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Last time..

- An Iterative
clustering algorithm
- |Initialize: Pick K

random points as
cluster centers (means)

- Alternate:

-+ Assign data instances
to closest mean

- Assign each mean to
the average of its
assigned points

- Stop when no points’
assignments change

. K-Means




Today

- K-Means Example Applications
- Spectral clustering

- Hierarchical clustering

- What is a good clustering”?



K-Means
Example Applications



Example: K-Means for Segmentation

K=2 Original
- Goal of Segmentation "l
is to partition an image I
into regions each of
which has reasonably
homogenous visual
appearance.

Bejuog pineq Aq epiis
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Example: K-Means for Segmentation

K=2 K=3 Original
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Example: K-Means for Segmentation

Original

K=2 K=3
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Example: Vector quantization

FIGURE 14.9. Sir Ronald A. Fisher (1890 — 1962) was one of the founders
of modern day statistics, to whom we owe maxrimum-likelihood, sufficiency, and
many other fundamental concepts. The image on the left s a 1024 x 1024 grayscale
image at 8 bits per pixel. The center image 1s the result of 2 X 2 block V(), using
200 code wvectors, with a compression rate of 1.9 bits/pixel. The right image uses
only four code vectors, with a compression rate of 0.50 bits/pixel

[Figure from Hastie et al. book]



Example: Simple Linear lterative

Plx,y) =

C‘Iusterig (SLIC) superpixels

\: spatial regularization parameter

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk SLIC Superpixels Compared to
State-of-the-art Superpixel Methods, IEEE T-PAMI, 2012

9
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Bag of Words model

p All About The Company

Global Activities
Corporate Structure
TOTAL's Story
Upstream Strategy
Downstream Strategy
Chemicals Strategy
TOTAL Foundation
Homepage

all about the
company

Qur energy exploration, production, and distnibution

operations span the globe, with activities i more than 100
countries.

At TOTAL, we draw our greatest strength from our
fast-growing o1l and gas reserves. Our strategic emphasts
on natural gas provides a strong posttion i a rapidly

expanding market.

Qur expanding refining and marketing operations in Asia
and the Mediterranean Rim complement already solid
posttions in Europe, Africa, and the U5,

Our growing specialty chemicals sector adds balance and
profit to the core energy business.

aardvark
about
al

Africa
apple
anxious
gas

ol

Zaire

o O DN DN O

10
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ODbject

Bag of ‘words’

12



Interest Point Features

SIFT Normalize
descriptor patch
[Lowe’99]

Detect patches
[Mikojaczyk and Schmid '02]
[Matas et al. '02]

[Sivic et al. '03]

OINIG Josor Ag epl|s
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Patch Features

1 *
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Dictionary Formation

r

\

15

slide by Josef Sivic



Clustering (usually K-means)

16



Clustered Image Patches
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Visual synonyms and polysemy

-

A R

Visual Polysemy. Single visual word occurring on different (but locally
similar) parts on different object categories.

Visual Synonyms. Two different visual words representing a similar
part of an object (wheel of a motorbike).

uewWIBSSIZ Mmalpuy Ag aplis
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frequency

Image Representation
p

\
. ‘ -
e

FPTLUONERLS B

codewords

19



Spectral clustering



Graph-Theoretic Clustering

Goal: Given data points X, ..., X, and similarities W(X; X)),

partition the data into groups so that points in a group

are similar and points in different groups are dissimilar.

