photo: Chessex Borealis<sup>™</sup> Aquerple Polyhedral

# BBN406 Fundamentals of Machine Learning

### **Lecture 7:** Probability Review (cont'd.) Maximum Likelihood Estimation (MLE)



Aykut Erdem // Hacettepe University // Fall 2019

# Administrative

- Project proposal due November 15
- A half page description
  - problem to be investigated,
  - why it is interesting,
  - what data you will use,
  - related work.

# Deadlines in the sylpus are closer than they appear

P. ...

# Today

- Probabilities
  - Dependence, Independence, Conditional Independence
- Parameter estimation
  - Maximum Likelihood Estimation (MLE)
  - Maximum a Posteriori (MAP)

# Last time... Sample space

**Def**: A **sample space**  $\Omega$  is the set of all possible outcomes of a (conceptual or physical) random experiment. ( $\Omega$  can be finite or infinite.)

### **Examples:**

- Ω may be the set of all possible outcomes of a dice roll (1,2,3,4,5,6)
- Pages of a book opened randomly. (1-157)
- Real numbers for temperature, location, time, etc

# Last time... Events

# We will ask the question: What is the probability of a particular event?

### **Def: Event** A is a **subset** of the sample space $\Omega$

### **Examples:**

What is the probability of

- the book is open at an odd number
- rolling a dice the number <4
- a random person's height X : a<X<b

# Last time... Probability

**Def:** *Probability P(A), the probability that event* (*subset) A happens*, is a function that maps the event A onto the interval [0, 1]. *P(A)* is also called the **probability measure** of A.



What is the probability that the number on the dice is 2 or 4?

P(A) is the volume of the area.

# Last time... Kolmogorov Axioms

(i) Nonnegativity:  $P(A) \ge 0$  for each A event.

(ii)  $P(\Omega) = 1$ .

(iii)  $\sigma$ -additivity: For disjoint sets (events)  $A_i$ , we have

 $P(\bigcup_{i=1}^{\infty}A_i) = \sum_{i=1}^{\infty}P(A_i)$ 

#### Consequences:

$$P(\emptyset) = 0.$$
  

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$
  

$$P(A^c) = 1 - P(A).$$

# Last time... Venn Diagram



# Last time... Random Variables

**Def:** Real valued **random variable** is a function of the outcome of a randomized experiment  $X: \Omega \to \mathbb{R}$ 

$$P(a < X < b) \doteq P(\omega : a < X(\omega) < b)$$
$$P(X = a) \doteq P(\omega : X(\omega) = a)$$

#### **Examples:**

- Discrete random variable examples ( $\Omega$  is discrete):
- $X(\omega) = True if a randomly drawn person (\omega) from our class (\Omega) is female$
- $X(\omega) =$  The hometown  $X(\omega)$  of a randomly drawn person  $(\omega)$  from our class  $(\Omega)$

Bernoulli distribution: Ber(p)

 $\Omega = \{\text{head, tail}\} X(\text{head}) = 1, X(\text{tail}) = 0.$ 



Bernoulli distribution: Ber(p)

 $\Omega = \{\text{head, tail}\} X(\text{head}) = 1, X(\text{tail}) = 0.$ 

$$P(X = a) = P(\omega : X(\omega) = a) = \begin{cases} p, & \text{for } a = 1\\ 1 - p, & \text{for } a = 0 \end{cases}$$



Bernoulli distribution: Ber(p)

 $\Omega = \{\text{head, tail}\} X(\text{head}) = 1, X(\text{tail}) = 0.$ 

$$P(X = a) = P(\omega : X(\omega) = a) = \begin{cases} p, & \text{for } a = 1\\ 1 - p, & \text{for } a = 0 \end{cases}$$



Binomial distribution: Bin(n,p)

Suppose a coin with head prob. *p* is tossed *n* times. What is the probability of getting *k* heads and *n*-*k* tails?

