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Lecture 4:

Linear Regression, 

Optimization, 
Generalization, 

Model complexity, 
Regularization

BBM406

Fundamentals of   
Machine Learning



Recall from last time… Kernel Regression 
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1-NN for Regression

Weighted K-NN for Regression 
• Given: Training datadata 𝑥 1, 𝑦1 , … , 𝑥 𝑛, 𝑦𝑛   

– Attribute vectors:  𝑥 𝑖 ∈ 𝑋                      
– Target attribute:  𝑦𝑖 ∈ ℜ 

• Parameter: 
– Similarity function: 𝐾 ∶ 𝑋 × 𝑋 →  ℜ 
– Number of nearest neighbors to consider: k 

• Prediction rule 
– New example x’ 
– K-nearest neighbors: k train examples with largest 𝐾 𝑥 𝑖, 𝑥 ′  

 
 

Weighted K-NN for Regression

D =

 
nX

i=1

|xi � yi|p
!1/p

Distance metrics

wi = exp(-d(xi, query)2 / σ2)

Kernel width



Linear Regression
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Simple 1-D regression

Circles are data points (i.e., training examples) that are given to us

The data points are uniform in x , but may be displaced in y

t(x) = f (x) + ✏

with ✏ some noise

In green is the ”true” curve that we don’t know

Goal: We want to fit a curve to these points
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Simple 1-D Regression

• Circles are data points (i.e., training examples) that are given to us 

• The data points are uniform in x, but may be displaced in y  

 

                                          t(x) = f(x) + ε  
 

with ε some noise

• In green is the “true” curve that we don’t know  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• Goal: We want to fit a curve to these points
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Simple 1-D Regression

• Key Questions: 
− How do we parametrize the model (the curve)?

− What loss (objective) function should we use to judge fit? 

− How do we optimize fit to unseen test data 

(generalization)? 

5
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Example: Boston Housing data 

•  Estimate median house price 
in a neighborhood based on 
neighborhood statistics 

•  Look at first (of 13) 
attributes: per capita crime 
rate 

•  Use this to predict house 
prices in other 
neighborhoods 

4 

Example: Boston House Prizes
• Estimate median house price in a neighborhood based on neighborhood 

statistics 


• Look at first (of 13) attributes: per capita crime rate 


• Use this to predict house prices in other neighborhoods


• Is this a good input (attribute) to predict house prices?
6https://archive.ics.uci.edu/ml/datasets/Housing
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Represent the data
• Data described as pairs D = {(x(1),t(1)), (x(2),t(2)),..., (x(N),t(N))} 


− x is the input feature (per capita crime rate)

− t is the target output (median house price)

− (i) simply indicates the training examples (we have N in this case) 


• Here t is continuous, so this is a regression problem 
• Model outputs y, an estimate of t  
 
                             y(x) = w0 + w1x 


• What type of model did we choose? 

• Divide the dataset into training and testing examples


− Use the training examples to construct hypothesis, or function 
approximator, that maps x to predicted y


− Evaluate hypothesis on test set
7
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Noise
• A simple model typically does not exactly fit the data — lack of 

fit can be considered noise 

• Sources of noise: 

− Imprecision in data attributes (input noise, e.g. noise in per-capita 
crime)


− Errors in data targets (mislabeling, e.g. noise in house prices) 

− Additional attributes not taken into account by data attributes, affect 

target values (latent variables). In the example, what else could affect 
house prices?  


− Model may be too simple to account for data targets

8
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Least-Squares Regression

Define a model

Linear: y(x) = w0 + w1x

Standard loss/cost/objective function measures the squared error between y
and the true value t

Linear model: `(w) =
NX

n=1

[t(n) � (w0 + w1x
(n))]2

For a particular hypothesis (y(x) defined by a choice of w, drawn in red),
what does the loss represent geometrically?

How do we obtain weights w = (w0,w1)?

For the linear model, what kind of a function is `(w)?
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Least-Squares Regression
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Least-Squares Regression

• Define a model  
 

                     Linear:


• Standard loss/cost/objective function measures the squared 
error between y and the true value t 
 
 


• For a particular hypothesis (y(x) defined by a choice of w, drawn 
in red), what does the loss represent geometrically? 10
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Least-Squares Regression

• Define a model  
 

                     Linear:


• Standard loss/cost/objective function measures the squared 
error between y and the true value t 
 
 


• For a particular hypothesis (y(x) defined by a choice of w, drawn 
in red), what does the loss represent geometrically? 11

y(x) = w0 + w1x
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Least-Squares Regression

Define a model

Linear: y(x) = w0 + w1x

Standard loss/cost/objective function measures the squared error between y
and the true value t
How do we obtain weights w = (w0,w1)?

