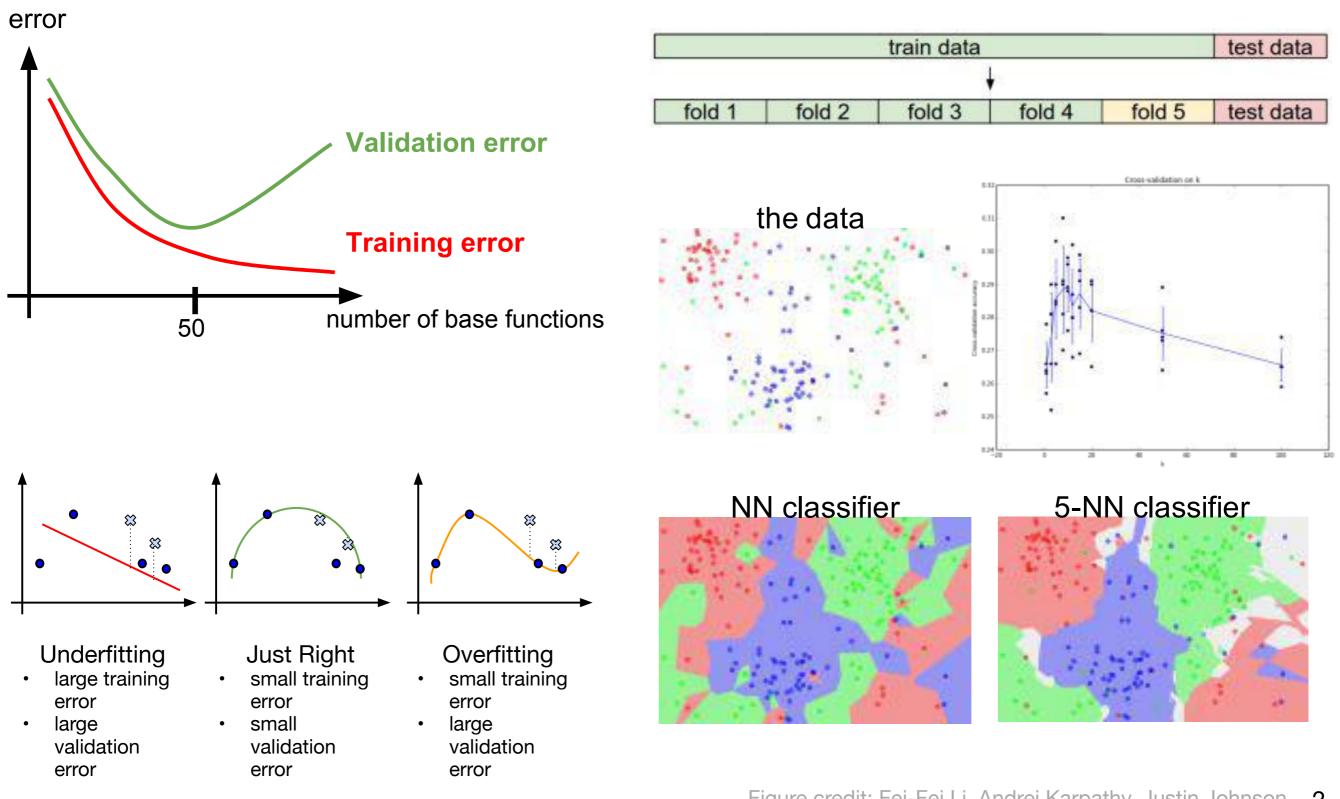
BBN406 Fundamentals of Machine Learning

Learning theory Probability Review

Aykut Erdem // Hacettepe University // Fall 2019

Last time... Regularization, Cross-Validation



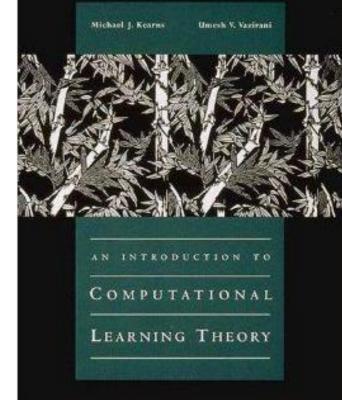
Today

- Learning Theory
- Probability Review

Learning Theory: Why ML Works

Computational Learning Theory

 Entire subfield devoted to the mathematical analysis of machine learning algorithms



- Has led to several practical methods:
 - PAC (probably approximately correct) learning
 → boosting
 - VC (Vapnik–Chervonenkis) theory
 - → support vector machines

Annual conference: Conference on Learning Theory (COLT)

The Role of Theory

- Theory can serve two roles:
 - It can justify and help understand why common practice works.
 theory after theory
 - It can also serve to suggest new algorithms and approaches that turn out to work well in practice.

Often, it turns out to be a mix!

The Role of Theory

- Practitioners discover something that works surprisingly well.
- Theorists figure out why it works and prove something about it.
 - In the process, they make it better or find new algorithms.
- Theory can also help you understand what's possible and what's not possible.

Learning and Inference

The inductive inference process:

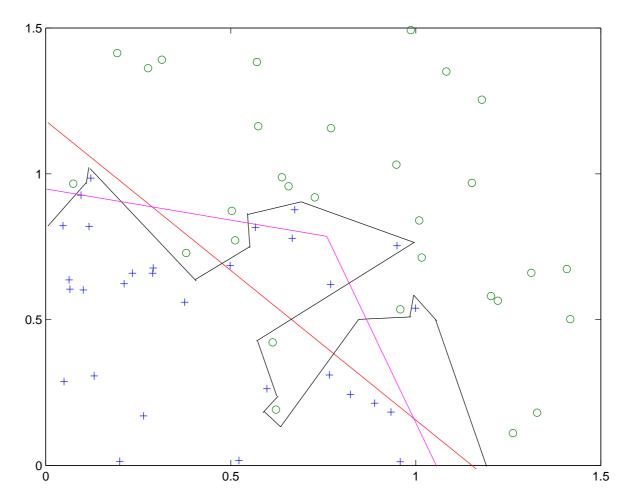
- 1. Observe a phenomenon
- 2. Construct a model of the phenomenon
- 3. Make predictions
- This is more or less the definition of natural sciences !
- The goal of Machine Learning is to automate this process
- The goal of Learning Theory is to formalize it.