- $\Omega = \{ \text{ possible } n \text{ long head/tail series} \}, |\Omega| = 2^n$
- $K(\omega) =$  number of heads in  $\omega = (\omega_1, \dots, \omega_n) \in \{\text{head, tail}\}^n = \Omega$

Bernoulli distribution: Ber(p)

 $\Omega = \{\text{head, tail}\} X(\text{head}) = 1, X(\text{tail}) = 0.$ 

$$P(X = a) = P(\omega : X(\omega) = a) = \begin{cases} p, & \text{for } a = 1\\ 1 - p, & \text{for } a = 0 \end{cases}$$

Suppose a coin with head prob. *p* is tossed *n* times. What is the probability of getting *k* heads and *n*-*k* tails?

- $\Omega = \{ \text{ possible } n \text{ long head/tail series} \}, |\Omega| = 2^n$
- $K(\omega) =$  number of heads in  $\omega = (\omega_1, \dots, \omega_n) \in \{\text{head, tail}\}^n = \Omega$

$$P(K=k) = P(\omega : K(\omega) = k) = \sum_{\omega : K(\omega) = k} p^k (1-p)^{n-k} = \binom{n}{k} p^k (1-p)^{n-k}$$

## Last time... Conditional Probability

P(X|Y) = Fraction of worlds in which X event is true given Y event is true.

$$P(X|Y) = \frac{P(X,Y)}{P(Y)}$$

# Last time... Conditional Probability

P(X|Y) = Fraction of worlds in which X event is true given Y event is true.



# Independence

Independent random variables: P(X,Y) = P(X)P(Y)P(X|Y) = P(X)

Y and X don't contain information about each other. Observing Y doesn't help predicting X. Observing X doesn't help predicting Y.

### **Examples:**

Independent: Winning on roulette this week and next week. Dependent: Russian roulette

# Dependent / Independent



# **Conditionally Independent**

**Conditionally independent:** 

P(X, Y|Z) = P(X|Z)P(Y|Z)Knowing Z makes X and Y independent

### **Examples:**

Dependent: shoe size of children and reading skills Conditionally independent: shoe size of children and reading skills given age

#### **Stork deliver babies:** Highly statistically significant correlation exists between stork populations and

# Conditionally Independent

 London taxi drivers: A survey has pointed out a positive and significant correlation between the number of accidents and wearing coats. They concluded that coats could hinder movements of drivers and be the cause of accidents. A new law was prepared to prohibit drivers from wearing coats when driving.

Finally, another study pointed out that people wear coats when it rains...

# Correlation *≠* Causation

#### Number people who drowned by falling into a swimming-pool correlates with Number of films Nicolas Cage appeared in



#### Correlation: 0.666004

# **Conditional Independence**

Formally: X is conditionally independent of Y given Z

$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$

P(Accidents, Coats | Rain) = P(Accidents | Rain)P(Coats | Rain)

# **Conditional Independence**

Formally: X is conditionally independent of Y given Z

$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$

P(Accidents, Coats | Rain) = P(Accidents | Rain)P(Coats | Rain)

Equivalent to:  $(\forall x, y, z)P(X = x | Y = y, Z = z) = P(X = x | Z = z)$ 

# **Conditional Independence**

Formally: X is conditionally independent of Y given Z

$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$

P(Accidents, Coats | Rain) = P(Accidents | Rain)P(Coats | Rain)

$$(\forall x, y, z) P(X = x | Y = y, Z = z) = P(X = x | Z = z)$$

P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

**Note:** does NOT mean Thunder is independent of Rain **But** given Lightning knowing Rain doesn't give more info about Thunder

Equivalent to:

# Parameter estimation: MLE, MAP



I have a coin, if I flip it, what's the probability that it will fall with the head up?

I have a coin, if I flip it, what's the probability that it will fall with the head up?

Let us flip it a few times to estimate the probability:

I have a coin, if I flip it, what's the probability that it will fall with the head up?