For the linear model, what kind of a function is `(w)?
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Least-Squares Regression

• Define a model  
 

                     Linear:


• Standard loss/cost/objective function measures the squared error 
between y and the true value t 
 
 


• For a particular hypothesis (y(x) defined by a choice of w, drawn 
in red), what does the loss represent geometrically? 12

y(x) = w0 + w1x
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Least-Squares Regression

• Define a model  
 

                     Linear:


• Standard loss/cost/objective function measures the squared error 
between y and the true value t 
 
Linear model: 


• For a particular hypothesis (y(x) defined by a choice of w, drawn 
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Least-Squares Regression

• Define a model  
 

                     Linear:


• Standard loss/cost/objective function measures the squared error 
between y and the true value t 
 
Linear model: 


• The loss for the red hypothesis is the sum of the squared vertical 
errors (squared lengths of green vertical lines) 15

y(x) = w0 + w1x

`(w) =
NX

n=1

h
t(n) � (w0 + w1x

(n))
i2
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Least-Squares Regression

• Define a model  
 

                     Linear:


• Standard loss/cost/objective function measures the squared error 
between y and the true value t 
 
Linear model: 


• How do we obtain weights                          ? 
16

y(x) = w0 + w1x

`(w) =
NX

n=1

h
t(n) � (w0 + w1x

(n))
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Least-Squares Regression

• Define a model  
 

                     Linear:


• Standard loss/cost/objective function measures the squared error 
between y and the true value t 
 
Linear model: 


• How do we obtain weights                          ? Find w that minimizes  
loss 17

y(x) = w0 + w1x

`(w) =
NX

n=1

h
t(n) � (w0 + w1x

(n))
i2
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Least-Squares Regression

Define a model
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Optimizing the Objective

One straightforward method: gradient descent

I initialize w (e.g., randomly)

I repeatedly update w based on the gradient

w w � �
@`

@w

� is the learning rate

For a single training case, this gives the LMS update rule:

w w + 2� (t(n) � y(x (n)))| {z }
error

x (n)

Note: As error approaches zero, so does the update (w stops changing)
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Optimizing the Objective
• One straightforward method: gradient descent 


− initialize w (e.g., randomly)

− repeatedly update w based on the gradient  

• λ is the learning rate 
• For a single training case, this gives the LMS update rule: 


• Note: As error approaches zero, so does the update  
(w stops changing) 

18

slide by Sanja Fidler

w w � �
@`

@w

w w + 2�
⇣
t(n) � y(x(n))

⌘
x(n){

error
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Optimizing the Objective
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Optimizing the Objective



Effect'of'stepNsize'α'

16%

Large%α%%=>%Fast%convergence%but%larger%residual%error%
%Also%possible%oscilla$ons%

%
Small%α%%=>%Slow%convergence%but%small%residual%error%

%%%%

Effect of learning rate λ

• Large λ => Fast convergence but larger residual error  
                   Also possible oscillations


• Small λ => Slow convergence but small residual error
21
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w0

`(w)`(w)
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Optimizing Across Training Set 
• Two ways to generalize this for all examples in training set:


1. Batch updates: sum or average updates across every example n, 
then change the parameter values 


2. Stochastic/online updates: update the parameters for each 
training case in turn, according to its own gradients 

22

Optimizing Across Training Set

Two ways to generalize this for all examples in training set:

1. Batch updates: sum or average updates across every example n, then
change the parameter values

w w + 2�
NX

n=1

(t(n) � y(x (n)))x (n)

2. Stochastic/online updates: update the parameters for each training
case in turn, according to its own gradients

Algorithm 1 Stochastic gradient descent
1: Randomly shu✏e examples in the training set
2: for i = 1 to N do
3: Update:

w w + 2�(t(i) � y(x (i)))x (i) (update for a linear model)

4: end for

I Underlying assumption: sample is independent and identically
distributed (i.i.d.)

Urtasun, Zemel, Fidler (UofT) CSC 411: 02-Regression Jan 13, 2016 12 / 22
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Optimizing Across Training Set 
• Two ways to generalize this for all examples in training set:


1. Batch updates: sum or average updates across every example n, 
then change the parameter values 


2. Stochastic/online updates: update the parameters for each 
training case in turn, according to its own gradients 
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w w + 2�
⇣
t(n) � y(x(n))

⌘
x(n)

• Underlying assumption: sample is independent and identically 
distributed (i.i.d.) 




Analytical Solution 
• For some objectives we can also find the optimal solution 

analytically 

• This is the case for linear least-squares regression

• How?