Pattern recognition

- We consider here the supervised learning framework for pattern recognition:
 - Data consists of pairs (instance, label)
 - Label is +1 or -1
 - Algorithm constructs a function (instance \rightarrow label)
 - Goal: make few mistakes on future unseen instances

Approximation/Interpolation

 It is always possible to build a function that fits exactly the data.



• But is it reasonable?

Occam's Razor

- Idea: look for regularities in the observed phenomenon
 - These can be **generalized** from the observed past to the future
 - ⇒ choose the simplest consistent model
- How to measure simplicity ?
 - Physics: number of constants
 - Description length
 - Number of parameters

William of Occam (c. 1288 – c. 1348)

No Free Lunch

• No Free Lunch

- if there is no assumption on how the **past** is related to the future, prediction is impossible
- if there is no restriction on the possible phenomena, generalization is impossible
- We need to make assumptions
- Simplicity is not absolute
- Data will never replace knowledge
- Generalization = data + knowledge

Probably Approximately Correct (PAC) Learning

- A formalism based on the realization that the best we can hope of an algorithm is that
 - It does a good job most of the time (probably approximately correct)

Probably Approximately Correct (PAC) Learning

- Consider a hypothetical learning algorithm
 - We have 10 different binary classification data sets.
 - For each one, it comes back with functions f_1, f_2, \ldots, f_{10} .
 - For some reason, whenever you run *f*₄ on a test point, it crashes your computer. For the other learned functions, their performance on test data is always at most 5% error.
 - If this situtation is guaranteed to happen, then this hypothetical learning algorithm is a PAC learning algorithm.
 - It satisfies probably because it only failed in one out of ten cases, and it's approximate because it achieved low, but non-zero, error on the remainder of the cases.

PAC Learning

Definitions 1. An algorithm A is an (ϵ, δ) -PAC learning algorithm if, for all distributions D: given samples from D, the probability that it returns a "bad function" is at most δ ; where a "bad" function is one with test error rate more than ϵ on D.

PAC Learning

- Two notions of efficiency
 - Computational complexity: Prefer an algorithm that runs quickly to one that takes forever
 - Sample complexity: The number of examples required for your algorithm to achieve its goals

Definition: An algorithm \mathcal{A} is an efficient (ϵ, δ) -PAC learning algorithm if it is an (ϵ, δ) -PAC learning algorithm whose runtime is polynomial in $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$.

In other words, to let your algorithm to achieve 4% error rather than 5%, the runtime required to do so should not go up by an exponential factor!

Example: PAC Learning of Conjunctions

- Data points are binary vectors, for instance $\mathbf{x} = \langle 0, 1, 1, 0, 1 \rangle$
- Some Boolean conjunction defines the true labeling of this data (e.g. $x_1 \wedge x_2 \wedge x_5$)
- There is some distribution \mathcal{D}_X over binary data points (vectors) $\mathbf{x} = \langle x_1, x_2, \dots, x_D \rangle$.
- There is a fixed concept conjunction c that we are trying to learn.
- There is no noise, so for any example *x*, its true label is simply $y = c(\mathbf{x})$

• Example:

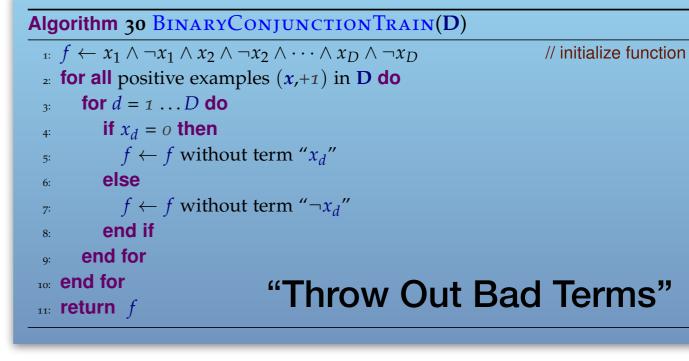
- Clearly, the true formula cannot include the terms $x_1, x_2, \neg x_3, \neg x_4$

y	x_1	x_2	<i>x</i> ₃	x_4
+1 +1	0	0		1
+1	0	1	1	1
-1	1	1	0	1

adapted from Hal Daume III

Example: PAC Learning of Conjunctions

y	x_1	x_2	x_3	x_4	
+1	0	0	1	1	
+1	0	1	1	1	
-1	1	1	0	1	

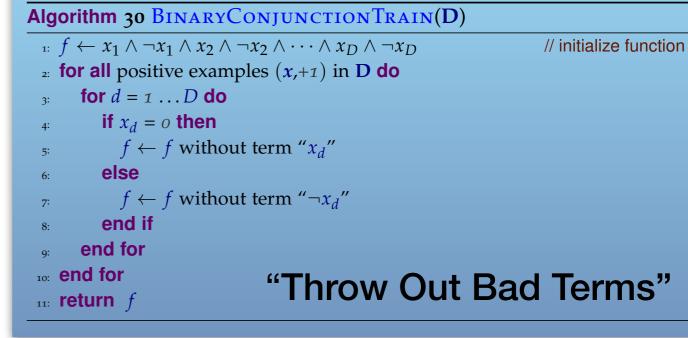


$$f^{0}(\mathbf{x}) = x_{1} \wedge \neg x_{1} \wedge x_{2} \wedge \neg x_{2} \wedge x_{3} \wedge \neg x_{3} \wedge x_{4} \wedge \neg x_{4}$$
$$f^{1}(\mathbf{x}) = \neg x_{1} \wedge \neg x_{2} \wedge x_{3} \wedge x_{4}$$
$$f^{2}(\mathbf{x}) = \neg x_{1} \wedge x_{3} \wedge x_{4}$$
$$f^{3}(\mathbf{x}) = \neg x_{1} \wedge x_{3} \wedge x_{4}$$

- After processing an example, it is guaranteed to classify that example correctly (provided that there is no noise)
- Computationally very efficient
 - Given a data set of N examples in D dimensions, it takes O (ND) time to process the data. This is linear in the size of the data set.

