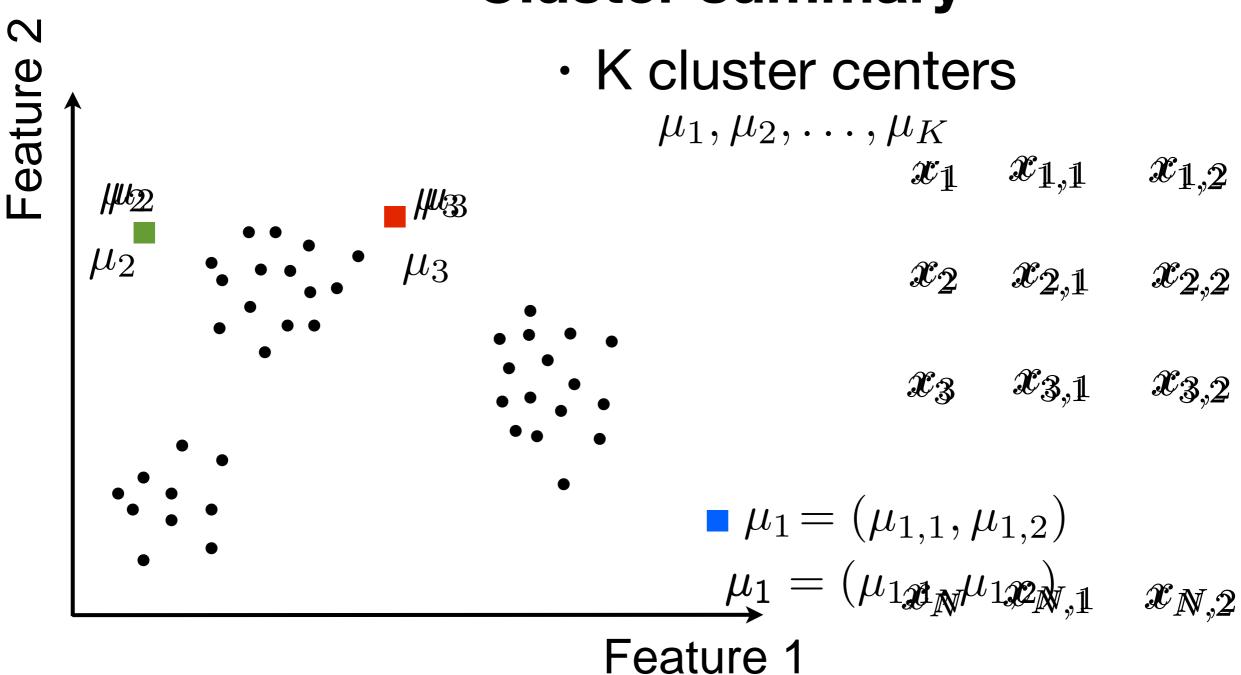






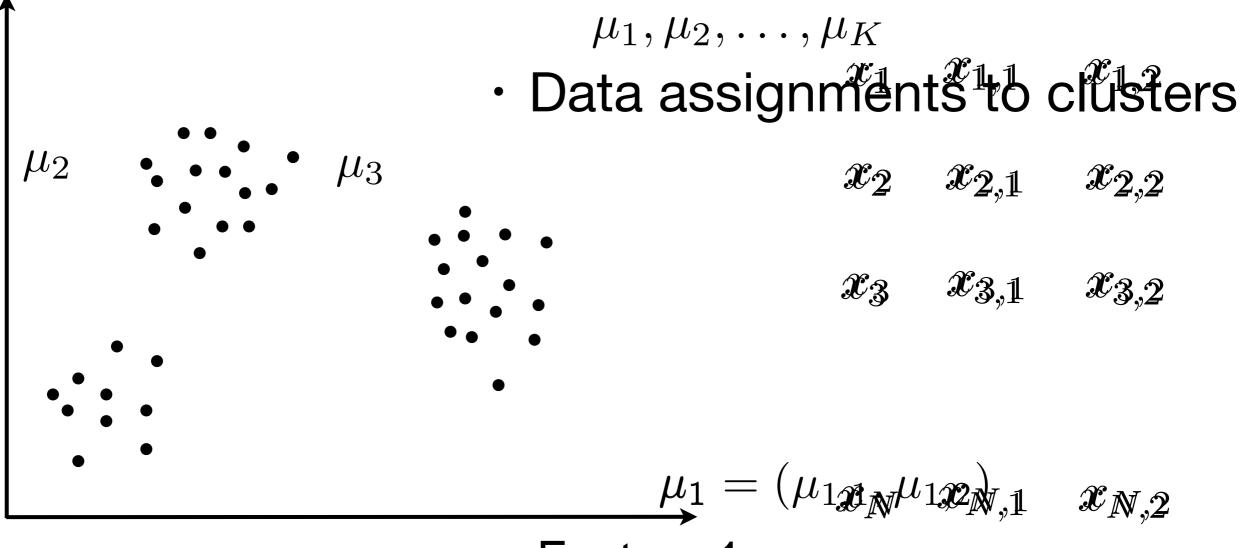




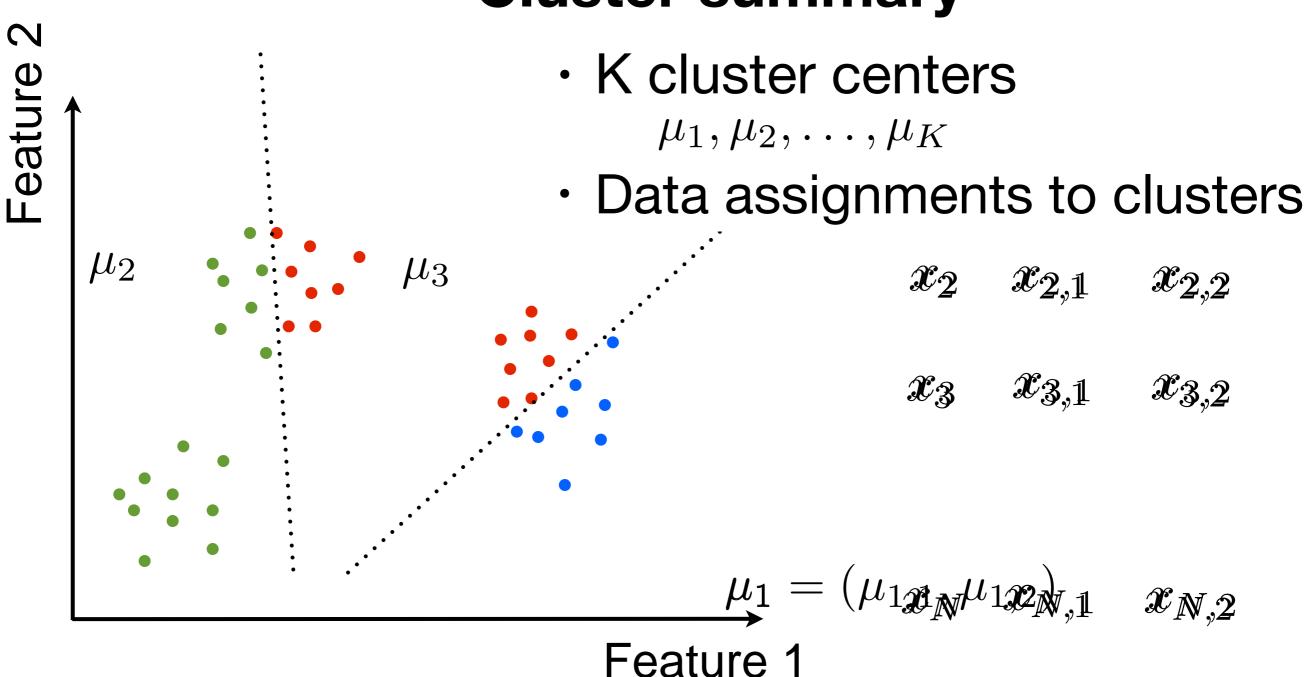


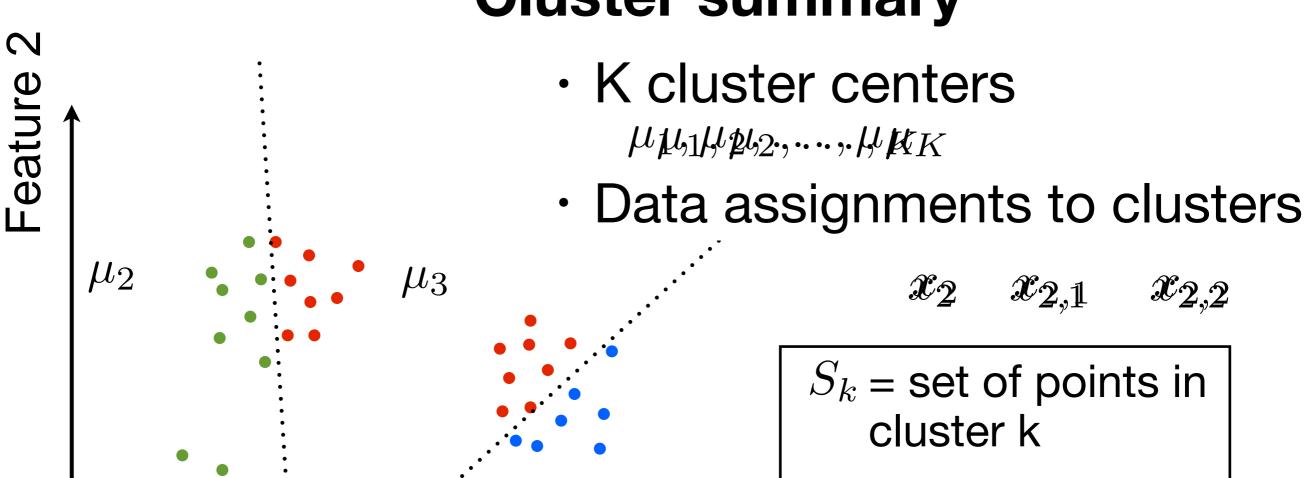
Cluster summary

 K cluster centers Feature