24
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Vectorization
• Consider our model:


• Let


• Can write the model in vectorized form as

25

y(x) = w0 + w1x

w =


w0

w1

�
xT = [1 x]

y(x) = wTx



Vectorization
• Consider our model with N instances: 
 

• Then: 

26
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`(w) =
NX

n=1

h
wTx(n) � t(n)

i2

= (Xw � t)T (Xw � t)

t =
h
t(1), t(2), . . . , t(N)

iT

X =

2

664

1, x(1)

1, x(2)

. . .
1, x(N)

3

775

T

w =


w0

w1

�

RN⇥2

RN⇥1

R2⇥1

RN⇥1

{

R1⇥N

{



• Instead of using GD, solve for optimal w analytically 


− Notice the solution is when 


• Derivation: 
 
 
 

− Take derivative and set equal to 0, then solve for 

Analytical Solution

27

@

@w
`(w) = 0

`(w) = (Xw � t)T (Xw � t)

= wTXTXw � tTXw �wTXT t+ tT t

= wTXTXw � 2wTXT t+ tT t

@

@w

�
wTXTXw � 2wTXT t+ tT t

�
= 0

�
XTX

�
w �XT t = 0
�
XTX

�
w = XT t

w =
�
XTX

��1
XT tClosed Form Solution: 

If XTX is not invertible 
(i.e., singular), may need 
to: 
• Use pseudo-inverse instead 

of the inverse 
− In Python, 
numpy.linalg.pinv(a) 

• Remove redundant (not 
linearly independent) 
features 

• Remove extra features to 
ensure that d ≤ N 

1x1
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Multi-dimensional Inputs
• One method of extending the model is to consider other input dimensions  
 
 

• In the Boston housing example, we can look at the number of rooms 

29
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Multi-dimensional Inputs

One method of extending the model is to consider other input dimensions

y(x) = w0 + w1x1 + w2x2

In the Boston housing example, we can look at the number of rooms

Urtasun, Zemel, Fidler (UofT) CSC 411: 02-Regression Jan 13, 2016 14 / 22

y(x) = w0 + w1x1 + w2x2



Linear Regression with  
Multi-dimensional Inputs 

• Imagine now we want to predict the median house price from 
these multi-dimensional observations 


• Each house is a data point n, with observations indexed by j: 


• We can incorporate the bias w0 into w, by using x0 = 1, then 


• We can then solve for w = (w0,w1,…,wd). How?


• We can use gradient descent to solve for each coefficient, or 
compute w analytically (how does the solution change?)

30

slide by Sanja Fidler

x(n) =
⇣
x(n)
1 , . . . , x(n)

j , . . . , x(n)
d

⌘

y(x) = w0 +
dX

j=1

wjxj = wTx

w =
�
XTX

��1
XT t recall:                               



More Powerful Models?
• What if our linear model is not good? How can we create a more 

complicated model? 

31
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Fitting a Polynomial
• What if our linear model is not good? How can we create a more 

complicated model? 


• We can create a more complicated model by defining input variables 
that are combinations of components of x 


• Example: an M-th order polynomial function of one dimensional 
feature x:  
 
 
 
 
where xj is the j-th power of x


• We can use the same approach to optimize for the weights w 


• How do we do that? 
32
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y(x,w) = w0 +
MX

j=1

wjx
j



Some types of basis functions in 1-D

33

Some types of basis functions in 1-D 

Sigmoids             Gaussians            Polynomials 

Sigmoid and Gaussian basis functions can also be used in 
multilayer neural networks, but neural networks learn the 
parameters of the basis functions. This is much more powerful 
but also much harder and much messier. 15 

3.1. Linear Basis Function Models 139

or feature extraction, to the original data variables. If the original variables com-
prise the vector x, then the features can be expressed in terms of the basis functions
{φj(x)}.

By using nonlinear basis functions, we allow the function y(x,w) to be a non-
linear function of the input vector x. Functions of the form (3.2) are called linear
models, however, because this function is linear in w. It is this linearity in the pa-
rameters that will greatly simplify the analysis of this class of models. However, it
also leads to some significant limitations, as we discuss in Section 3.6.

The example of polynomial regression considered in Chapter 1 is a particular
example of this model in which there is a single input variable x, and the basis func-
tions take the form of powers of x so that φj(x) = xj . One limitation of polynomial
basis functions is that they are global functions of the input variable, so that changes
in one region of input space affect all other regions. This can be resolved by dividing
the input space up into regions and fit a different polynomial in each region, leading
to spline functions (Hastie et al., 2001).

There are many other possible choices for the basis functions, for example

φj(x) = exp
{
−(x − µj)2

2s2

}
(3.4)

where the µj govern the locations of the basis functions in input space, and the pa-
rameter s governs their spatial scale. These are usually referred to as ‘Gaussian’
basis functions, although it should be noted that they are not required to have a prob-
abilistic interpretation, and in particular the normalization coefficient is unimportant
because these basis functions will be multiplied by adaptive parameters wj .

Another possibility is the sigmoidal basis function of the form

φj(x) = σ
(x − µj

s

)
(3.5)

where σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
. (3.6)

Equivalently, we can use the ‘tanh’ function because this is related to the logistic
sigmoid by tanh(a) = 2σ(a) − 1, and so a general linear combination of logistic
sigmoid functions is equivalent to a general linear combination of ‘tanh’ functions.
These various choices of basis function are illustrated in Figure 3.1.

