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Last time... Regularization, Cross-Validation

error
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.
fold 1 fold 2 fold 3 fold 4 fold 5 test data
Validation error
o the data : :
Training error "t v o e, . G
— R el Al
I > - . VR .‘. . ! E [d‘": g
50 number of base functions % K i ] BT
L . o ‘. s ' -
L Do St | g !
¢ ;’. :60 L I '.
A A A

> >
Underfitting Just Right Overfitting
« large training « small training « small training
error error error
large +  small + large
validation validation validation
error error error

Figure credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Today

+ Learning Theory

+ Probability Review



Learning Theory:
Why ML Works
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Theory

- Entire subfield devoted to the
mathematical analysis of machine
learning algorithms

 Has led to several practical methods:

- PAC (probably approximately correct) learning
— boosting

- VC (Vapnik—Chervonenkis) theory
— support vector machines

Annual conference: Conference on Learning Theory (CC)L'D5
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The Role of Theory

» Theory can serve two roles:

- |t can justify and help understand why

common practice works. N aftel
neo

- |t can also serve to suggest new algorithms
and approaches that turn out to work well in
practice. be‘o\'e

tneo™

Often, it turns out to be a mix!
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The Role of Theory

+ Practitioners discover something that works

surprisingly well.

- Theorists figure out why it works and prove

something about it.

- In the process, they make it better or find new
algorithms.

* Theory can also help you understand what’s

possible and what’s not possible.



Learning and Inference

The inductive inference process:

1. Observe a phenomenon

2. Construct a model of the phenomenon
3. Make predictions

- This Is more or less the definition of natural
sclences !

+ The goal of Machine Learning is to automate
this process

8INIO AQ eplIs

og J

+ The goal of Learning Theory is to formalize it.

bsn
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Pattern recognition

- We consider here the supervised learning
framework for pattern recognition:

Data consists of pairs (instance, label)
Label is +1 or -1
Algorithm constructs a function (instance — label)

Goal: make few mistakes on future unseen
Instances



Approximation/Interpolation

- It Is always possible to build a function that fits
exactly the data.

- But is it reasonable?

10
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Occam’s Razor [
- |dea: look for regularities in the observed ®
phenomenon

These can be generalized from the ~ 7
William of Occam
observed past to the future (c. 1288 — c. 1348)

= choose the simplest consistent model

- How to measure simplicity ?
- Physics: number of constants
- Description length
- Number of parameters

11



No Free Lunch

- No Free Lunch

- If there is no assumption on how the past is related to
the future, prediction is impossible

- If there is no restriction on the possible phenomena,
generalization is impossible

- We need to make assumptions
- Simplicity is not absolute
- Data will never replace knowledge

- Generalization = data + knowledge

12
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Probably Approximately Correct
(PAC) Learning

- A formalism based on the realization that

the best we can hope of an algorithm is that

- |t does a good job most of the time (probably
approximately correct)

13



Probably Approximately Correct
(PAC) Learning

- Consider a hypothetical learning algorithm
- We have 10 different binary classification data sets.
- For each one, it comes back with functions fy, o, . . ., f10.

+ For some reason, whenever you run f4 on a test point, it
crashes your computer. For the other learned functions,
their performance on test data is always at most 5% error.

+ If this situtation is guaranteed to happen, then this
hypothetical learning algorithm is a PAC learning algorithm.

<+ It satisfies probably because it only failed in one out of
ten cases, and it’s approximate because it achieved low,
but non-zero, error on the remainder of the cases.

||| dwneq |[eH wo.} paidepe
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PAC Learning

Definitions 1. An algorithm A is an (€,6)-PAC learning algorithm if, for
all distributions D: given samples from D, the probability that it returns a
“bad function” is at most o; where a “bad” function is one with test error
rate more than € on D.

15



PAC Learning

* Two notions of efficiency

- Computational complexity: Prefer an algorithm that runs quickly
to one that takes forever

- Sample complexity: The number of examples required for your
algorithm to achieve its goals

Definition: An algorithm A is an efficient (¢, )-PAC learning al-
gorithm if it is an (€, §)-PAC learning algorithm whose runtime is
polynomial in % and %.

In other words, to let your algorithm to achieve
4% error rather than 5%, the runtime required
to do so should not go up by an exponential factor!