Example: PAC Learning of Conjunctions

y	x_1	x_2	x_3	x_4	
+1	0	0		1	
+1	0	1	1	1	
-1	1	1	0	1	



- Is this an efficient (ε , δ)-PAC learning algorithm?
- What about sample complexity?
 - How many examples N do you need to see in order to guarantee that it achieves an error rate of at most ε (in all but δ -many cases)?
 - Perhaps N has to be gigantic (like $2^{2^{D/\epsilon}}$) to (probably) guarantee a small error.

Vapnik-Chervonenkis (VC) Dimension

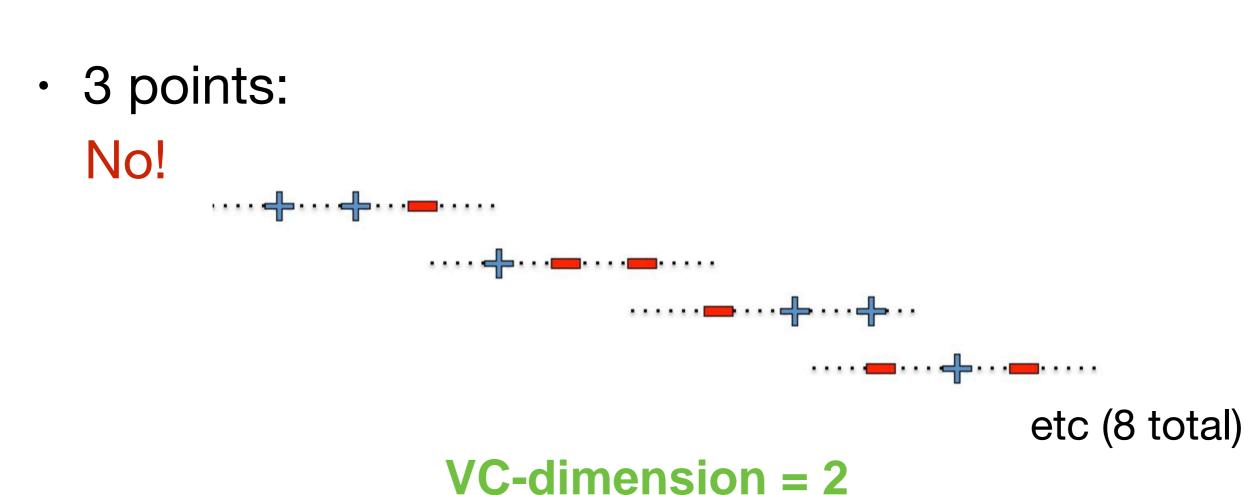
- A classic measure of complexity of infinite hypothesis classes based on this intuition.
- The VC dimension is a very classification-oriented notion of complexity
 - The idea is to look at a finite set of unlabeled examples
 - no matter how these points were labeled, would we be able to find a hypothesis that correctly classifies them
- The idea is that as you add more points, being able to represent an arbitrary labeling becomes harder and harder.

Definitions 2. For data drawn from some space X, the VC dimension of a hypothesis space H over X is the maximal K such that: there exists a set $X \subseteq X$ of size |X| = K, such that for all binary labelings of X, there exists a function $f \in H$ that matches this labeling.

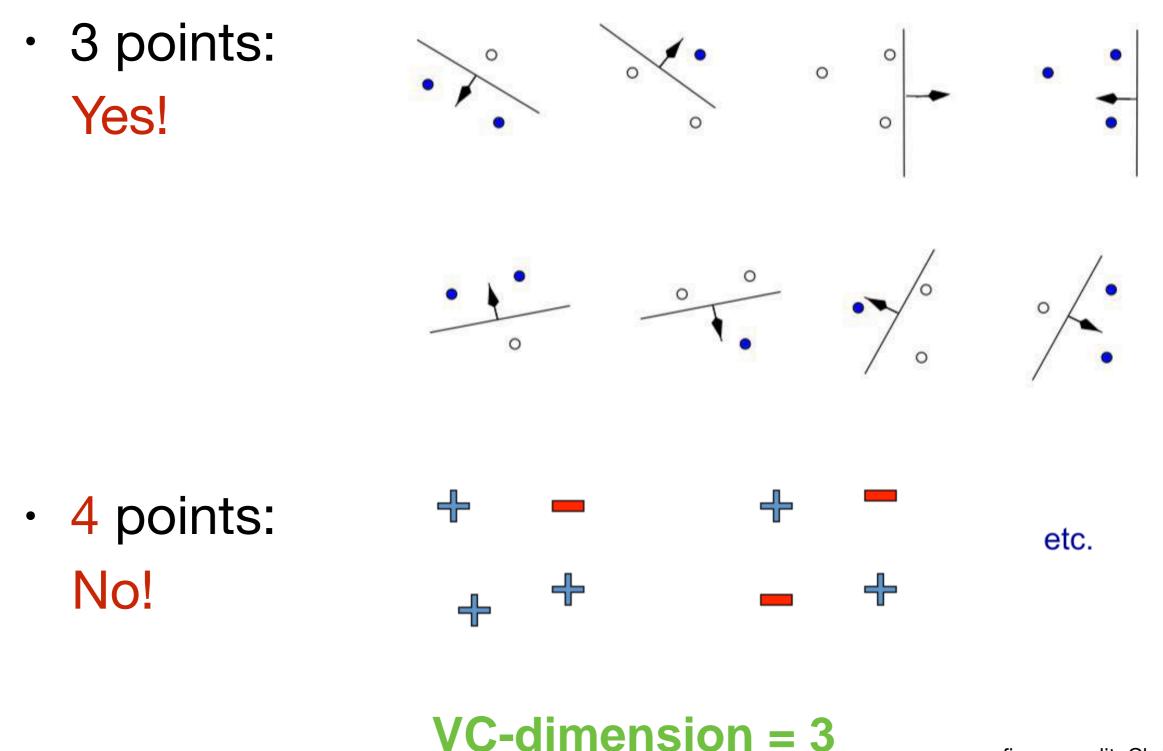
How many points can a linear boundary classify exactly? (1-D)