Yet another possible choice of basis function is the Fourier basis, which leads to
an expansion in sinusoidal functions. Each basis function represents a specific fre-
quency and has infinite spatial extent. By contrast, basis functions that are localized
to finite regions of input space necessarily comprise a spectrum of different spatial
frequencies. In many signal processing applications, it is of interest to consider ba-
sis functions that are localized in both space and frequency, leading to a class of
functions known as wavelets. These are also defined to be mutually orthogonal, to
simplify their application. Wavelets are most applicable when the input values live
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or feature extraction, to the original data variables. If the original variables com-
prise the vector x, then the features can be expressed in terms of the basis functions
{φj(x)}.

By using nonlinear basis functions, we allow the function y(x,w) to be a non-
linear function of the input vector x. Functions of the form (3.2) are called linear
models, however, because this function is linear in w. It is this linearity in the pa-
rameters that will greatly simplify the analysis of this class of models. However, it
also leads to some significant limitations, as we discuss in Section 3.6.

The example of polynomial regression considered in Chapter 1 is a particular
example of this model in which there is a single input variable x, and the basis func-
tions take the form of powers of x so that φj(x) = xj . One limitation of polynomial
basis functions is that they are global functions of the input variable, so that changes
in one region of input space affect all other regions. This can be resolved by dividing
the input space up into regions and fit a different polynomial in each region, leading
to spline functions (Hastie et al., 2001).

There are many other possible choices for the basis functions, for example

φj(x) = exp
{
−(x − µj)2

2s2

}
(3.4)

where the µj govern the locations of the basis functions in input space, and the pa-
rameter s governs their spatial scale. These are usually referred to as ‘Gaussian’
basis functions, although it should be noted that they are not required to have a prob-
abilistic interpretation, and in particular the normalization coefficient is unimportant
because these basis functions will be multiplied by adaptive parameters wj .

Another possibility is the sigmoidal basis function of the form

φj(x) = σ
(x − µj

s

)
(3.5)

where σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
. (3.6)

Equivalently, we can use the ‘tanh’ function because this is related to the logistic
sigmoid by tanh(a) = 2σ(a) − 1, and so a general linear combination of logistic
sigmoid functions is equivalent to a general linear combination of ‘tanh’ functions.
These various choices of basis function are illustrated in Figure 3.1.

Yet another possible choice of basis function is the Fourier basis, which leads to
an expansion in sinusoidal functions. Each basis function represents a specific fre-
quency and has infinite spatial extent. By contrast, basis functions that are localized
to finite regions of input space necessarily comprise a spectrum of different spatial
frequencies. In many signal processing applications, it is of interest to consider ba-
sis functions that are localized in both space and frequency, leading to a class of
functions known as wavelets. These are also defined to be mutually orthogonal, to
simplify their application. Wavelets are most applicable when the input values live
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sigmoid by tanh(a) = 2σ(a) − 1, and so a general linear combination of logistic
sigmoid functions is equivalent to a general linear combination of ‘tanh’ functions.
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Two types of linear model that are 
equivalent with respect to learning 

•  The first model has the same number of adaptive 
coefficients as the dimensionality of the data +1. 

•  The second model has the same number of adaptive 
coefficients as the number of basis functions +1. 

•  Once we have replaced the data by the outputs of the 
basis functions, fitting the second model is exactly the 
same problem as fitting the first model (unless we use 
the kernel trick) 

•  So we’ll just focus on the first model 
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Two types of linear model that are 
equivalent with respect to learning

• The first model has the same number of adaptive coefficients as the 
dimensionality of the data +1. 


• The second model has the same number of adaptive coefficients as 
the number of basis functions +1. 


• Once we have replaced the data by the outputs of the basis 
functions, fitting the second model is exactly the same problem as 
fitting the first model (unless we use the kernel trick)
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General linear regression problem
• Using our new notations for the basis function linear 

regression can be written as 
 
 
 
 
where         can be either xj for multivariate regression 
or one of the nonlinear basis we defined


• Once again we can use “least squares” to find the 
optimal solution.
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LMS for the general linear 
regression problem 

� �

y  w jI j (x)
j 0

n

¦

� �

J(w)  (yi � w jI j (x
i)

j
¦ )

i
¦ 2

Our goal is to minimize the following 
loss function: 

Moving to vector notations we get: 

We take the derivative w.r.t w 

� �

J(w)  (yi �wTI(xi))2
i
¦

� �

w
ww

(yi �wTI(xi))2
i
¦  2 (yi �wTI(xi))

i
¦ I(xi)T

Equating to 0 we get 

� �

2 (yi �wTI(x i))
i
¦ I(x i)T  0�

yi
i
¦ I(x i)T  wT I(xi)

i
¦ I(x i)T
ª�

¬�
«�

º�

¼�
»�

w – vector of dimension k+1 
I(xi) – vector of dimension k+1 
yi – a scaler 
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LMS for general linear regression problem 
We take the derivative w.r.t w 
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Then deriving w 
we get: 