[|| dwneq [eH woJ} paidepe
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Example: PAC Learning of Conjunctions

- Data points are binary vectors, for instance x =<0, 1, 1,0, 1)
- Some Boolean conjunction defines the true labeling of this data

(€.9. X1 A X2 A Xs)

- There is some distribution Dx over binary data points (vectors)

X ={X1, X2, ..., XD).

- There is a fixed concept conjunction c that we are trying to learn.

* There is no noise, so for any example X, its true label is simply
y = ¢(X)

- Example: vy lx x x3 o
- Clearly, the true formula cannot 1l o o 1 1
include the terms X1, Xz, =X3, X4

+1 O 1 1 1

17
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Example: PAC Learning

of
Y

Conjunctions

X1 X2 X3 X4

+1
+1
-1

FOX) XL A XLAX2 A X2 AX3 A X3 A X4 A =X4

fAX) = =x1 A =X A X3 A Xa

f2(x):—.xl/\X3/\X4

f3(X):—|X1/\X3/\X4

- After processing an example, it is guaranteed to classify that
example correctly (provided that there is no noise)

« Computationally very efficient

- Given a data set of N examples in D dimensions, it takes O (ND)
time to process the data. This is linear in the size of the data set.

18



Algorithm 30 BINARYCONJUNCTIONTRAIN(D)

Exam p | e: PAC Learn i N g e X A—X AXa A —X2 A AXp A=%D // initialize function

= for all positive examples (x,+1) in D do
ford=1...Ddo

of Conjunctions

f < f without term “x;”

y | X1 X2 X3 X4 j eljfe<— f without term “—x,”

10 o0 1 1 e

+1 |0 1 1 1 et [ “Throw Out Bad Terms”
-1 |1 1 o0 1

- Is this an efficient (g, 0)-PAC learning algorithm?

- What about sample complexity?

- How many examples N do you need to see in order to
guarantee that it achieves an error rate of at most ¢ (in all but o0-
many cases)?

- Perhaps N has to be gigantic (like ZZD/G) to (probably) guarantee
a small error.

||| dwneq |[eH wo.} paidepe
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Vapnik-Chervonenkis
(VC) Dimension

- A classic measure of complexity of infinite hypothesis classes

based on this intuition.

- The VC dimension is a very classification-oriented notion of

complexity
- The idea is to look at a finite set of unlabeled examples

- no matter how these points were labeled, would we be able to
find a hypothesis that correctly classifies them

- The idea Is that as you add more points, being able to

represent an arbitrary labeling becomes harder and harder.

Definitions 2. For data drawn from some space X, the VC dimension of
a hypothesis space H over X is the maximal K such that: there exists a set
X C X of size | X| = K, such that for all binary labelings of X, there exists
a function f € ‘H that matches this labeling.

20



How many points can a linear

boundary classify exactly? (1-D)
+ 2 points:

Yes!

..... .+.-

I T .=ﬂ=
+ 3 points:

No!

el

el
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etc (8 total)
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How many points can a linear
boundary classify exactly? (2-D)

- 3 points: \ \Q O :4 ) ‘-

Yes!
ST A

- 4 points: o= T
No! 4+ + =

etc.

Bejuog pineq Ag epls



Basic Probabillity
Review
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Probability

- A IS hon-deterministic event
— Can think of A as a boolean-valued
variable

- Examples
— A = your next patient has cancer
— A = Rafael Nadal wins French Open 2019

24



Interpreting Probabillities

wZ? If | flip this coin, the probabillity that it will come up
. heads is 0.5

*  Frequentist Interpretation: If we flip this coin many times, it will
come up heads about half the time. Probabilities are the expected
frequencies of events over repeated trials.

- Bayesian Interpretation: | believe that my next toss of this coin
Is equally likely to come up heads or tails. Probabilities quantify
subjective beliefs about single events.

* Viewpoints play complementary roles in machine learning:

- Bayesian view used to build models based on domain
Knowledge, and automatically derive learning algorithms

- Frequentist view used to analyze worst case behavior of
earning algorithms, in limit of large datasets

From either view, basic mathematics is the same!

yuayppns 313 Ag epls
o
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Axioms of Probability

+ 0<=P(A) <=1

+ P(empty-set) =0

- P(everything) = 1

- P(A or B) = P(A) + P(B) - P(A and B)

27
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Interpreting the Axioms

+ 0<=P(A) <=1

+ P(empty-set) =0
- P(everything) = 1
- P(A or B) = P(A) + P(B) — P(A and B)