• 2 points:

Yes!



How many points can a linear boundary classify exactly? (2-D)



Basic Probability Review

Probability

- A is non-deterministic event
 Can think of A as a boolean-valued variable
- Examples
 - A = your next patient has cancer
 - A = Rafael Nadal wins French Open 2019

Interpreting Probabilities

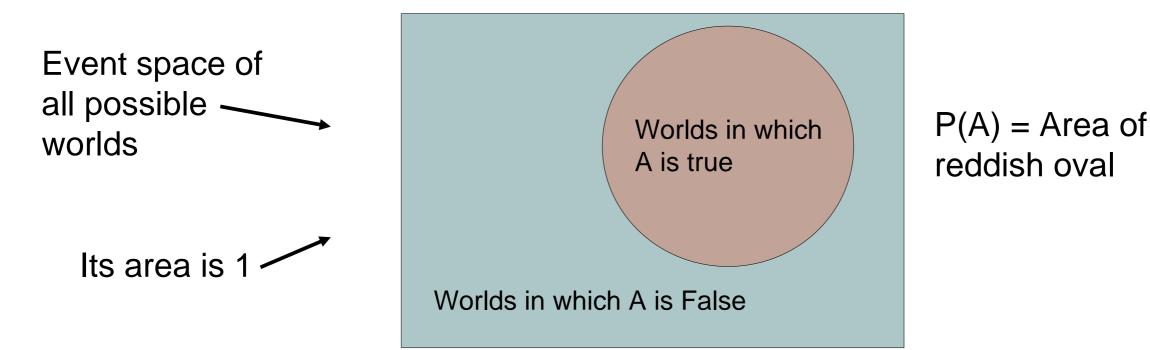
If I flip this coin, the probability that it will come up heads is 0.5

- Frequentist Interpretation: If we flip this coin many times, it will come up heads about half the time. Probabilities are the expected frequencies of events over repeated trials.
- Bayesian Interpretation: I believe that my next toss of this coin is equally likely to come up heads or tails. Probabilities quantify subjective beliefs about single events.
- Viewpoints play complementary roles in machine learning:
 - Bayesian view used to build models based on domain knowledge, and automatically derive learning algorithms
 - Frequentist view used to analyze worst case behavior of learning algorithms, in limit of large datasets
 - From either view, basic mathematics is the same!

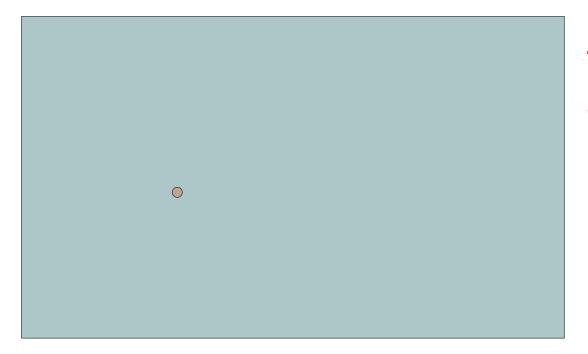
Axioms of Probability

- 0<= P(A) <= 1
- P(empty-set) = 0
- P(everything) = 1
- P(A or B) = P(A) + P(B) P(A and B)

- 0<= P(A) <= 1
- P(empty-set) = 0
- P(everything) = 1
- P(A or B) = P(A) + P(B) P(A and B)



- 0<= P(A) <= 1
- P(empty-set) = 0
- P(everything) = 1
- P(A or B) = P(A) + P(B) P(A and B)



The area of A can t get any smaller than 0

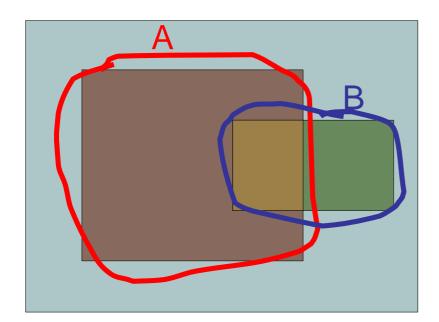
And a zero area would mean no world could ever have A true

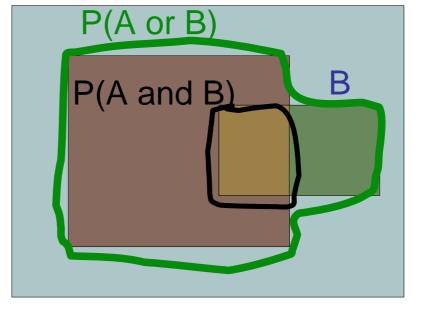
- 0<= P(A) <= 1
- P(empty-set) = 0
- P(everything) = 1
- P(A or B) = P(A) + P(B) P(A and B)