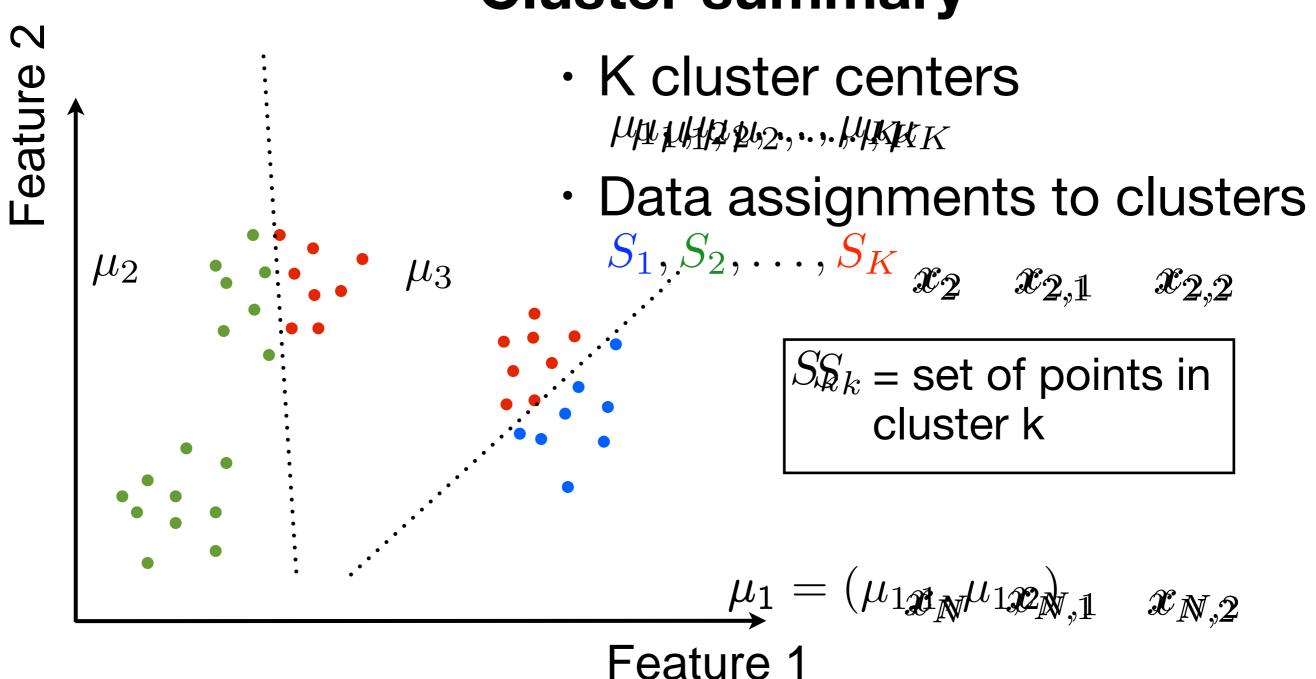
Feature 1

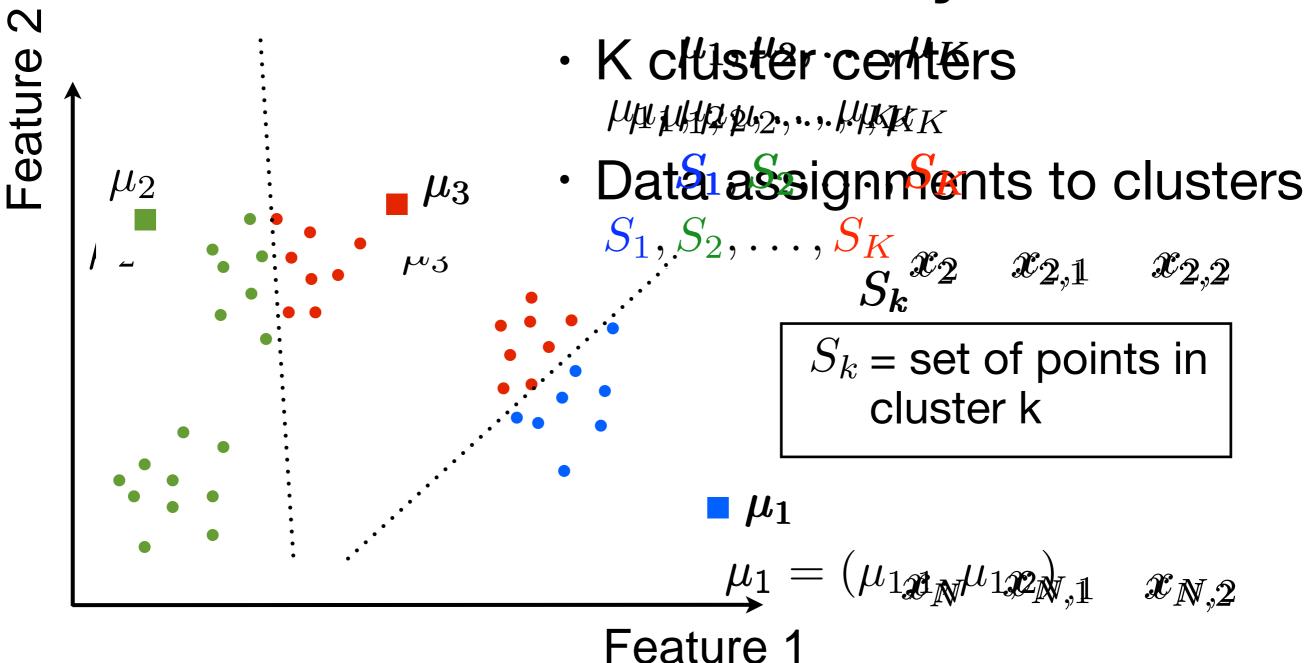




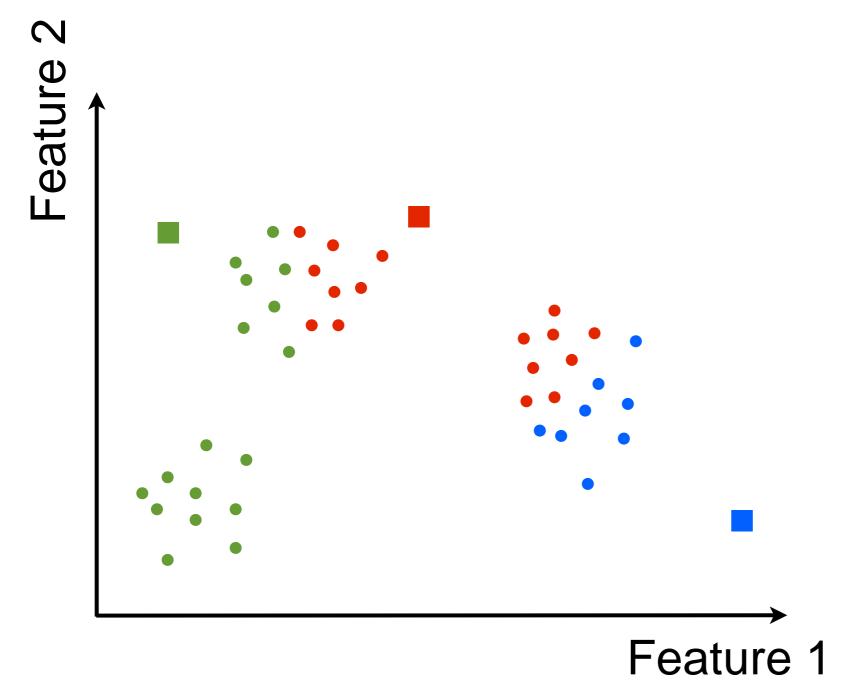
$$\underline{\mu_1} = (\mu_1 x_N \mu_1 x_N, \underline{1} \quad x_{N,2})$$