� �

w  ()T))�1)Ty

LMS for the general linear 
regression problem
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LMS for the general linear 
regression problem

38

LMS for general linear regression problem 

� �

J(w)  (yi �wTI(xi))2
i
¦

Deriving w we get: 

� �

w  ()T))�1)Ty

n by k+1 matrix 

n entries vector 
k+1 entries vector 

This solution is 
also known as 
‘psuedo  inverse’ 
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1.1. Example: Polynomial Curve Fitting 7
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Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w⋆)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3 , from
Figure 1.4.

1.1. Example: Polynomial Curve Fitting 5

sin(2πx) and then adding a small level of random noise having a Gaussian distri-
bution (the Gaussian distribution is discussed in Section 1.2.4) to each such point in
order to obtain the corresponding value tn. By generating data in this way, we are
capturing a property of many real data sets, namely that they possess an underlying
regularity, which we wish to learn, but that individual observations are corrupted by
random noise. This noise might arise from intrinsically stochastic (i.e. random) pro-
cesses such as radioactive decay but more typically is due to there being sources of
variability that are themselves unobserved.

Our goal is to exploit this training set in order to make predictions of the value
t̂ of the target variable for some new value x̂ of the input variable. As we shall see
later, this involves implicitly trying to discover the underlying function sin(2πx).
This is intrinsically a difficult problem as we have to generalize from a finite data
set. Furthermore the observed data are corrupted with noise, and so for a given x̂
there is uncertainty as to the appropriate value for t̂. Probability theory, discussed
in Section 1.2, provides a framework for expressing such uncertainty in a precise
and quantitative manner, and decision theory, discussed in Section 1.5, allows us to
exploit this probabilistic representation in order to make predictions that are optimal
according to appropriate criteria.

For the moment, however, we shall proceed rather informally and consider a
simple approach based on curve fitting. In particular, we shall fit the data using a
polynomial function of the form

y(x,w) = w0 + w1x + w2x
2 + . . . + wMxM =

M∑

j=0

wjx
j (1.1)

where M is the order of the polynomial, and xj denotes x raised to the power of j.
The polynomial coefficients w0, . . . , wM are collectively denoted by the vector w.
Note that, although the polynomial function y(x,w) is a nonlinear function of x, it
is a linear function of the coefficients w. Functions, such as the polynomial, which
are linear in the unknown parameters have important properties and are called linear
models and will be discussed extensively in Chapters 3 and 4.

The values of the coefficients will be determined by fitting the polynomial to the
training data. This can be done by minimizing an error function that measures the
misfit between the function y(x,w), for any given value of w, and the training set
data points. One simple choice of error function, which is widely used, is given by
the sum of the squares of the errors between the predictions y(xn,w) for each data
point xn and the corresponding target values tn, so that we minimize

E(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 (1.2)

where the factor of 1/2is included for later convenience. We shall discuss the mo-
tivation for this choice of error function later in this chapter. For the moment we
simply note that it is a nonnegative quantity that would be zero if, and only if, the
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(RMS) error defined by
ERMS =

√
2E(w⋆)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3 , from
Figure 1.4.

The division by N allows us to 
compare different sizes of data 
sets on an equal footing, and  
the square root ensures that 
ERMS is measured on the same 
scale (and in the same units) as 
the target variable t
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Figure 1.5 Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-
pendent test set for various values
of M .
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For M = 9 , the training set error goes to zero, as we might expect because
this polynomial contains 10 degrees of freedom corresponding to the 10 coefficients
w0, . . . , w9, and so can be tuned exactly to the 10 data points in the training set.
However, the test set error has become very large and, as we saw in Figure 1.4, the
corresponding function y(x,w⋆) exhibits wild oscillations.

This may seem paradoxical because a polynomial of given order contains all
lower order polynomials as special cases. The M = 9 polynomial is therefore capa-
ble of generating results at least as good as the M = 3 polynomial. Furthermore, we
might suppose that the best predictor of new data would be the function sin(2πx)
from which the data was generated (and we shall see later that this is indeed the
case). We know that a power series expansion of the function sin(2πx) contains
terms of all orders, so we might expect that results should improve monotonically as
we increase M .

We can gain some insight into the problem by examining the values of the co-
efficients w⋆ obtained from polynomials of various order, as shown in Table 1.1.
We see that, as M increases, the magnitude of the coefficients typically gets larger.
In particular for the M = 9 polynomial, the coefficients have become finely tuned
to the data by developing large positive and negative values so that the correspond-

Table 1.1 Table of the coefficients w⋆ for
polynomials of various order.
Observe how the typical mag-
nitude of the coefficients in-
creases dramatically as the or-
der of the polynomial increases.