Similarity Graph: G(V,E,W) V - Vertices (Data points)

E — Edge if similarity > 0
W - Edge weights (similarities)

ee0000000
o0 o
e o °
® o
® O
O
8
o

Data Similarities Similarity graph

Partition the graph so that edges within a group have large weights and
edges across groups have small weights.

ybuis ey Aq epiis
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Graphs Representations

a b c d e

a[0O1 001

‘b 611 0 0 0 O
¢ci0 0 001

o d 0000 1

@ e {10110

Adjacency Matrix

22



A Weighted Graph and its
Representation

Affinity Matrix
1 1
1 1
3 4
0 O

o P~ W

0 O]
0 2
6 .7
1 1

02711

W, : probability that | &
belong to thesame
cluster

23



Similarity graph construction

- Similarity Graphs: Model local neighborhood relations
between data points

* E-g- epsnon-NN />Controls size of neighborhood
L flos —aj]l <

Wi = . /‘
0 otherwise
or mutual k-NN graph (W; = 1 if x; or x; is k nearest neighbor

of the other)

>

TR

' Q .
2 I —
. % - ,

| S o

-

G={V,E}

ybuis ey Aq epiis
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Similarity graph construction

- Similarity Graphs: Model local neighborhood relations
between data points

- E.g. Gaussian kernel similarity function
|2

||$,i—33j

Wij — e 207 >» Controls size of neighborhood

G={V,E}

ybuis ey Aq epiis
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Scale affects affinity

- Small o: group only nearby points
- Large o: group far-away points

l L) L) L) - L) L)
19% 2 > 4
a2 m"‘s 13p o B
. ’«,M a
R g . g
Ju- N M 1 r L) - ©
- . i d I ht ®
- ‘N ‘o, - ©
12 L") 4 n
Z ‘D..’ ....... ok " N =
B3
- ST
ot L ¥ a6f
[ B
E 5.
:: S
fos] JAa = R
" <
23 » < &
B
).2 - - 0 k) s ‘ s
* o
iR ', | o e a .
- . i *y =
“; 'h -4_’.‘":“
1 - trrbvitvrdtvrtvrthtevrevdttsvebs sty 04 1 1 1 1 1
J 1] 2l <J 10 wJ kil L UL b1 L) a4 02 0 az 04 ae (F. 1 1

distance®
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Feature grouping by “relocalisation” of eigenvectors of the

proximity matrix
British Machine Vision Conference, pp. 103-108, 1990

H. Christopher Longuet-Higgins
University of Sussex
Falmer

Guy L. Scott

Robotics Research Group
Department of Engineering Science

University of Oxford Brighton

Wi = exp(-|| z; - Zi |2 / s2)

BQ|E.IO] OlUOIUY pue UewalS [|Ig Aq apI|s

& B With an appropriate s
& A |[B |C
@ A1.00[06370.03
A e W= [ B [0.63]1.00]0.0
C|003]|0.0 1.00
The eigenvectors of W are:
E, [E; |Es
Figenvalues | 1.63 | 1.00 | 0.37
Th nts in feat A -0.71 | -0.01 [J0.71
ree points in feature space 3 T T 005 o0
C 0.0 —1]-0.03

The first 2 eigenvectors group the points

as desired...
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Example eigenvector

14

* | points

0.4&5

04

0.35

0235

0.05

eigenvector

40

28
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14

Example eigenvector

12p

* | points

Affinity matrix

0.&5

04

0.35

eigenvector

29
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Graph cut

» Set of edges whose removal makes a
graph disconnected
» Cost of a cut: sum of weights of cut edges

- A graph cut gives us a partition (clustering)

- What is a “good” graph cut and how do we find
one?

30



Minimum cut

A cut of agraph G is the set of edges S such
that removal of S from G disconnects G.

Cut: sum of the weight of the cut edges:

CUt(A,B) =y W(uV),

UEA,veB

withANB =J

31
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Minimum cut

» We can do clustering by finding the
minimum cut In a graph
- Efficient algorithms exist for doing this

Minimum cut example

32
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Minimum cut

» We can do segmentation by finding the
minimum cut In a graph
- Efficient algorithms exist for doing this

Minimum cut example

33
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10| Oluo]

al

Drawbacks of Minimum cut

Welight of cut is directly proportional to the
number of edges in the cut.