Let us flip it a few times to estimate the probability:



I have a coin, if I flip it, what's the probability that it will fall with the head up?

Let us flip it a few times to estimate the probability:



The estimated probability is: 3/5 "Frequency of heads"



The estimated probability is: 3/5 "Frequency of heads"

# Questions:(1) Why frequency of heads???(2) How good is this estimation???(3) Why is this a machine learning problem???

We are going to answer these questions

# Question (1)

### Why frequency of heads???

- Frequency of heads is exactly the maximum likelihood estimator for this problem
- MLE has nice properties (interpretation, statistical guarantees, simple)



### $P(Heads) = \theta, P(Tails) = 1 - \theta$



### $P(Heads) = \theta, P(Tails) = 1 - \theta$

Flips are i.i.d.:



$$P(Heads) = \theta, P(Tails) = 1 - \theta$$

- Flips are i.i.d.:
- Independent events
  - Identically distributed according to Bernoulli distribution



$$P(Heads) = \theta, P(Tails) = 1 - \theta$$

- Flips are i.i.d.:
- Independent events
  - Identically distributed according to Bernoulli distribution

$$\widehat{ heta}_{MLE} = rg\max_{ heta} P(D| heta)$$

MLE: Choose  $\theta$  that maximizes the probability of observed data

$$\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D|\theta)$$
$$= \arg \max_{\theta} \prod_{i=1}^{n} P(X_i|\theta)$$

independent draws

$$\begin{split} \widehat{\theta}_{MLE} &= \arg \max_{\theta} P(D|\theta) \\ &= \arg \max_{\theta} \prod_{i=1}^{n} P(X_i|\theta) & \text{independent draws} \\ &= \arg \max_{\theta} \prod_{i:X_i=H} \theta \prod_{i:X_i=T} (1-\theta) & \text{identically} \\ &\text{distributed} \end{split}$$

$$\begin{aligned} \widehat{\theta}_{MLE} &= \arg \max_{\theta} P(D|\theta) \\ &= \arg \max_{\theta} \prod_{i=1}^{n} P(X_i|\theta) & \text{independent draws} \\ &= \arg \max_{\theta} \prod_{i:X_i=H} \theta \prod_{i:X_i=T} (1-\theta) & \text{identically} \\ &= \arg \max_{\theta} \theta^{\alpha_H} (1-\theta)^{\alpha_T} \end{aligned}$$

$$\begin{aligned} \widehat{\theta}_{MLE} &= \arg \max_{\theta} P(D|\theta) \\ &= \arg \max_{\theta} \prod_{i=1}^{n} P(X_i|\theta) & \text{independent draws} \\ &= \arg \max_{\theta} \prod_{i:X_i=H} \theta \prod_{i:X_i=T} (1-\theta) & \text{identically} \\ &= \arg \max_{\theta} \underbrace{\theta^{\alpha_H} (1-\theta)^{\alpha_T}}_{J(\theta)} \end{aligned}$$

$$\begin{aligned} \widehat{\theta}_{MLE} &= \arg \max_{\theta} P(D|\theta) \\ &= \arg \max_{\theta} \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \\ &= \arg \max_{\theta} \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \\ &\int J(\theta|\theta) \end{aligned}$$

MLE: Choose  $\theta$  that maximizes the probability of observed data

$$\begin{aligned} \widehat{\theta}_{MLE} &= \arg \max_{\theta} P(D|\theta) \\ &= \arg \max_{\theta} \theta^{\alpha_H} (\underbrace{1 - \theta}_{\theta})^{\alpha_T} \\ &= \arg \max_{\theta} \theta^{\alpha_H} (\underbrace{1 - \theta}_{\theta})^{\alpha_T} \\ &J(\boldsymbol{\theta}) \end{aligned}$$

. . .