Feature 1

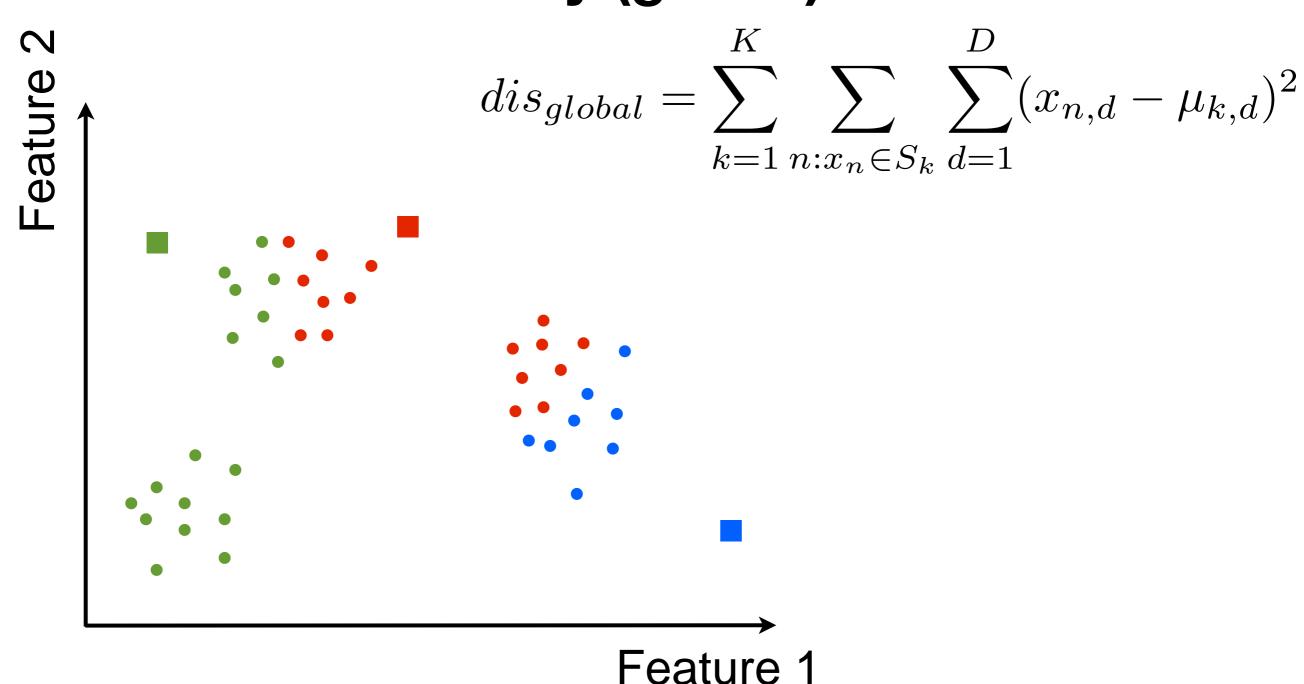




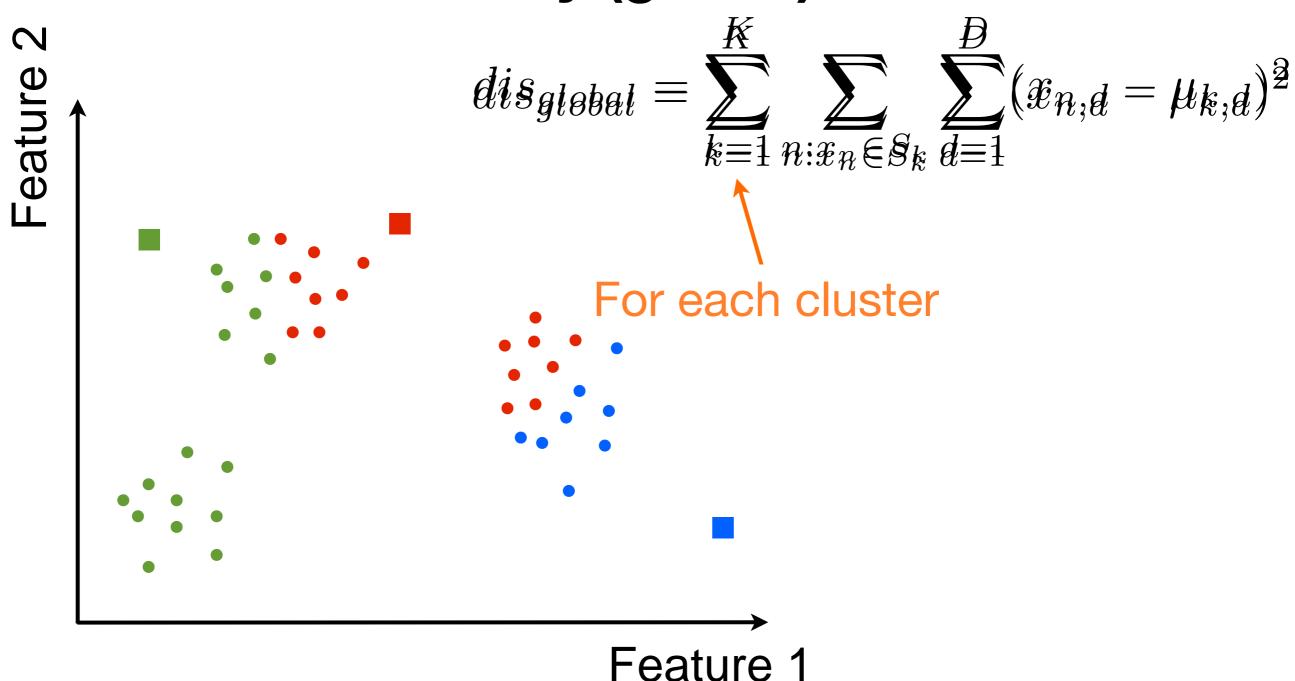
K-Means: Preliminaries Dissimilarity



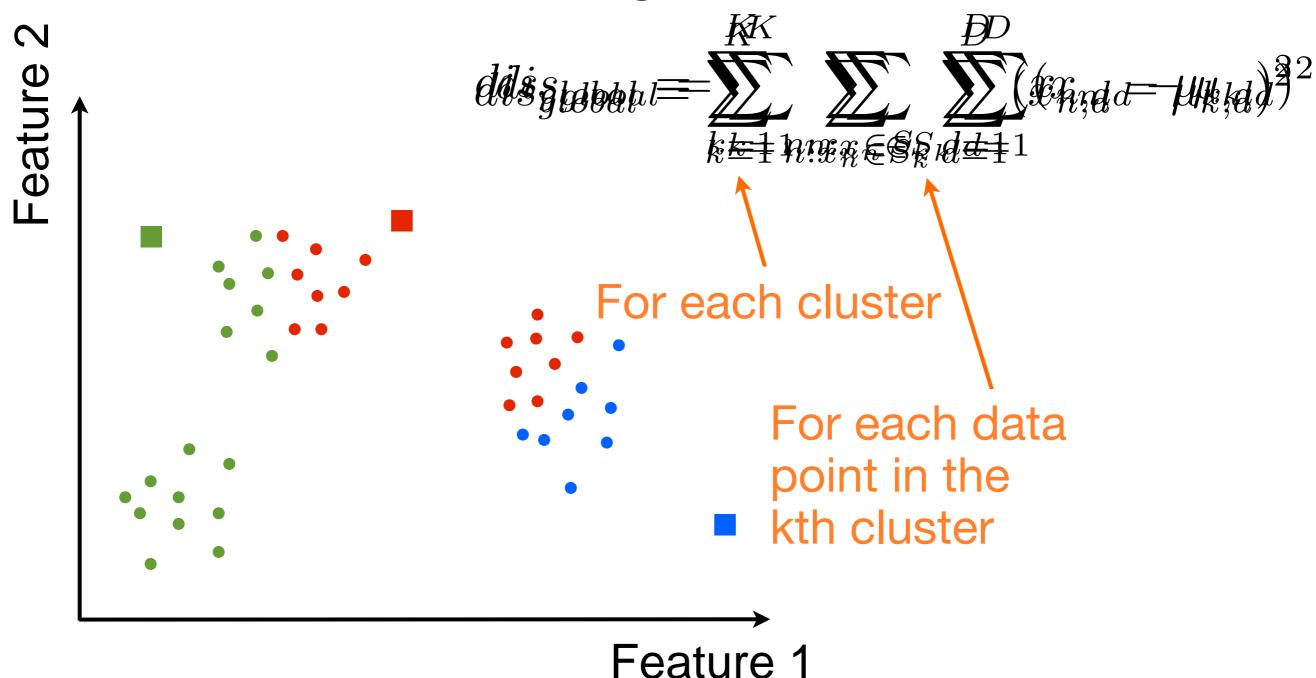
K-Means: Preliminaries Dissimilarity (global)