M = 0 M = 1 M = 6 M = 9
w⋆

0 0.19 0.82 0.31 0.35
w⋆

1 -1.27 7.99 232.37
w⋆

2 -25.43 -5321.83
w⋆

3 17.37 48568.31
w⋆

4 -231639.30
w⋆

5 640042.26
w⋆

6 -1061800.52
w⋆

7 1042400.18
w⋆

8 -557682.99
w⋆

9 125201.43
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Generalization
• Generalization = model’s ability to predict the held out data 

• What is happening?

• Our model with M = 9 overfits the data (it models also noise) 
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Figure 1.5 Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-
pendent test set for various values
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ble of generating results at least as good as the M = 3 polynomial. Furthermore, we
might suppose that the best predictor of new data would be the function sin(2πx)
from which the data was generated (and we shall see later that this is indeed the
case). We know that a power series expansion of the function sin(2πx) contains
terms of all orders, so we might expect that results should improve monotonically as
we increase M .

We can gain some insight into the problem by examining the values of the co-
efficients w⋆ obtained from polynomials of various order, as shown in Table 1.1.
We see that, as M increases, the magnitude of the coefficients typically gets larger.
In particular for the M = 9 polynomial, the coefficients have become finely tuned
to the data by developing large positive and negative values so that the correspond-
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Generalization
• Generalization = model’s ability to predict the held out data 

• What is happening?

• Our model with M = 9 overfits the data (it models also noise) 

• Not a problem if we have lots of training examples 
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Figure 1.5 Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-
pendent test set for various values
of M .

M

E
R

M
S

0 3 6 9
0

0.5

1
Training
Test

For M = 9 , the training set error goes to zero, as we might expect because
this polynomial contains 10 degrees of freedom corresponding to the 10 coefficients
w0, . . . , w9, and so can be tuned exactly to the 10 data points in the training set.
However, the test set error has become very large and, as we saw in Figure 1.4, the
corresponding function y(x,w⋆) exhibits wild oscillations.

This may seem paradoxical because a polynomial of given order contains all
lower order polynomials as special cases. The M = 9 polynomial is therefore capa-
ble of generating results at least as good as the M = 3 polynomial. Furthermore, we
might suppose that the best predictor of new data would be the function sin(2πx)
from which the data was generated (and we shall see later that this is indeed the
case). We know that a power series expansion of the function sin(2πx) contains
terms of all orders, so we might expect that results should improve monotonically as
we increase M .

We can gain some insight into the problem by examining the values of the co-
efficients w⋆ obtained from polynomials of various order, as shown in Table 1.1.
We see that, as M increases, the magnitude of the coefficients typically gets larger.
In particular for the M = 9 polynomial, the coefficients have become finely tuned
to the data by developing large positive and negative values so that the correspond-

Table 1.1 Table of the coefficients w⋆ for
polynomials of various order.
Observe how the typical mag-
nitude of the coefficients in-
creases dramatically as the or-
der of the polynomial increases.

M = 0 M = 1 M = 6 M = 9
w⋆

0 0.19 0.82 0.31 0.35
w⋆

1 -1.27 7.99 232.37
w⋆

2 -25.43 -5321.83
w⋆

3 17.37 48568.31
w⋆

4 -231639.30
w⋆

5 640042.26
w⋆

6 -1061800.52
w⋆

7 1042400.18
w⋆

8 -557682.99
w⋆

9 125201.43

1-D regression illustrates key concepts
• Data fits – is linear model best (model selection)?


− Simplest models do not capture all the important 
variations (signal) in the data: underfit 


− More complex model may overfit the training data  
(fit not only the signal but also the noise in the data), 
especially if not enough data to constrain model 


• One method of assessing fit: 

− test generalization = model’s ability to predict  

the held out data 

• Optimization is essential: stochastic and batch 

iterative approaches; analytic when available
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Generalization
• Generalization = model’s ability to predict the held out data 

• What is happening?

• Our model with M = 9 overfits the data (it models also noise) 

• Let’s look at the estimated weights for various M in the case 

of fewer examples 

• The weights are becoming huge to compensate for the noise 

• One way of dealing with this is to encourage the weights to be 

small (this way no input dimension will have too much 
influence on prediction). This is called regularization.
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Regularized Least Squares
• A technique to control the overfitting phenomenon


• Add a penalty term to the error function in order to 
discourage the coefficients from reaching large 
values
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Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter λ corresponding to ln λ = −18 and ln λ = 0. The
case of no regularizer, i.e., λ = 0, corresponding to ln λ = −∞, is shown at the bottom right of Figure 1.4.