The area of A can t get any bigger than 1

And an area of 1 would mean all worlds will have A true

- 0<= P(A) <= 1
- P(empty-set) = 0
- P(everything) = 1
- P(A or B) = P(A) + P(B) P(A and B)





Simple addition and subtraction

Discrete Random Variables

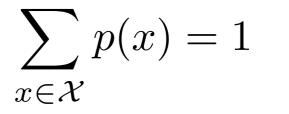
- $X \longrightarrow$ discrete random variable
 - sample space of possible outcomes,
- $\mathcal{X} \longrightarrow$ sample space \mathcal{X} represented by a space \mathcal{X} which may be finite or countably infinite
- $x \in \mathcal{X} \longrightarrow$ outcome of sample of discrete random variable

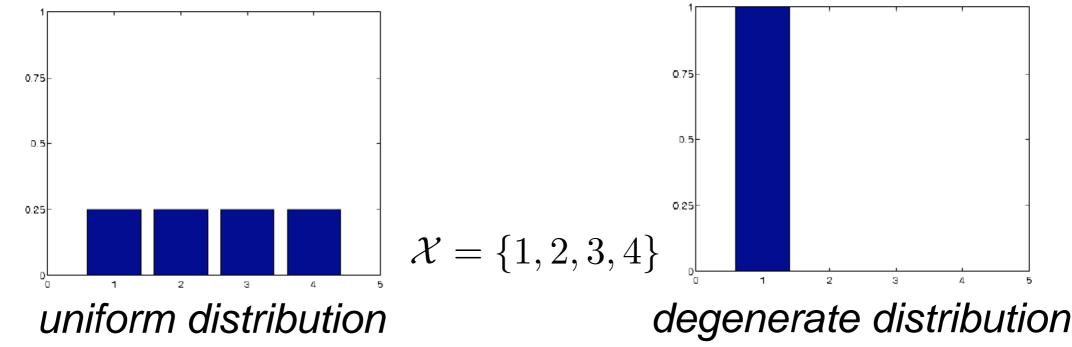
Discrete Random Variables

- → discrete random variable
 - sample space of possible outcomes,
 - which may be finite or countably infinite
- $x \in \mathcal{X} \longrightarrow$ outcome of sample of discrete random variable $p(X = x) \longrightarrow$ probability distribution (probability mass function)

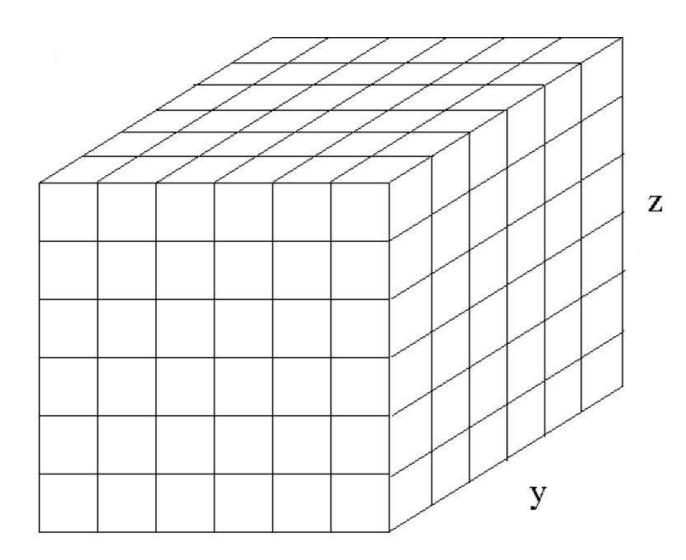
 $p(x) \longrightarrow$ shorthand used when no ambiguity

$$0 \le p(x) \le 1$$
 for all $x \in \mathcal{X}$





Joint Distribution

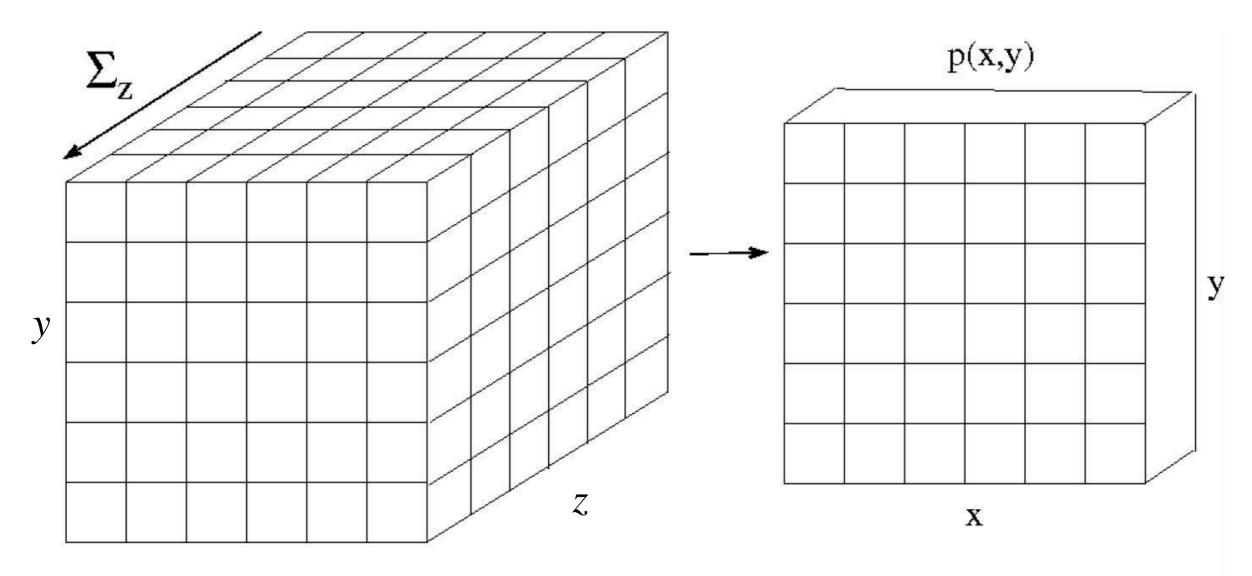


Х

Marginalization

- Marginalization
 - Events: P(A) = P(A and B) + P(A and not B)
 - Random variables $P(X = x) = \sum_{y} P(X = x, Y = y)$