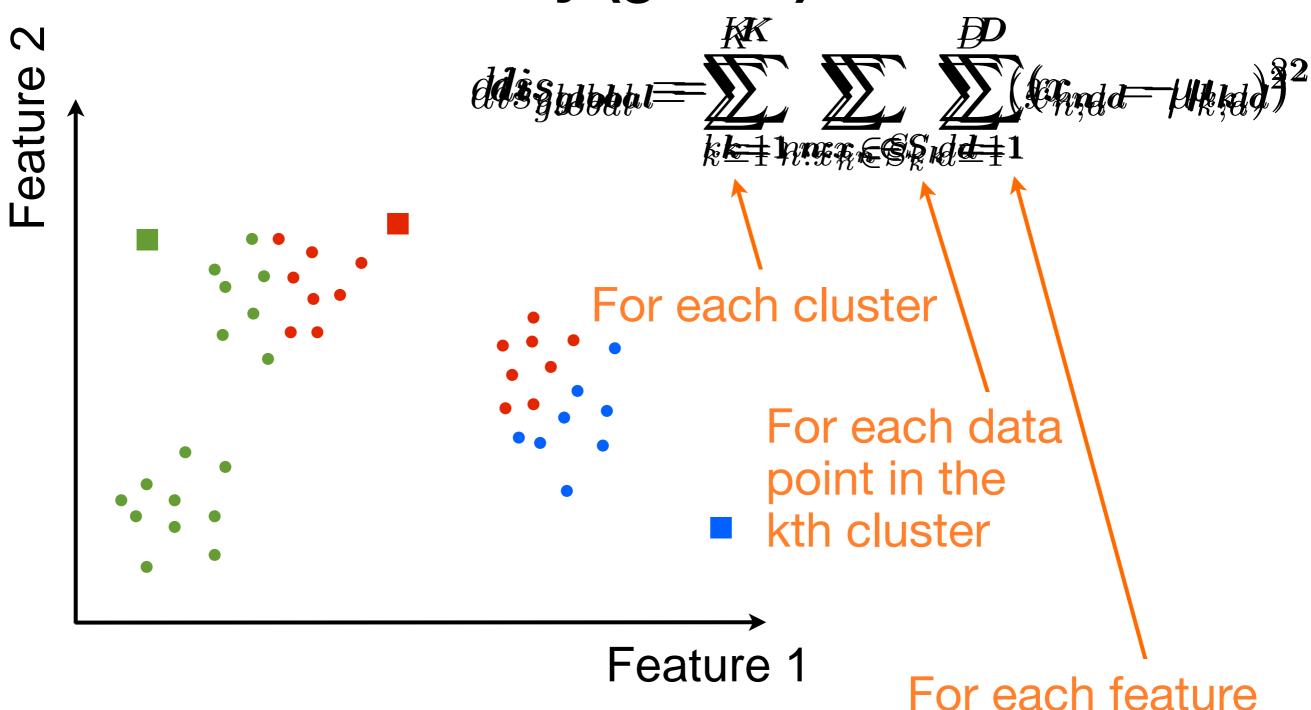
K-Means: Preliminaries Dissimilarity (global)



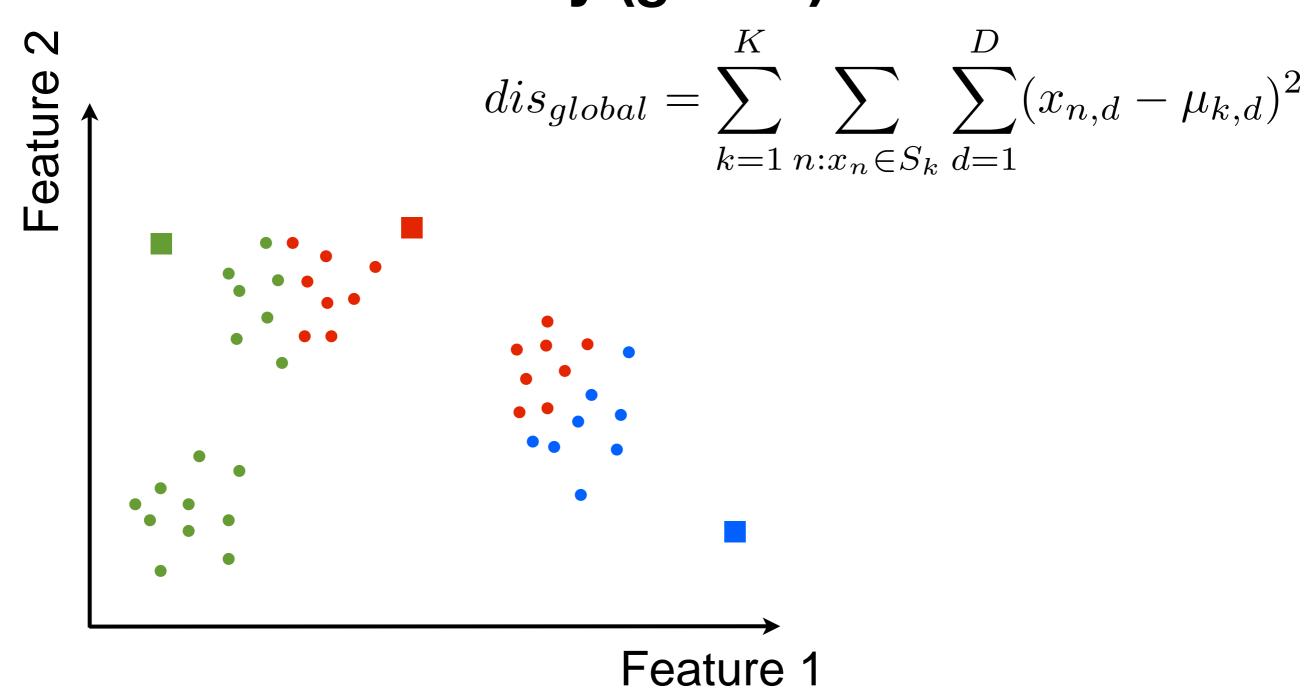
K-Means: Preliminaries Dissimilarity (global)



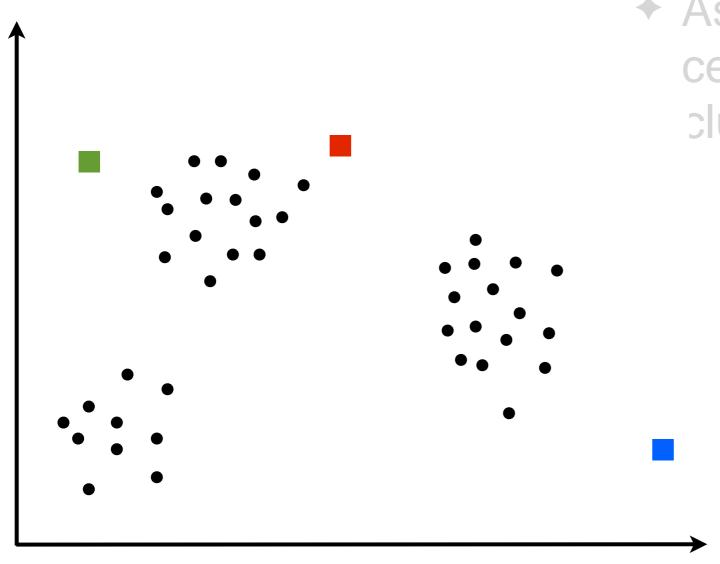
K-Means: Preliminaries Dissimilarity (global)

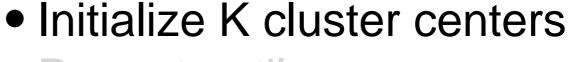


K-Means: Preliminaries Dissimilarity (global)

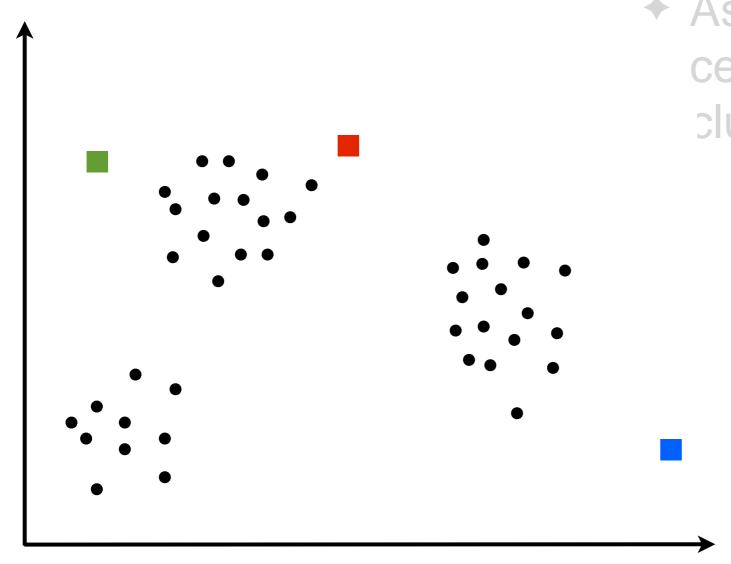


- Initialize K cluster centers
- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster
 center to be the mean of its
 cluster's data points





- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster
 center to be the mean of its
 cluster's data points