‘XX N \
Cuts with
o060 ) ® lesser weight
000 than the
/’ O O | ideal cut
ldeal Cut

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003 34
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Normalized cuts

Write graph as V, one cluster as A and the other as B

A,B A,B
NGULA.B) = cut(A,B) . cut(A,B)

assoc(A,V) assoc(B,V)

cut(A,B) is sum of weights with one end in A and one end in B
Cut(A,B) = Y W(uv),

ueA,veB

withANB = O
assoc(A,V) is sum of all edges with one end in A.
&ss0c(A,B) = Y W(uV)

UEA,veB

A and B not necessarily disjoint

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

35


http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

Normalized cut

- Let W be the adjacency matrix of the graph

- Let D be the diagonal matrix with diagonal entries
D(i, i) = 2; Wi, j)

- Then the normalizep cut cost can be written as

y (D-W)y
y' Dy

where y Is an indicator vector whose value should
be 1 In the i-th position if the i-th feature point

belongs to A and a negative constant otherwise
; J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

BUB|19AS AQ BpIIs



http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

Ylugaze] euelonsg Aq aplis

Normalized cut

* Finding the exact minimum of the normalized cut cost is
NP-complete, but if we relax y to take on arbitrary values,

then we can minimize the relaxed cost by solving the
generalized eigenvalue problem

(D — W)y = ADy
» The solution y is given by the generalized eigenvector

corresponding to the second smallest eigenvalue
» Intuitively, the i-th entry of y can be viewed as a “soft”

indication of the component membership of the i-th feature

- Can use 0 or median value of the entries as the splitting point
(threshold), or find threshold that minimizes the Ncut cost

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000 37



http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf
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Normalized cut algorithm

. Given an image ar image sequence. set up a weighted graph (G = (V, K, and set the
welght on the edege connecting two nodes being a measure of the similarity between

the two nodes.

(R

. volve 1D — Wae = ADa for cigenvectors with the smallest cigenvalues.

S’

3. Use the eigenvector with second smallest eigenvalue to bipartition the graph.

4. Decide 1t the current partition should be sub-divided, and recursively repartition the

segmented parts if necessary.

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

33


http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

K-Means vs. Spectral Clustering

 Applying k-means to Laplacian
eigenvectors allows us to find cluster with
non-convex boundaries.

Points of two clusters Points of two clusters
30 - - - - ' 30
20} 20t %%3@6@8@8
.:‘-':".r"\ O C@O
10} RO : 10F @@D -
0 O
O o or g® &8 B -
Q O
O
_10} - TS B -
o &
-20t 20} @8 & '
oo @&
_30 1 1 1 1 1 _30 1 1 1 1 1
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30

Both perform same Spectral clustering is superior

ybuis ey Aq epiis
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K-Means vs. Spectral Clustering

 Applying k-means to Laplacian
eigenvectors allows us to find cluster with
non-convex boundaries.

Points of two clusters Points of two clusters
30 ' - - ' : 30
20 - S %t . .’ . ' 0. | 20 I
* e ¢ . :t‘ > :3' s
10t " .2, “ 10} ' . 2,
Or e 0‘ ..:.o’, * .‘. [ O ' o‘
~10f  *. . . -10}
Py 4.
2
201 SN . - 20} e LY
_30 1 1 1 ] L _30 1 1 ] ] ]
o -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
g
> .
3 k-means output Spectral clustering output
wn
3 40



K-Means vs. Spectral Clustering

 Applying k-means to Laplacian
eigenvectors allows us to find cluster with
non-convex boundaries.