$$\frac{\partial J(\theta)}{\partial \theta} = \alpha_H \theta^{\alpha_H - 1} (1 - \theta)^{\alpha_T} - \alpha_T \theta^{\alpha_H} (1 - \theta)^{\alpha_T - 1} \Big|_{\theta = \hat{\theta}_{\text{MLE}}} = 0$$

$$\begin{aligned} \widehat{\theta}_{MLE} &= \arg \max_{\theta} P(D|\theta) \\ &= \arg \max_{\theta} \theta^{\alpha_H} (\underbrace{1 - \theta}_{\theta})^{\alpha_T} \\ &= \arg \max_{\theta} \theta^{\alpha_H} (\underbrace{1 - \theta}_{\theta})^{\alpha_T} \\ & J(\theta|\theta) \end{aligned}$$

$$\frac{\partial J(\theta)}{\partial \theta} = \alpha_H \theta^{\alpha_H - 1} (1 - \theta)^{\alpha_T} - \alpha_T \theta^{\alpha_H} (1 - \theta)^{\alpha_T - 1} \Big|_{\theta = \hat{\theta}_{\text{MLE}}} = 0$$

$$\alpha_H (1 - \theta)^{\alpha_H} (1 - \theta)^{\alpha_T} - \alpha_T \theta^{\alpha_H} (1 - \theta)^{\alpha_T - 1} \Big|_{\theta = \hat{\theta}_{\text{MLE}}} = 0$$

# Question (2)

How good is this MLE estimation???

$$\widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

# How many flips do I need?

I flipped the coins 5 times: 3 heads, 2 tails

$$\widehat{ heta}_{MLE} = rac{3}{5}$$

# What if I flipped 30 heads and 20 tails? $\widehat{\theta}_{MLE} = \frac{30}{50}$

slide by Barnabás Póczos & Alex Smola

# Which estimator should we trust more? The more the merrier???

Let  $\theta^*$  be the true parameter.

For 
$$n = \alpha_H + \alpha_T$$
, and  $\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$   
For any  $\epsilon > 0$ :

### **Hoeffding's inequality:**

$$P(|\hat{\theta} - \theta^*| \ge \epsilon) \le 2e^{-2n\epsilon^2}$$

# Probably Approximate Correct (PAC) Learning

I want to know the coin parameter  $\theta$ , within  $\varepsilon = 0.1$  error with probability at least  $1-\delta = 0.95$ .

How many flips do I need?  $P(|\hat{\theta} - \theta^*| \ge \epsilon) \le 2e^{-2n\epsilon^2}$ 

Sample complexity:

$$n \ge \frac{\ln(2/\delta)}{2\epsilon^2}$$

# Question (3)

### Why is this a machine learning problem???

- improve their performance (accuracy of the predicted prob.)
- at some task (predicting the probability of heads)
- with experience (the more coins we flip the better we are)

# What about continuous features?







### MLE for Gaussian mean and variance

Choose  $\theta = (\mu, \sigma^2)$  that maximizes the probability of observed data

$$\hat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$$

$$= \arg \max_{\theta} \prod_{i=1}^{n} P(X_i \mid \theta) \quad \text{Independent draws}$$

$$= \arg \max_{\theta} \prod_{i=1}^{n} \frac{1}{2\sigma^2} e^{-(X_i - \mu)^2/2\sigma^2} \quad \text{Identically} \quad \text{distributed}$$

$$= \arg \max_{\theta = (\mu, \sigma^2)} \frac{1}{2\sigma^2} e^{-\sum_{i=1}^{n} (X_i - \mu)^2/2\sigma^2} \quad \int_{J(\theta)} J(\theta)$$

slide by Barnabás Póczos & Alex Smola

### MLE for Gaussian mean and variance

$$\widehat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\widehat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \widehat{\mu})^2$$

**Note:** MLE for the variance of a Gaussian is **biased** [Expected result of estimation is not the true parameter!]

Jnbiased variance estimator: 
$$\widehat{\sigma}_{unbiased}^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - \widehat{\mu})^2$$

# **Next Class:**

### MAP estimation Naïve Bayes Classifier