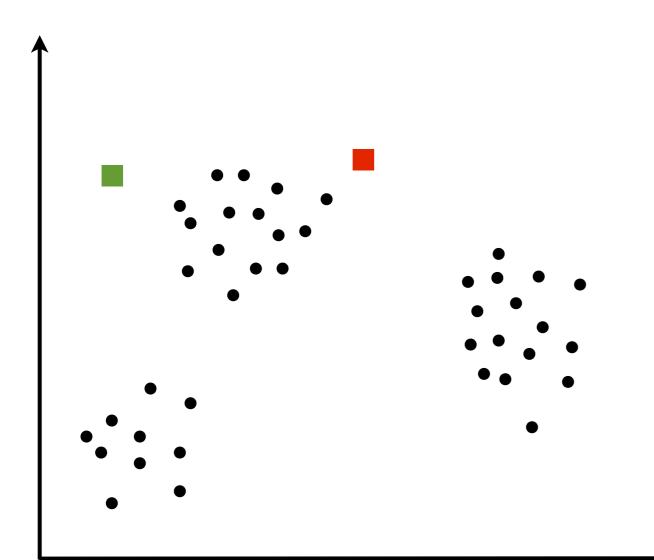
• For k = 1, ..., K

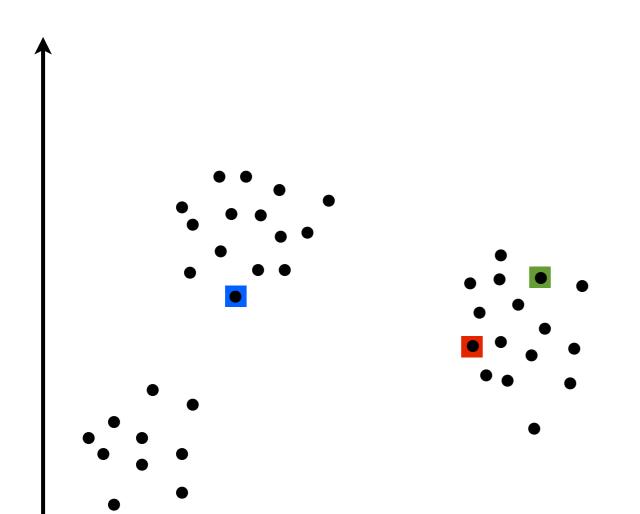
Randomly draw n from

1,...,N without replacement

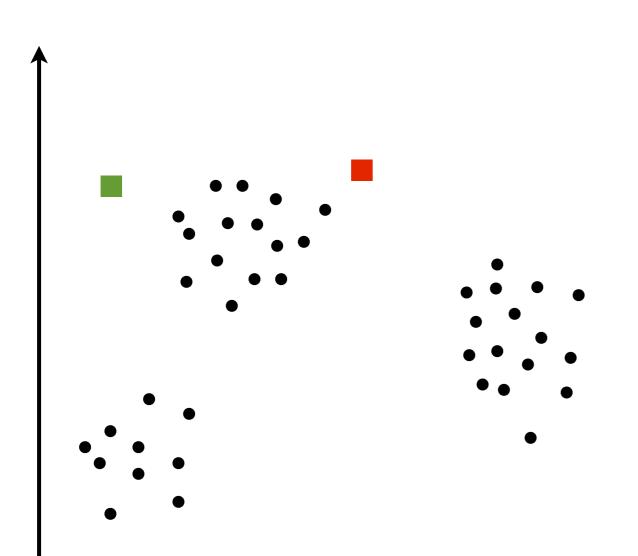
$$\bullet \mu_k \leftarrow x_n$$

- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster
 center to be the mean of its
 cluster's data points





- For k = 1,..., K
 - Randomly draw n from 1,...,N without replacement $+\mu_k \leftarrow x_n$
- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster center to be the mean of its cluster's data points



- For k = 1, ..., K
 - *Randomly draw n from
 - 1,...,N without replacement $+\mu_k \leftarrow x_n$
- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster
 center to be the mean of its
 cluster's data points

• For k = 1, ..., K

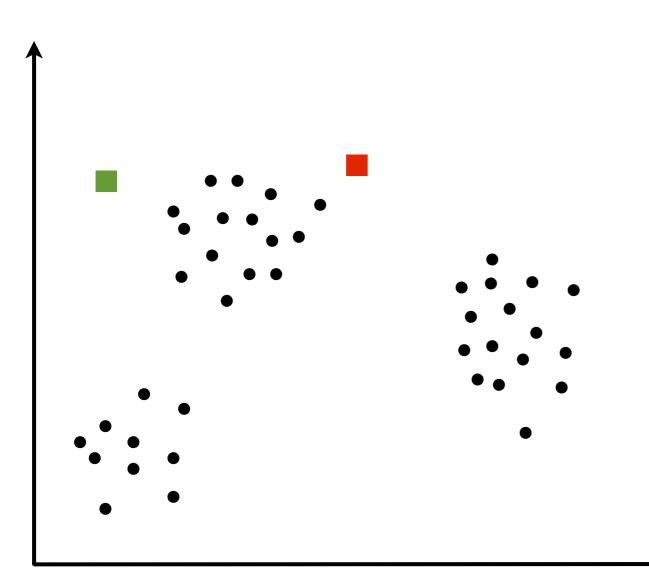
* Randomly draw n from

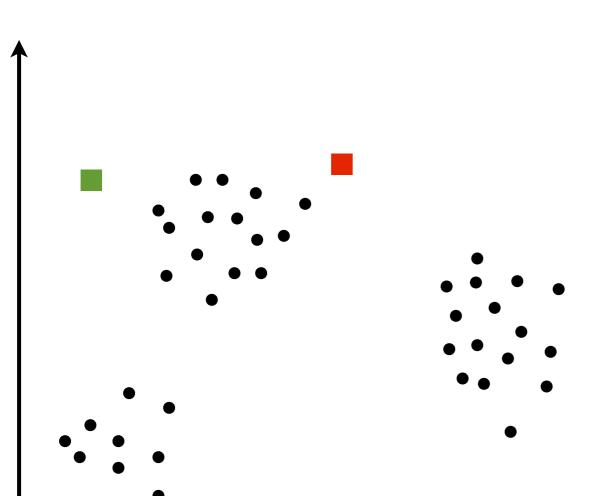
1,...,N without replacement $+ \mu_k \leftarrow x_n$

$$\star \mu_k \leftarrow x_n^{-x_n}$$

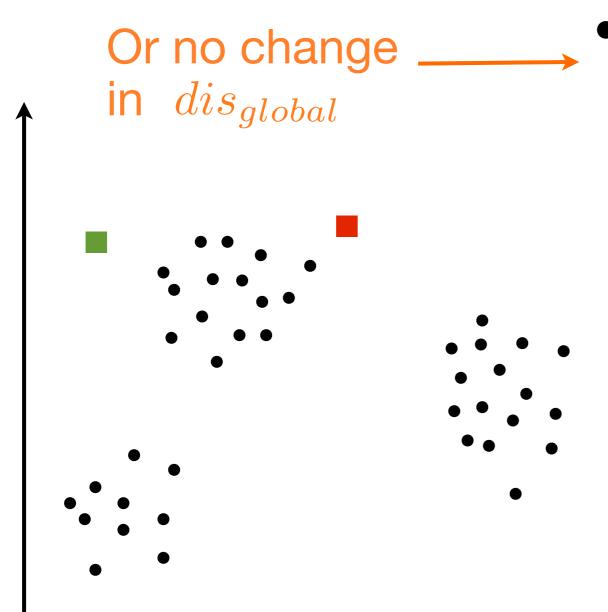
Repeat until convergence:

- Assign each data point to the cluster with the closest center.
- Assign each cluster center to be the mean of its cluster's data points

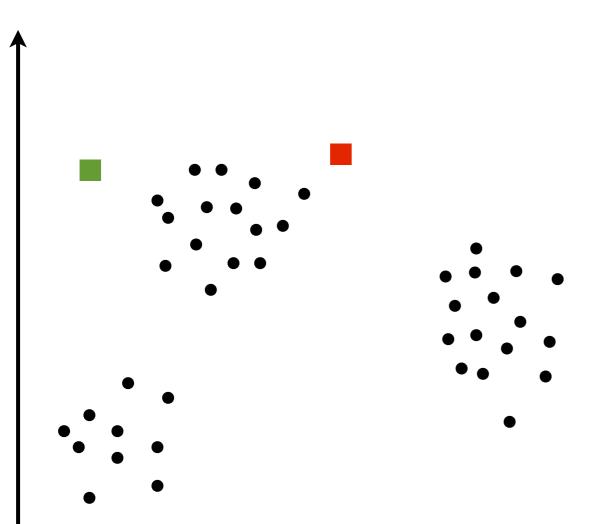




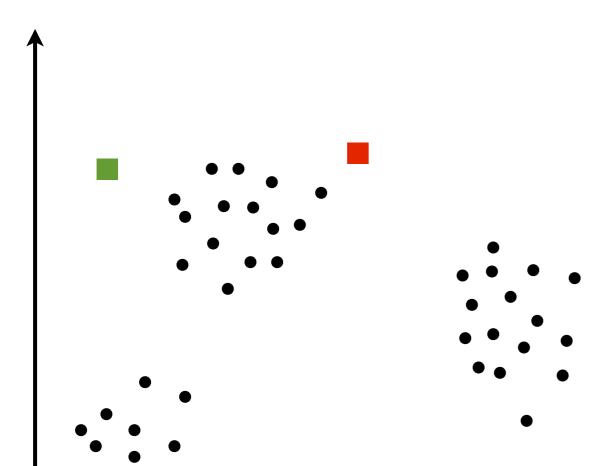
- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $\star \mu_k \leftarrow x_n x_n$
- Repeat until S₁,...,S_k don't change:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster
 center to be the mean of its
 cluster's data points



- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k\mu_k x_n x_n$
- Repeat until S₁,...,S_k don't change:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster
 center to be the mean of its
 cluster's data points



- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k \leftarrow x_n x_n$
- Repeat until S₁,...,S_k don't change:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster
 center to be the mean of its
 cluster's data points