Similarity matrix

<
® <o
; S &
& é
o] Q
W °g ° Second eigenvector of graph Laplacian
$ & B 3.5 ' ' - ' —_— v y
<z.>°°0
o W
°®
L Y
0 %
| SO O
X % - T 22

ybuis ey Aq epiis
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Examples

squiggles, 4 clusters
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Some Issues

- Choice of number of clusters k
- Most stable clustering is usually given by the value of k that

maximizes the eigengap (difference between consecutive

eigenvalues)

Ak - M _Ak—l‘

Histogram of the sample

o N O @

0

2

didi

4 6 8 10

Eigenva|UeS
0.8f * B F *
06}
04;¢
02}

JI

2 3 4 5 6 7 8 910
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Some Issues

- Choice of number of clusters k

- Choice of similarity
- Choice of kernel

for Gaussian kernels, choice of ¢

input affinity matrix affinity matrix reordered according to solution vector

20 40 60

the partition according to the solution vector

0.04 T T T T T T T
_*3(-
FKAKASHRARH KA
I
0.02f oK * .
*
oF #* -
K
**W**H*H*****H

_0A02’— WWH &

-0.04 ! L 1 1 ! 1 1

10 20 30 40 50 60 70

Good similarity measure

nput affinity matrix affinity matrix reordered according 1o solution vector

0.04 T T T

002

D+

|
(=
o
=
T
-
»
"
-

10 20 30 40 50 B0

Poor similarity measure

0
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Some Issues

- Choice of number of clusters k

+ Choice of similarity
- Choice of kernel
for Gaussian kernels, choice of o

+ Choice of clustering method
- k-way vs. recursive 2-way

ybuis ey Aq epiis
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Hierarchical clustering

46



Hierarchical Clustering

- Bottom-Up (agglomerative): Starting with each item in
its own cluster, find the best pair to merge into a new
cluster. Repeat until all clusters are fused together.

 The number of dendrograms
with
n leafs = (2n -3)!/[(2(n -2)) (n -2)!]

Number Number of possible
of leafs Dendrongrams

2 1

3 3

4 15

) Y o ~y = \ /----'-N‘\
Tk 88 Wit <
: AT S $=
=24 N E S 105
[ 4 Y
- 4
”a {
‘ g J L B ]

= 10 34.459 425
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We begin with a distance
matrix which contains the
distances between every
pair of objects in our dataset

{ = i'a
A

) 0|2 |44
0 | 3
D( ,5) =38
- 0

|
—

D ( ;\: ‘fl—'}@
&
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Bottom-Up (agglomerative):

Start with each item in its own cluster,
find the best pair to merge into a new
cluster. Repeat until all clusters are
fused together.

«Consider all I 1 | S I 1

gpossible & @
5 \ .'_ 5 'o‘ zv. L
a &

erges... E

v 3
N
St

9J00\ N\eéa

| ﬁq :]

Choose
the best



Bottom-Up (agglomerative):

Start with each item in its own cluster,
find the best pair to merge into a new

cluster. Repeat until all clusters are

fused together.

Consider all
possible
merges. ..

¢Consider all
gpossible
Smerges. ..

9J00\ N\eg)

Choose
the best

Choose
the best

[ 1

b 5
=S
“



Bottom-Up (agglomerative):

Start with each item in its own cluster,
find the best pair to merge into a new
cluster. Repeat until all clusters are
fused together.

Consider all [ i ; 1 I Choose

possible - Y 43 s W

= e ) " the best
merges... 3 E LL B

b ) &= e

@ r—— ——
Consider all [ E $ I 1 I 1 Ohoose
possible o A Q- the best
merges... a ﬁ E @
2Consider all I 1 & I 1 Choose
Possible @@ &p ( P e the best
smerges @ & E
< - — -

'Q’I:J'
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Bottom-Up (agglomerative):
S_tart with each item In its own cluster,

find the best pair to merge into a new

cluster. Repeat until all clusters are &n &

fused together. a L E
Consider all ﬂ I Ty ﬂ

- ) = a» ( Choose S
possible "X e G3)

merges...