may wish to use relatively complex and flexible models. One technique that is often
used to control the over-fitting phenomenon in such cases is that of regularization,
which involves adding a penalty term to the error function (1.2) in order to discourage
the coefficients from reaching large values. The simplest such penalty term takes the
form of a sum of squares of all of the coefficients, leading to a modified error function
of the form

Ẽ(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 +
λ

2
∥w∥2 (1.4)

where ∥w∥2 ≡ wTw = w2
0 + w2

1 + . . . + w2
M , and the coefficient λ governs the rel-

ative importance of the regularization term compared with the sum-of-squares error
term. Note that often the coefficient w0 is omitted from the regularizer because its
inclusion causes the results to depend on the choice of origin for the target variable
(Hastie et al., 2001), or it may be included but with its own regularization coefficient
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function
in (1.4) can be minimized exactly in closed form. Techniques such as this are knownExercise 1.2
in the statistics literature as shrinkage methods because they reduce the value of the
coefficients. The particular case of a quadratic regularizer is called ridge regres-
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is
known as weight decay.

Figure 1.7 shows the results of fitting the polynomial of order M = 9to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of lnλ = −18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2πx). If,
however, we use too large a value for λ then we again obtain a poor fit, as shown in
Figure 1.7 for lnλ = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing
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case of no regularizer, i.e., λ = 0, corresponding to ln λ = −∞, is shown at the bottom right of Figure 1.4.

may wish to use relatively complex and flexible models. One technique that is often
used to control the over-fitting phenomenon in such cases is that of regularization,
which involves adding a penalty term to the error function (1.2) in order to discourage
the coefficients from reaching large values. The simplest such penalty term takes the
form of a sum of squares of all of the coefficients, leading to a modified error function
of the form

Ẽ(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 +
λ

2
∥w∥2 (1.4)

where ∥w∥2 ≡ wTw = w2
0 + w2

1 + . . . + w2
M , and the coefficient λ governs the rel-

ative importance of the regularization term compared with the sum-of-squares error
term. Note that often the coefficient w0 is omitted from the regularizer because its
inclusion causes the results to depend on the choice of origin for the target variable
(Hastie et al., 2001), or it may be included but with its own regularization coefficient
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function
in (1.4) can be minimized exactly in closed form. Techniques such as this are knownExercise 1.2
in the statistics literature as shrinkage methods because they reduce the value of the
coefficients. The particular case of a quadratic regularizer is called ridge regres-
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is
known as weight decay.

Figure 1.7 shows the results of fitting the polynomial of order M = 9to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of lnλ = −18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2πx). If,
however, we use too large a value for λ then we again obtain a poor fit, as shown in
Figure 1.7 for lnλ = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing
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(Hastie et al., 2001), or it may be included but with its own regularization coefficient
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function
in (1.4) can be minimized exactly in closed form. Techniques such as this are knownExercise 1.2
in the statistics literature as shrinkage methods because they reduce the value of the
coefficients. The particular case of a quadratic regularizer is called ridge regres-
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is
known as weight decay.

Figure 1.7 shows the results of fitting the polynomial of order M = 9to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of lnλ = −18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2πx). If,
however, we use too large a value for λ then we again obtain a poor fit, as shown in
Figure 1.7 for lnλ = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing
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1.1. Example: Polynomial Curve Fitting 11

Table 1.2 Table of the coefficients w⋆ for M =
9 polynomials with various values for
the regularization parameter λ. Note
that ln λ = −∞ corresponds to a
model with no regularization, i.e., to
the graph at the bottom right in Fig-
ure 1.4. We see that, as the value of
λ increases, the typical magnitude of
the coefficients gets smaller.

ln λ = −∞ lnλ = −18 lnλ = 0
w⋆

0 0.35 0.35 0.13
w⋆

1 232.37 4.74 -0.05
w⋆

2 -5321.83 -0.77 -0.06
w⋆

3 48568.31 -31.97 -0.05
w⋆

4 -231639.30 -3.89 -0.03
w⋆

5 640042.26 55.28 -0.02
w⋆

6 -1061800.52 41.32 -0.01
w⋆

7 1042400.18 -45.95 -0.00
w⋆

8 -557682.99 -91.53 0.00
w⋆

9 125201.43 72.68 0.01

the magnitude of the coefficients.
The impact of the regularization term on the generalization error can be seen by

plotting the value of the RMS error (1.3) for both training and test sets against lnλ,
as shown in Figure 1.8. We see that in effect λ now controls the effective complexity
of the model and hence determines the degree of over-fitting.