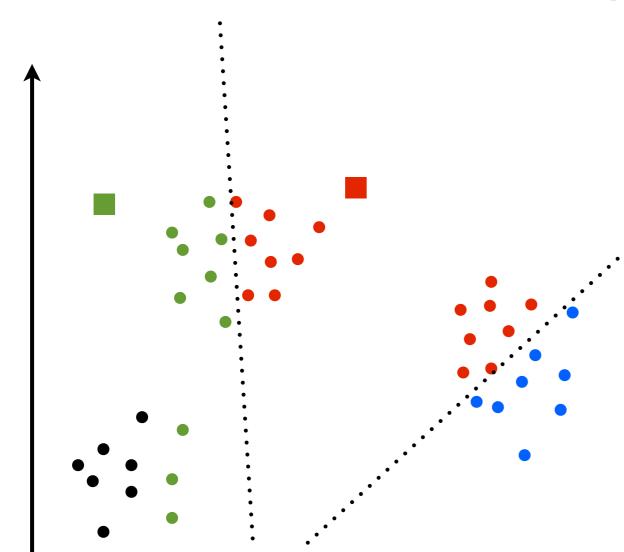


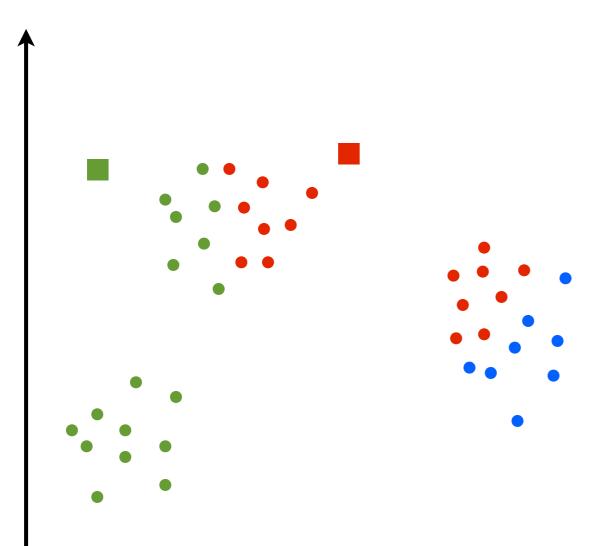
- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k = x_n^- x_n$
- Repeat until S₁,...,S_k don't change:
 - **♦** For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$
 - * Put $x_n \in S_k$ (and no other S_j)
 - Assign each cluster
 center to be the mean of its
 - cluster's data points

- Randomly draw n from 1,...,N without replacement
- $+\mu_k = x_n$
- Repeat until S₁,...,S_k don't change:

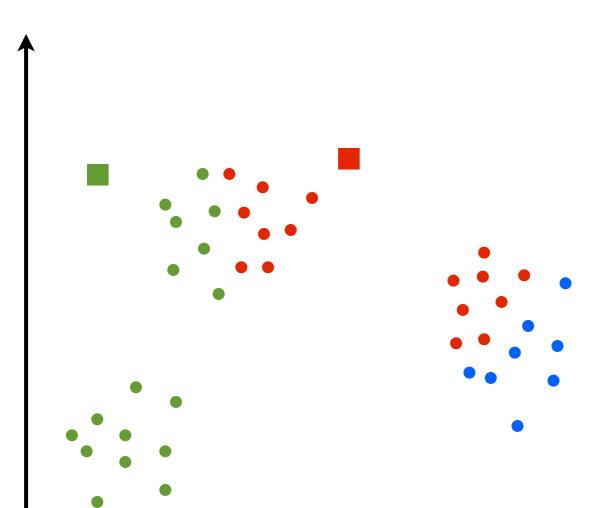
$$+$$
 For $n = 1,...N$

- * Find k with smallest $dis(x_n, \mu_k)$ $dis(x_n, \mu_k) \in S_k$ * Put $x_n \in S_k$ (and no
- other S_i)
- Assign each cluster center to be the mean of its
- cluster's data points





- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k = x_n$
- Repeat until S₁,...,S_k don't change:
 - **→** For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$ $dis(x_n, \mu_k)$ $\in S_k$ Put $x_n \in S_k$ (and no
 - other S_i)
 - Assign each cluster center to be the mean of its
 - cluster's data points

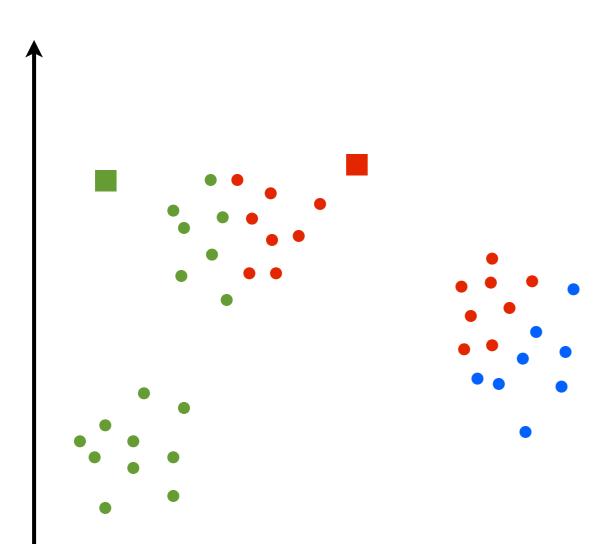


- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement $+\mu k = x_n$
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$ $dis(x_n, \mu_k) \in S_k$ earld no
 - other S_i)
 - Assign each cluster center to be the mean of its
 - cluster's data points

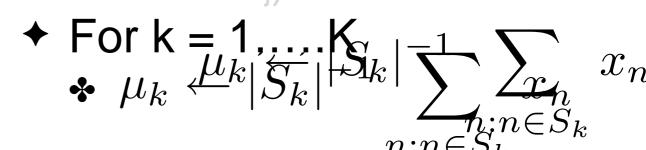
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$ $dis(x_n, \mu_k)$ $\in S_k$ Put $x_n \in S_k$ (and no
 - other S_i)

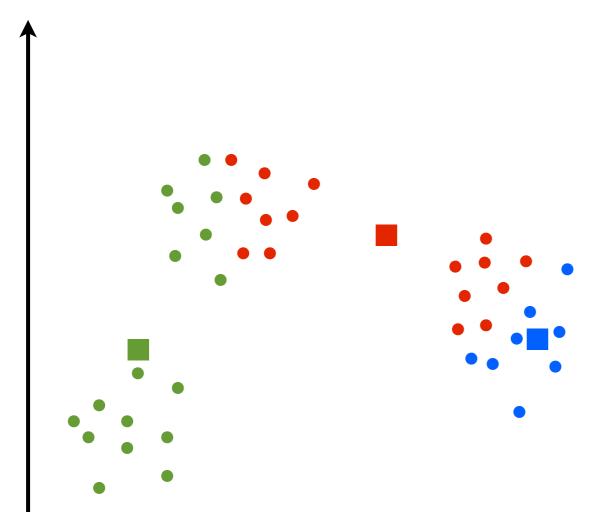
For
$$k = 1,...,K$$

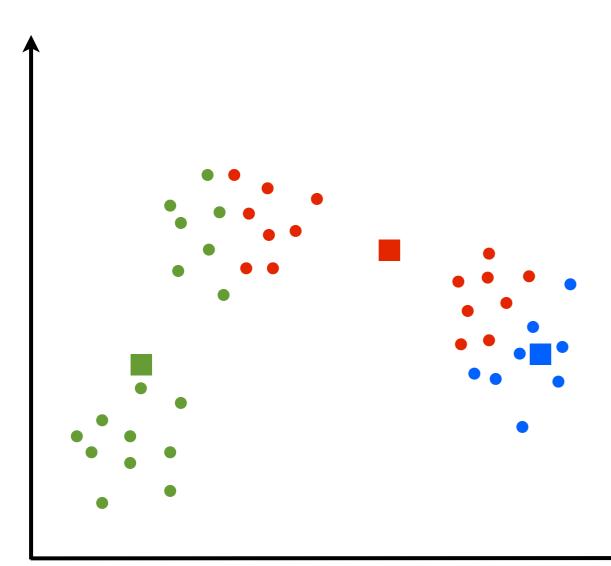
$$\mu_k \leftarrow |S_k|^{-1} \sum_{n:n \in S_k} x_n$$



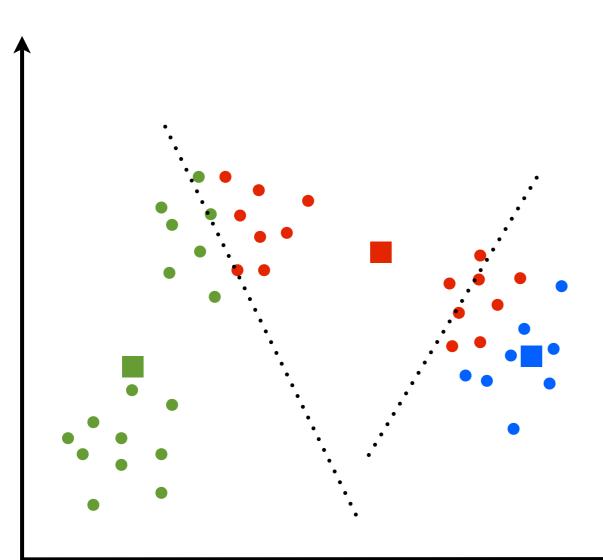
- For k = 1, ..., K
 - Randomly draw n from
 - 1,...,N without replacement
 - \bullet Mkk $\stackrel{\mu}{\Leftarrow}$ 30 in
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n) \mu_k$ $dis(x_n) \mu_k$ * Put $x_n \in S_k$ (and no
 - Put ♣ Sk (and no other Si)