Event space of

all possible
worlds

its area is 1—

Worlds in which

A IS true

Worlds in which A is False

P(A) = Area of
reddish oval

28
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Interpreting the Axioms

+ 0<=P(A) <=1

+ P(empty-set) =0

- P(everything) = 1

- P(A or B) = P(A) + P(B) - P(A and B)

The area of A cant get
any smaller than O

And a zero area would
mean no world could
ever have A true

29



Interpreting the Axioms

- 0<=P(A) <=1

- P(empty-set) =0

+ P(everything) = 1

- P(A or B) = P(A) + P(B) - P(A and B)

The area of A cant get
any bigger than 1

And an area of 1 would
mean all worlds will have
A true

eaeg Anuyqg Aq eplis

30
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Interpreting the Axioms

* 0<=P(A) <=1

- P(empty-set) =0

- P(everything) = 1

- P(A or B) = P(A) + P(B) - P(A and B)

A

P(AorB

Simple addition and subtraction

31
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Discrete Random Variables

X — discrete random variable

sample space of possible outcomes,
X > which may be finite or countably infinite

r € X —— outcome of sample of discrete random variable

32
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Discrete Random Variables

X — discrete random variable

sample space of possible outcomes,
X > which may be finite or countably infinite

r € X —— outcome of sample of discrete random variable
p(X — g;) ——— probabillity distribution (probability mass function)

p(x) — shorthand used when no ambiguity

0<plx)<lforallxze X Zp(w)zl

reX

| | | BFEEe

uniform distribution degenerate distribution




Joint Distribution
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Marginalization

+ Marginalization
- Events: P(A) = P(A and B) + P(A and not B)

- F

eileg Anuyq Aq epiis

andom variables P(X = x) = E P(X=xY =Y)
y

35



Marginal Distributions
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Conditional Probabilities

- P(Y=y | X=x)
- What do you believe about Y=y, if | tell you X=x?
- P(Rafael Nadal wins French Open 2019)?

. What if | tell you:

- He has won the French Open 11/13 he has played there
- Rafael Nadal is ranked 1

37
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Conditional Probabilities

- P(A | B) = In worlds that where B is true,

fraction where A Is true

- Example

- H: *"Have a headache”
- F: *Coming down with Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

F
[ . } ¥ Headaches are rare and flu
IS rarer, but if you re coming
down with flu there s a 50-
50 chance you Il have a

headache.

38
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Independent Random Variables

P(x.y)

X 1Y

p(x,y) = p(z)p(y)
forallr e X,y e )

Equivalent conditions on conditional probabilities:

plz |Y =y) =p(z) and p(y) >0 for all y € Y
p(y| X =x) =p(y) and p(x) > 0 for all x € X

40
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Bayes Rule (Bayes Theorem)

p(z,y) = p(x)py | ©) = py)p(z | y)

= Py ple | y)py) Q.
PO =506~ S el 1)
x p(z | y)p(y)

- A basic identity from the definition of conditional probability
- Used in ways that have no thing to do with Bayesian statistics!
- Typical application to learning and data analysis:

Y —— unknown parameters we would like to infer
X — 1 —— observed data available for learning
p(y) — prior distribution (domain knowledge)

p(x ‘ y) — likelihood function (measurement model)

p(y | ,CU) — posterior distribution (learned information) .
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Binary Random Variables

- Bernoulli Distribution: Single toss of a (possibly biased)
coin
X =40,1}
0<6<1
Ber(z | 0) = 6°®1) (1 — §)°®0)

- Binomial Distribution: Toss a single (possibly biased)
coin n times, and report the number k of times it comes

up K=4{0,1,2,...,n}
0<0<1

EMmez(Z>Wﬂ—@“k (Z)ZWj%w
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Bean Machine (Sir Francis Galton)
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http://en.wikipedia.org/wiki/
Bean machine

-
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Categorical Random Variables

- Multinoulli Distribution: Single roll of a (possibly biased) die
binary vector
X = {O 1}K Zﬂfk =1 encoding
9_(91,92,... ), 0 > 0, Zek_1
Cat(z | 0) = H oL

k=1
- Multinomial Distribution: Roll a single (possibly biased) die
n times, and report the number nk of each possible

outcome
K

Mu(x|n,9):<n1.?n[{ >H92”* nk:ink

k:]_ ?’:1 45
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Aligned DNA Sequences

g g
¢ g &

L8
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Multinomial Model of DNA

ITR CA£$C

1 23456789101112131415
Sequence Position



Next Lecture:

Maximum Likelihood Estimation
(MLE)