:But how do we compute 4 ©
distances between clusters

e jra’cher than objects?

possible o @Y
CLAW WO "'Cf
merges... P 5 E - ¥
y @ u @ & E
oConsider all [ 1  S— | I 1 I | l | —  —
jpossible @Y s o the best © B
s ; < ‘ G e
®merges. .. " E ad
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Computing distance between clusters:

Single Link

- Cluster distance = distance of two closest
members In each class

- Potentially long

° and skinny
® clusters

® O

® e ® O
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Computing distance between clusters:
Complete Link

- Cluster distance = distance of two farthest
members In each class

- Tight clusters

o ®
® 0 ® O
-

54



Computing distance between clusters:

Average Link

- Cluster distance = average distance of all
pairs

+ The most widely
used measure

o | _—_ + Robust against

&/ /9 @ noise

.\‘: :
‘/‘ ’

|
| .
I
‘l .
'l

~
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Agglomerative Clustering

Good

- Simple to implement, widespread application
+ Clusters have adaptive shapes

- Provides a hierarchy of clusters

Bad

- May have imbalanced clusters

- Still have to choose number of clusters or threshold
— silhouette coefficient

+ Need to use an “ultrametric” to get a meaningful
hierarchy

56



What is a good clustering?
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What is a good clustering?

Internal criterion: A good clustering will produce high
quality clusters in which;

- the intra-class (that is, intra-cluster) similarity is high

- the inter-class similarity is low

- The measured quality of a clustering depends on both the
obj. representation and the similarity measure used

External criteria for clustering quality

- Quality measured by its ability to discover some or all of the
hidden patterns or latent classes in gold standard data

- Assesses a clustering with respect to ground truth
- Example:
+ Purity
- Entropy of classes in clusters (or Mutual Information between
classes and clusters)

58



External Evaluation of Cluster Quality

- Simple measure: purity, the ratio between the dominant
class in the cluster and the size of cluster

- Assume documents with C gold standard classes, while
our clustering algorithms produce K clusters, w4, w,, ..., Wk

with n. members.

purity (€2, C') Z max wi N cj)

. . . .

Cluster I Cluster I1 Cluster III

purity = 1/17* (max(5, 1, 0)+max(1, 4, 1)+max(2, 0, 3))
= 1/17%(5+4+3) = 0.71

Buix d o137 Aq api|s
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External Evaluation of Cluster Quality

Let:
IC=TC, u TC, U...U TC,

CC = CCy U CC, U...U CC_
be the target and computed clusterings, respectively.

TC = CC = original set of data

Define the following:
- a: number of pairs of items that belong to the same cluster in both CCand TC

- b: number of pairs of items that belong to different clusters in both CCand TC

- ¢: number of pairs of items that belong to the same cluster in CC but different
clusters in TC

- d: number of pairs of items that belong to the same cluster in TC but different
clusters in CC

Jauren-pnelin) saydoisuyn Aq epls
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External Evaluation of Cluster Quality

a
a+ C

~__ @
a+d

P =

2xP xR
P+R

-

F-measure

a+b
a+b+c+d

Rand Index

Measure of clustering
agreement: how similar
are these two ways of
partitioning the data?

61



External Evaluation of Cluster Quality

at+b 2(ab - cd)
a+b+c+d (a+c)(c+b)+ (a+ d)(d+ b)
Rand Index Adjusted Rand Index

Extension of the Rand index that

attempts to account for items
that may have been clustered by

chance

62
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External Evaluation of Cluster Quality

Entropy(CC))= Y —p(TC; |CC,)log p(TC; |CC))

TC,ETC

Measure of purity wrt

CC
\C the target clustering

AvgEntropy(CC) = Eu Entropy(CC,)
=1

C

- Example:

Cluster 1 Cluster II Cluster III

Entropy(CC1) = (5/6)log(5/6) + (1/6)log(1/6) + (0/6)log(0/6) = -.650
Entropy(CC>) = (1/6)log(1/6) + (4/6)log(4/6) + (1/6)log(1/6) = -1.252
Entropy(CCs) = (2/5)log(2/5) + (0/5)log(0/5) + (3/5)log(3/5) = -.971

AvgEntropy(CC) = (-.650 * 6/17) + (-1.252 * 6/17) + (-.971 * 5/17)

AvgEntropy(CC) = -.956 63



Next Lecture:
Dimensionality Reduction