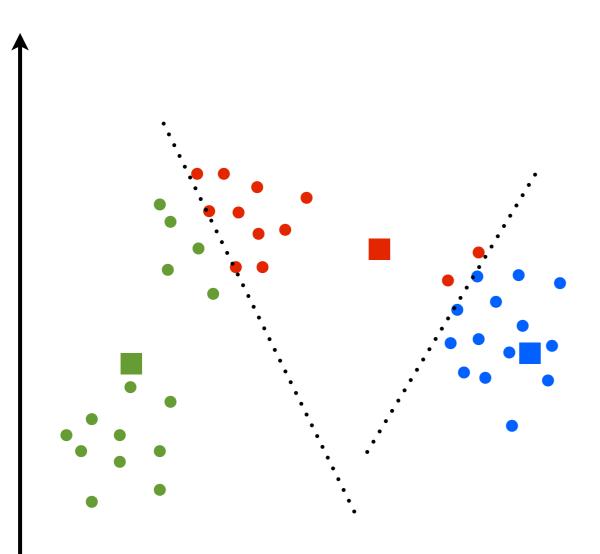




- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k \rightleftharpoons x_n$
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$
 - * Put $x_n \in S_k$ (and no other S_i)
 - $\begin{array}{c} \star \text{ Assign each } S_k \text{ puster } \\ \text{center to be the mea} \\ \text{cluster's data points} \end{array}$

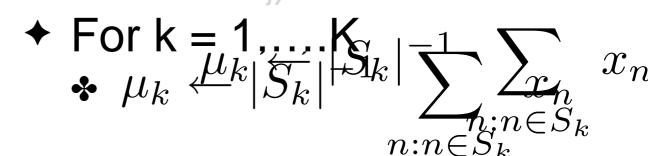


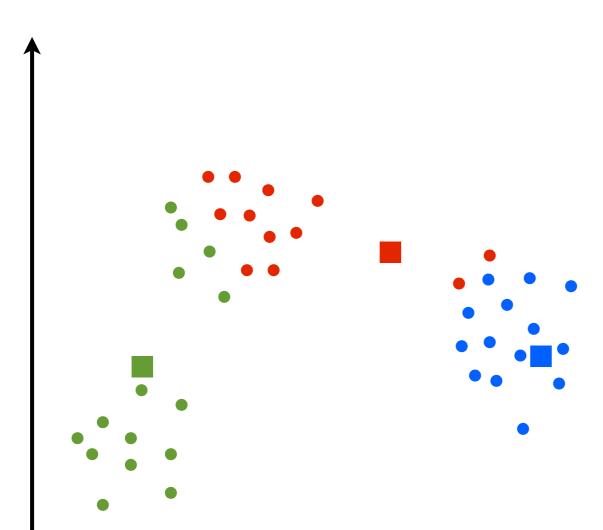
- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k \rightleftharpoons x_n \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - **♦** For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$ $dis(x_n, \mu_k)$ $\in S_k$ Put $x_n \in S_k$ (and no
 - other S_i)
 - Assign each Suster
 center to be the means cluster's data points



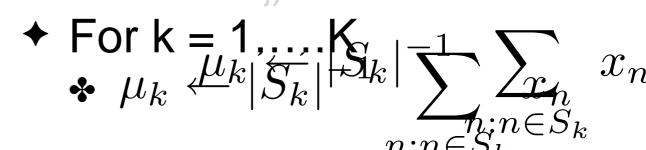
- For k = 1, ..., K
 - * Randomly draw n from 1,...,N without replacement
 - $+\mu_k = x_n$
- Repeat until S₁,...,S_k don't change:
 - **→** For n = 1,...N
 - * Find k with smallest $\frac{dis(x_n, \mu_k)}{dis(x_n, \mu_k)} \in S_k$ * Put $x_n \in S_k$ (and no
 - other S_i)
 - * Assign each cluster center to be the mean e cluster's data points $n:n\in\mathbb{N}$

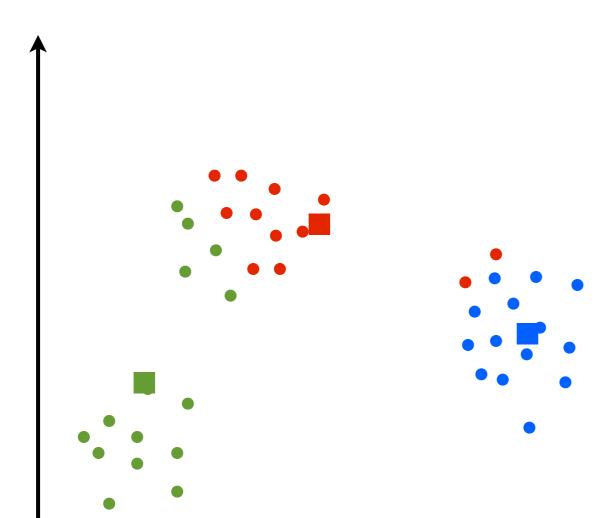
- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - + Wkk= x_n
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n)\mu_k$ $dis(x_n)\mu_k$ * Put $x_n \in S_k$ (and no
 - Put ♣ Sk (and no other Si)





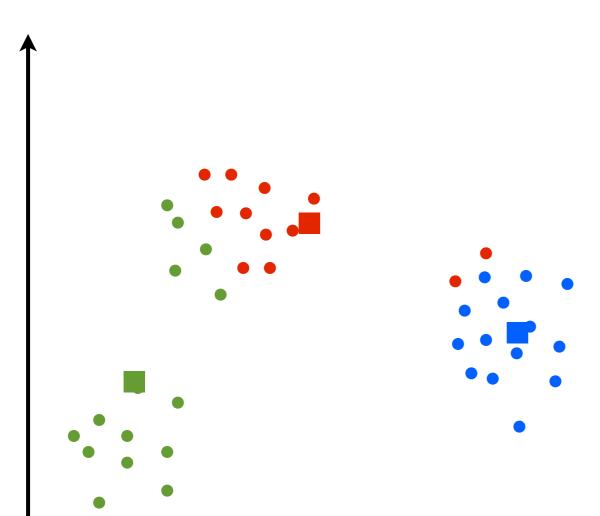
- For k = 1, ..., K
 - * Randomly draw n from
 - 1,...,N without replacement
 - \bullet Mkk $x = x_n$
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n)\mu_k$
 - Put ♣ Sk (and no other Si)



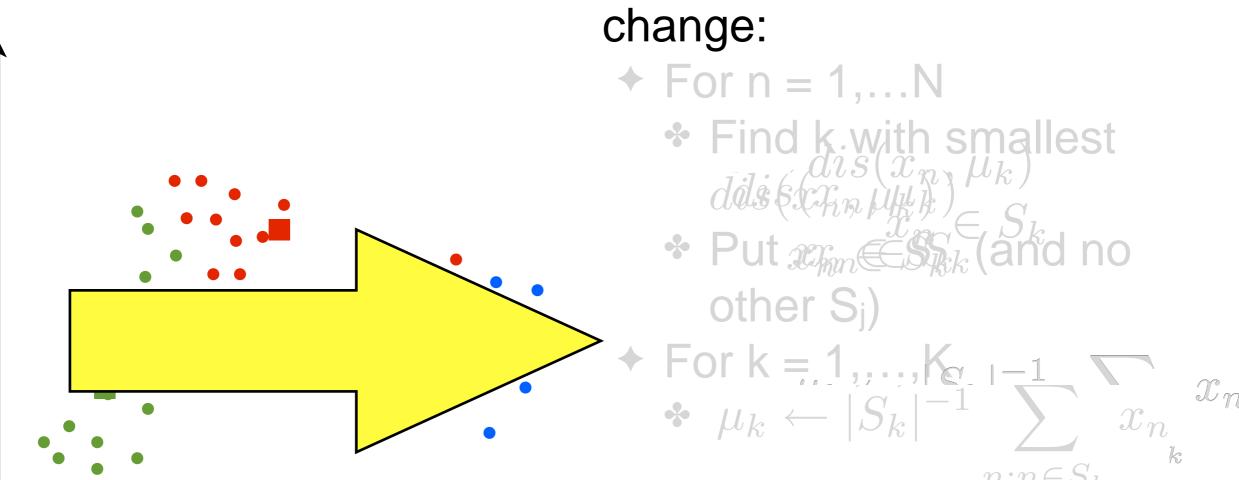


- For k = 1, ..., K
 - Randomly draw n from
 - 1,...,N without replacement
 - \bullet Wikk $x = x_n$
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n) \mu_k$
 - Put ♣ Sk (and no other Si)