Marginal Distributions



Х

$$p(x,y) = \sum_{z \in \mathcal{Z}} p(x,y,z)$$

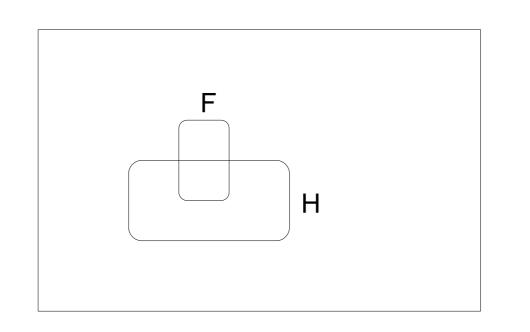
 $p(x) = \sum_{y \in \mathcal{Y}} p(x, y)$

Conditional Probabilities

- P(Y=y | X=x)
- What do you believe about Y=y, if I tell you X=x?
- P(Rafael Nadal wins French Open 2019)?
- What if I tell you:
 - He has won the French Open 11/13 he has played there
 - Rafael Nadal is ranked 1

Conditional Probabilities

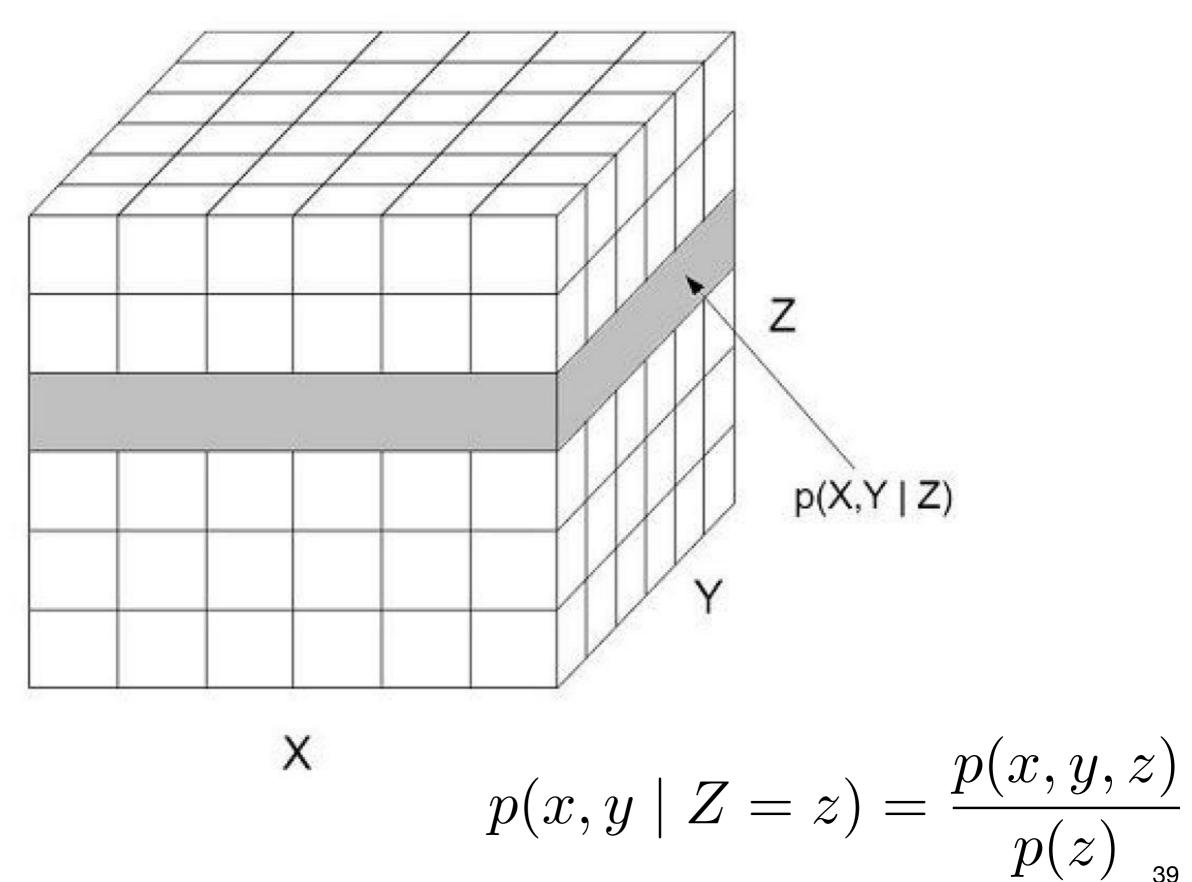
- P(A | B) = In worlds that where B is true, fraction where A is true
- Example
 - H: "Have a headache"
 - F: "Coming down with Flu"