The issue of model complexity is an important one and will be discussed at
length in Section 1.3. Here we simply note that, if we were trying to solve a practical
application using this approach of minimizing an error function, we would have to
find a way to determine a suitable value for the model complexity. The results above
suggest a simple way of achieving this, namely by taking the available data and
partitioning it into a training set, used to determine the coefficients w, and a separate
validation set, also called a hold-out set, used to optimize the model complexity
(either M or λ). In many cases, however, this will prove to be too wasteful of
valuable training data, and we have to seek more sophisticated approaches.Section 1.3

So far our discussion of polynomial curve fitting has appealed largely to in-
tuition. We now seek a more principled approach to solving problems in pattern
recognition by turning to a discussion of probability theory. As well as providing the
foundation for nearly all of the subsequent developments in this book, it will also

Figure 1.8 Graph of the root-mean-square er-
ror (1.3) versus ln λ for the M = 9
polynomial.
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The corresponding coefficients from the fitted polynomials, showing 
that regularization has the desired effect of reducing the magnitude 
of the coefficients.
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q = 0.5 q = 1 q = 2 q = 4

Figure 3.3 Contours of the regularization term in (3.29) for various values of the parameter q.

zero. It has the advantage that the error function remains a quadratic function of
w , and so its exact minimizer can be found in closed form. Specifically, setting the
gradient of (3.27) with respect to w to zero, and solving for w as before, we obtain

w =
(
λI + ΦTΦ

)−1
ΦTt. (3.28)

This represents a simple extension of the least-squares solution (3.15).
A more general regularizer is sometimes used, for which the regularized error

takes the form
1
2

N∑

n=1

{tn − w Tφ(xn)}2 +
λ

2

M∑

j=1

|wj |q (3.29)

where q = 2corresponds to the quadratic regularizer (3.27). Figure 3.3 shows con-
tours of the regularization function for different values of q.

The case of q = 1is know as the lasso in the statistics literature (Tibshirani,
1996). It has the property that if λ is sufficiently large, some of the coefficients
wj are driven to zero, leading to a sparse model in which the corresponding basis
functions play no role. To see this, we first note that minimizing (3.29) is equivalent
to minimizing the unregularized sum-of-squares error (3.12) subject to the constraintExercise 3.5

M∑

j=1

|wj |q ! η (3.30)

for an appropriate value of the parameter η, where the two approaches can be related
using Lagrange multipliers. The origin of the sparsity can be seen from Figure 3.4,Appendix E
which shows that the minimum of the error function, subject to the constraint (3.30).
As λ is increased, so an increasing number of parameters are driven to zero.

Regularization allows complex models to be trained on data sets of limited size
without severe over-fitting, essentially by limiting the effective model complexity.
However, the problem of determining the optimal model complexity is then shifted
from one of finding the appropriate number of basis functions to one of determining
a suitable value of the regularization coefficient λ. We shall return to the issue of
model complexity later in this chapter.
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Figure 1.5 Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-
pendent test set for various values
of M .

M

E
R

M
S

0 3 6 9
0

0.5

1
Training
Test

For M = 9 , the training set error goes to zero, as we might expect because
this polynomial contains 10 degrees of freedom corresponding to the 10 coefficients
w0, . . . , w9, and so can be tuned exactly to the 10 data points in the training set.
However, the test set error has become very large and, as we saw in Figure 1.4, the
corresponding function y(x,w⋆) exhibits wild oscillations.

This may seem paradoxical because a polynomial of given order contains all
lower order polynomials as special cases. The M = 9 polynomial is therefore capa-
ble of generating results at least as good as the M = 3 polynomial. Furthermore, we
might suppose that the best predictor of new data would be the function sin(2πx)
from which the data was generated (and we shall see later that this is indeed the
case). We know that a power series expansion of the function sin(2πx) contains
terms of all orders, so we might expect that results should improve monotonically as
we increase M .

We can gain some insight into the problem by examining the values of the co-
efficients w⋆ obtained from polynomials of various order, as shown in Table 1.1.
We see that, as M increases, the magnitude of the coefficients typically gets larger.
In particular for the M = 9 polynomial, the coefficients have become finely tuned
to the data by developing large positive and negative values so that the correspond-

Table 1.1 Table of the coefficients w⋆ for
polynomials of various order.
Observe how the typical mag-
nitude of the coefficients in-
creases dramatically as the or-
der of the polynomial increases.

M = 0 M = 1 M = 6 M = 9
w⋆

0 0.19 0.82 0.31 0.35
w⋆

1 -1.27 7.99 232.37
w⋆

2 -25.43 -5321.83
w⋆

3 17.37 48568.31
w⋆

4 -231639.30
w⋆

5 640042.26
w⋆

6 -1061800.52
w⋆

7 1042400.18
w⋆

8 -557682.99
w⋆

9 125201.43

1-D regression illustrates key concepts
• Data fits – is linear model best (model selection)?


− Simplest models do not capture all the important 
variations (signal) in the data: underfit 


− More complex model may overfit the training data  
(fit not only the signal but also the noise in the data), 
especially if not enough data to constrain model 


• One method of assessing fit: 

− test generalization = model’s ability to predict  

the held out data 

• Optimization is essential: stochastic and batch 

iterative approaches; analytic when available
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