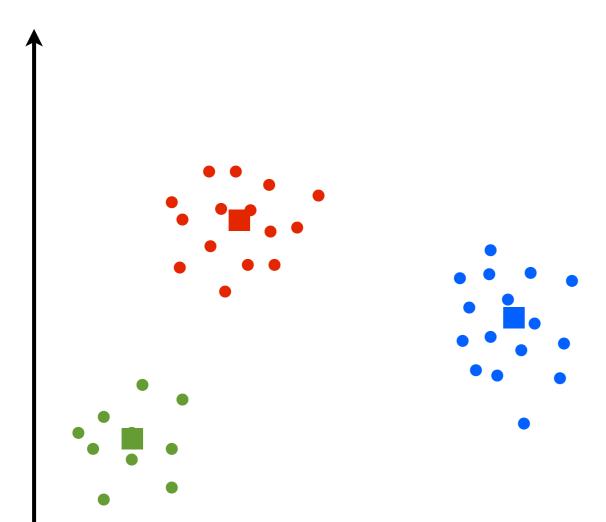
$$+ \text{ For } \mathbf{k} = 1, \dots, |\mathbf{k}| = \sum_{n:n \in S_k} x_n$$



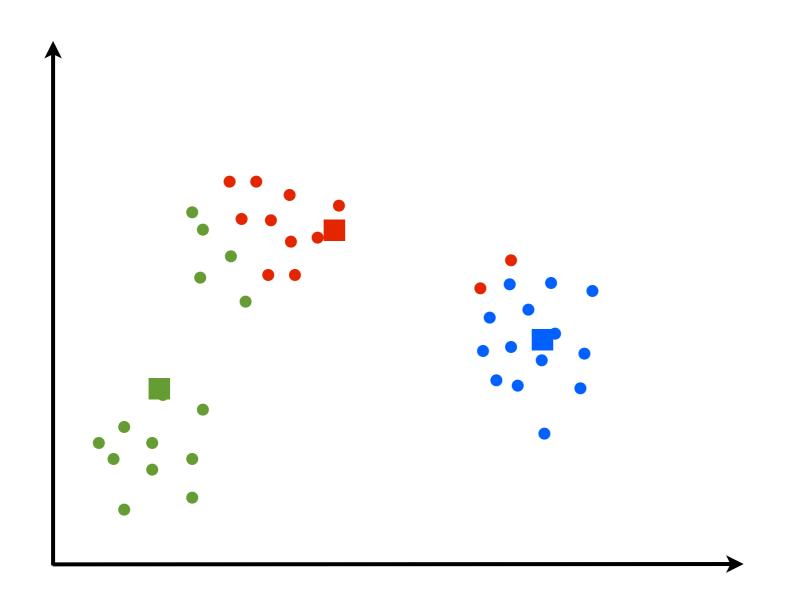
- For k = 1, ..., K
 - * Randomly draw n from 1,...,N without replacement $\mathcal{L}_{\mathcal{U}_{k}} \leftarrow \mathcal{X}_{n}$
 - Repeat until S₁,...,S_k don't



- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu k + 2n$
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$ $dis(x_n, \mu_k)$ * Put $x_m \in S_k$ (and no
 - * Put \mathfrak{S}_k (and no other S_i)



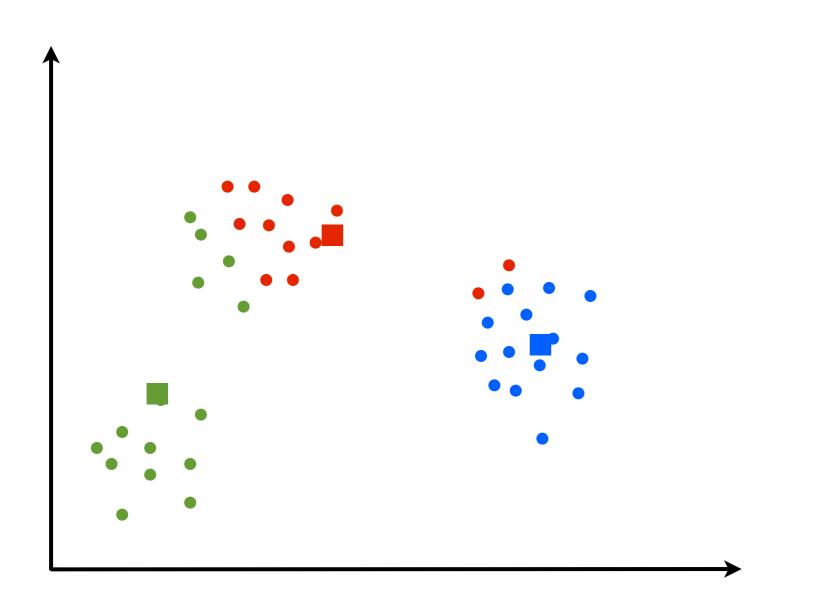
$$\mu_k \leftarrow x_n$$



$$dis(x_n, \mu_k)$$
$$x_n \in S_k$$

$$\mu_k \leftarrow |S_k|^{-1} \sum_{n:n \in S_k} x_n$$

• Will it terminate? $\mu_k \leftarrow x_n$ Yes. Always.



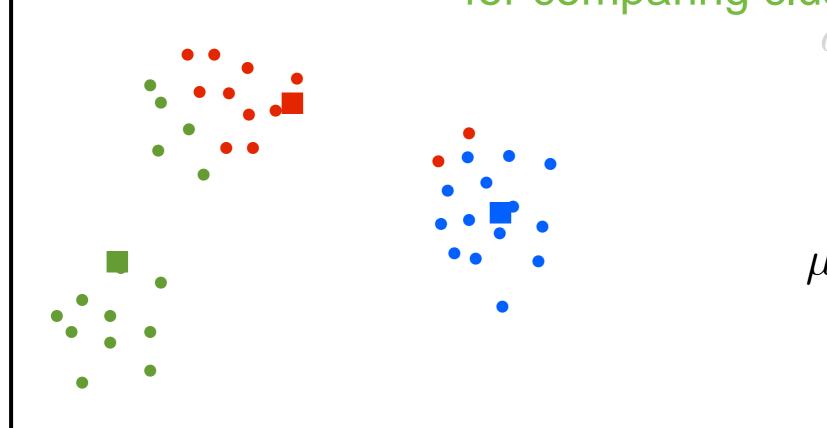
$$dis(x_n, \mu_k)$$
$$x_n \in S_k$$

$$\mu_k \leftarrow |S_k|^{-1} \sum_{n:n \in S_k} x_n$$

- Will it terminate? $\mu_k \leftarrow x_n$ Yes. Always.
- Is the clustering any good?

Global dissimilarity only useful for comparing clusterings.

$$dis(x_n, \mu_k)$$
$$x_n \in S_k$$



$$\mu_k \leftarrow |S_k|^{-1} \sum_{n:n \in S_k} x_n$$

Guaranteed to converge in a finite number of iterations

- Running time per iteration:
 - Assign data points to closest cluster center O(KN) time
 - Change the cluster center to the average of its assigned points
 O(N) time

Objective $\min_{u} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2$

1. Fix μ , optimize C:

1. Fix
$$\mu$$
, optimize C :
$$\min_{C} \sum_{i=1}^{k} \sum_{x \in C_{i}} |x - \mu_{i}|^{2} = \min_{C} \sum_{i} |x_{i} - \mu_{x_{i}}|^{2}$$
2. Fix C , optimize μ :

$$\min_{u} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2$$

Take partial derivative of μ_i and set to zero, we have

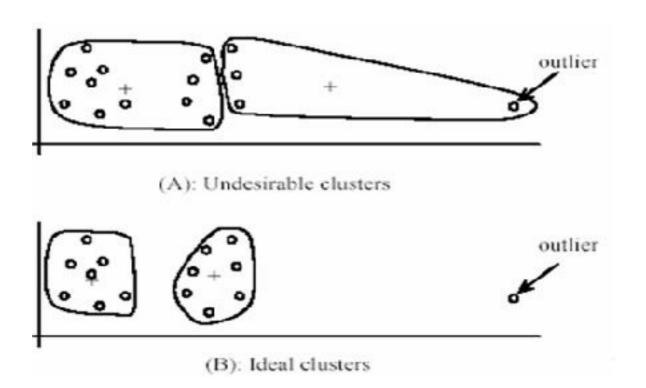
$$\mu_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$$
 Step 2 of kmeans

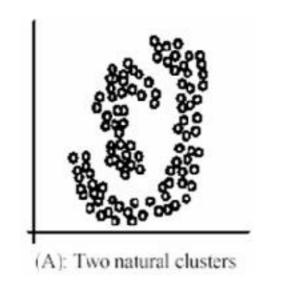
K-Means takes an alternating optimization approach, each step is guaranteed to decrease the objective - thus guaranteed to converge

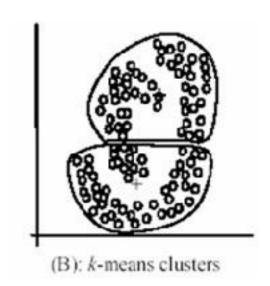
Demo time...

K-Means Algorithm: Some Issues

- How to set k?
- Sensitive to initial centers
 - Multiple initializations
- Sensitive to outliers
- Detects spherical clusters
- Assuming means can be computed
 - It requires continuous, numerical features







Next Lecture:

K-Means Applications,
Spectral clustering,
Hierarchical clustering and
What is a good clustering?