P(H) = 1/10P(F) = 1/40P(H|F) = 1/2

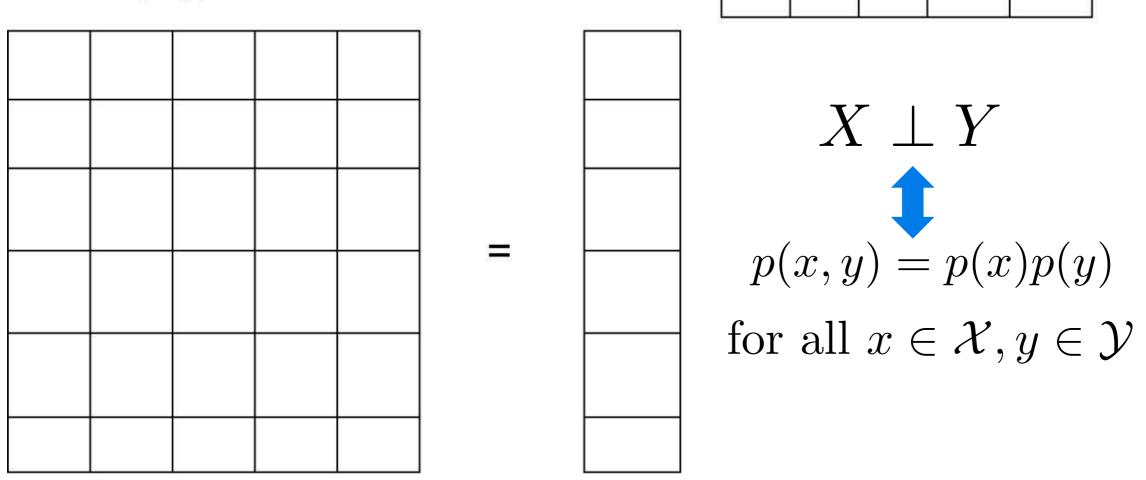
Headaches are rare and flu is rarer, but if you re coming down with flu there s a 50-50 chance you II have a headache.

Conditional Distributions



Independent Random Variables

P(x,y)



Equivalent conditions on conditional probabilities:

 $p(x \mid Y = y) = p(x) \text{ and } p(y) > 0 \text{ for all } y \in \mathcal{Y}$ $p(y \mid X = x) = p(y) \text{ and } p(x) > 0 \text{ for all } x \in \mathcal{X}$

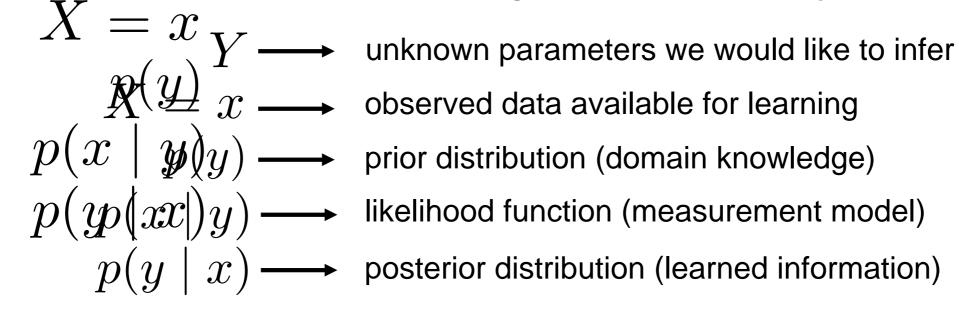
Bayes Rule (Bayes Theorem)

$$p(x, y) = p(x)p(y \mid x) = p(y)p(x \mid y)$$

$$p(y \mid x) = \frac{p(x, y)}{p(x)} = \frac{p(x \mid y)p(y)}{\sum_{y' \in \mathcal{Y}} p(y')p(x \mid y')}$$

$$\propto p(x \mid y)p(y)$$

- A basic identity from the definition of conditional probability
- Used in ways that have no thing to do with Bayesian statistics!
- Typical application to learning and data analysis:



Binary Random Variables

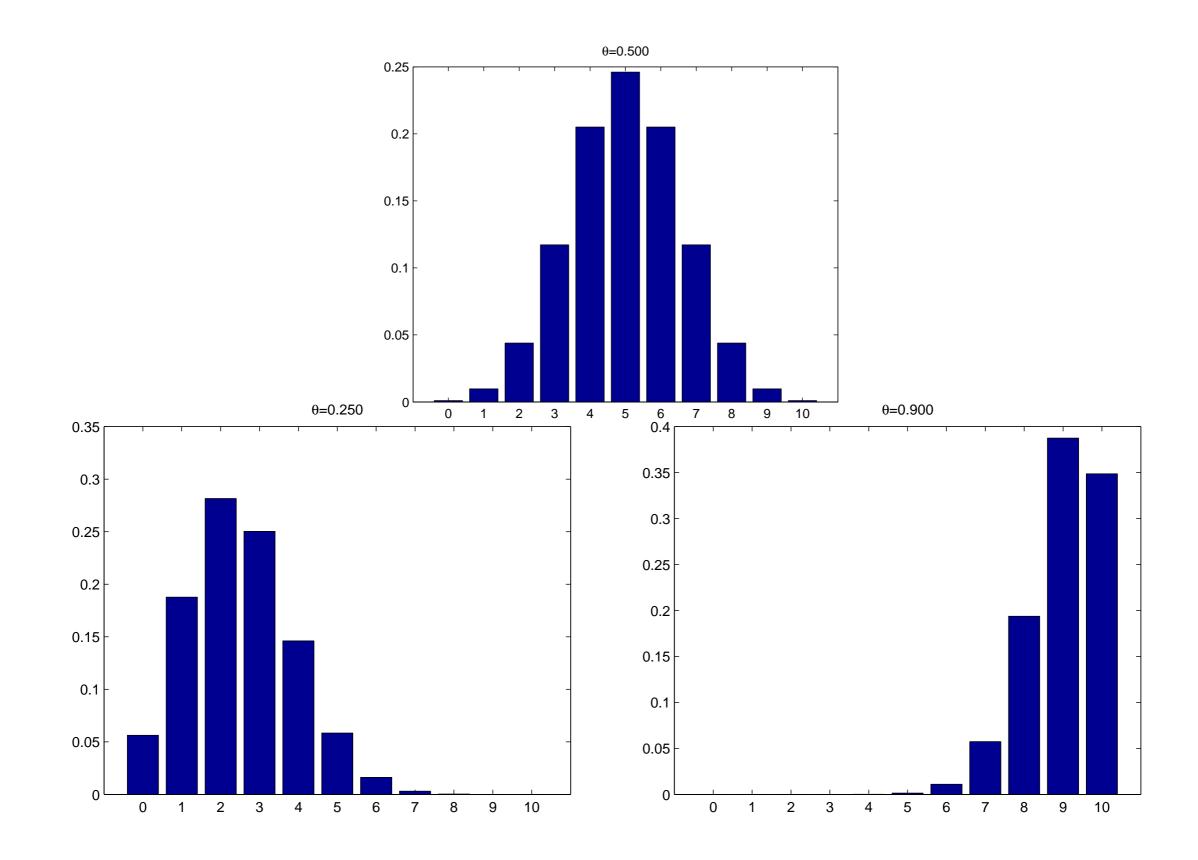
 Bernoulli Distribution: Single toss of a (possibly biased) coin

$$\begin{aligned} & \mathcal{X} = \{0, 1\} \\ & \mathcal{X} = \{0, 1\} \\ & \theta \leq \theta \leq 1 \\ & \delta(x, 1) (1 - \theta)^{\overline{\delta}(x, 0)} \end{aligned}$$

• Binomial Distribution: Toss a single (possibly biased) coin *n* times, and report the number k of times it comes up $\mathcal{K} = \{0, 1, 2, \dots, n\}$ $0 \le \theta \le 1$

$$\operatorname{Bin}(k \mid n, \theta) = \left(\begin{array}{c} n \\ k \end{array}\right) \theta^k (1 - \theta)^{n-k} \quad \left(\begin{array}{c} n \\ k \end{array}\right) = \frac{n!}{(n-k)!k!} \overline{k!}$$

Binomial Distributions



Bean Machine (Sir Francis Galton)

http://en.wikipedia.org/wiki/ Bean_machine

Categorical Random Variables

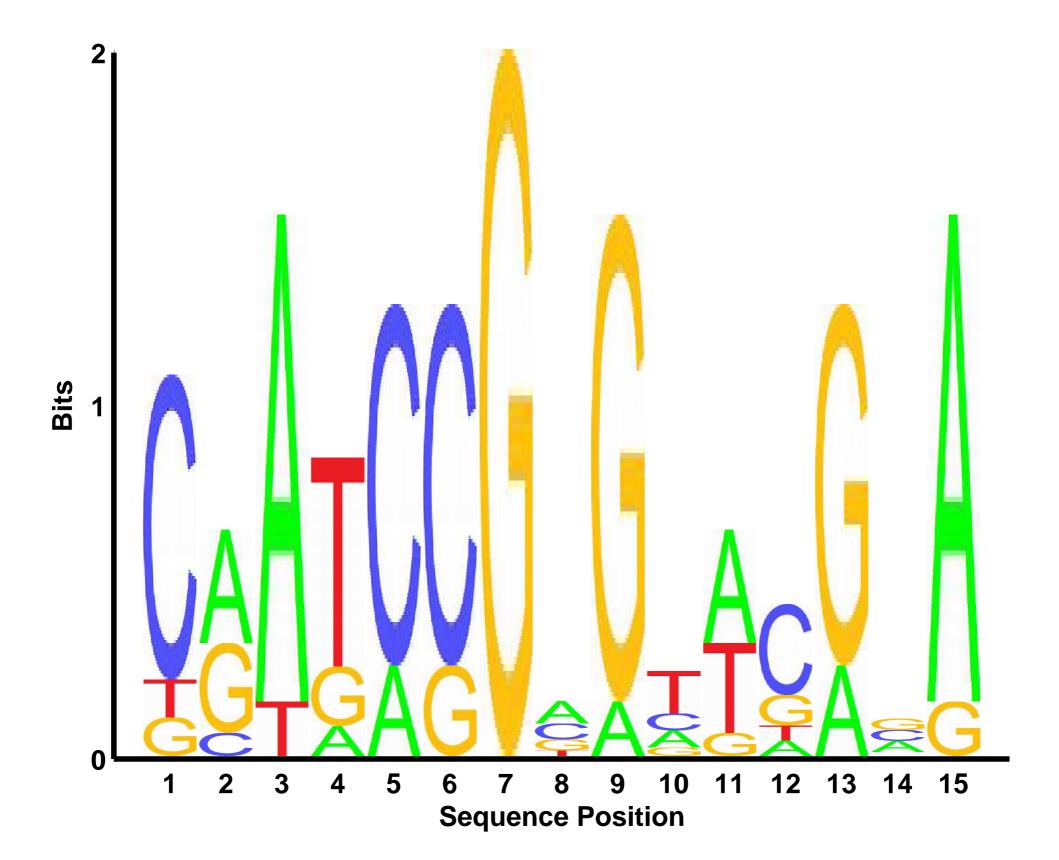
Multinoulli Distribution: Single roll of a (possibly biased) die

• Multinomial Distribution: Roll a single (possibly biased) die *n* times, and report the number n_k of each possible outcome $Mu(x \mid n, \theta) = \begin{pmatrix} n \\ n_1 \dots n_K \end{pmatrix} \prod_{k=1}^{K} \theta_k^{n_k} \qquad n_k = \sum_{i=1}^{n} x_{ik}$

Aligned DNA Sequences

cgatacggggtcgaa caatccgagatcg C a caatccgtgttg gga caatcggcatgcgg cgagccgcgtacg a a catacggagcac g a a taatccgggcatgt a cgagccgagtacaga ccatccgcgtaag ca ggatacgagatgaca

Multinomial Model of DNA



Next Lecture: Maximum Likelihood Estimation (MLE)