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Last time… Naïve Bayes Classifier

2

Naïve Bayes Classifier 
Given: 

– Class prior P(Y) 
– d conditionally independent features X1,…Xd given the 

class label Y 
– For each Xi feature, we have the conditional likelihood 

P(Xi|Y) 

17 

Naïve Bayes Decision rule: 

Naïve Bayes Classifier 
Given: 

– Class prior P(Y) 
– d conditionally independent features X1,…Xd given the 

class label Y 
– For each Xi feature, we have the conditional likelihood 

P(Xi|Y) 
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Naïve Bayes Decision rule: 
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Naïve Bayes Algorithm for 
discrete features 

NB Prediction for test data: 

For Class Prior  

For Likelihood 

We need to estimate these probabilities! 

19 

Estimators 

Last time… Naïve Bayes Algorithm 
for discrete features
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Last time… Text Classification

• Antogonists and Inhibitors

• Blood Supply

• Chemistry

• Drug Therapy

• Embryology

• Epidemiology

• …

4

MeSH Subject Category  
Hierarchy

?

MEDLINE Article


slide by Dan Jurafsky

How to represent a text document?



Last time… Bag of words model

5

Bag of words model 
Typical additional assumption:  

Position in  dŽcƵmenƚ  dŽeƐn͛ƚ  maƚƚeƌ:  
 P(Xi=xi|Y=y) = P(Xk=xi|Y=y)  

– “Bag  of  words”  model  – order of words on the page ignored 
The document is just a bag of words: i.i.d. words 

– Sounds really silly, but often works very well!  

27 

The probability of a document with words x1,x2,…   

) K(50000-1) parameters to estimate 
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What if features are 
continuous? 

Different mean and variance for each class k and each pixel i. 
Sometimes assume variance 
• is independent of Y (i.e., Vi),  
• or independent of Xi (i.e., Vk) 
• or both (i.e., V) 

31 

Eg., character recognition: Xi is intensity at ith pixel 

Gaussian Naïve Bayes (GNB): 
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Eg., character recognition: Xi is intensity at ith pixel 
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Eg., character recognition: Xi is intensity at ith pixel 

Gaussian Naïve Bayes (GNB): 
e.g., character recognition: Xi is intensity at ith pixel


Gaussian Naïve Bayes (GNB): 

Different mean and variance for each class k and each pixel i. 

Sometimes assume variance

•	 is independent of Y (i.e., σi), 

•	 or independent of Xi (i.e., σk) 

•	 or both (i.e., σ) 

Last time… What if features are continuous?
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Estimating parameters:  
Y discrete, Xi continuous 

Maximum likelihood estimates:  
 
 
 
 

jth training image 
ith pixel in  

jth training image 

kth class 

33 

Estimating parameters:  
Y discrete, Xi continuous 

32 



Logistic Regression

7



Naïve(Bayes(Recap…(

•  NB%Assump$on:%

•  NB%Classifier:%

•  Assume%parametric%form%for%P(Xi|Y)%and%P(Y)%
–  Es$mate%parameters%using%MLE/MAP%and%plug%in%

3%
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Recap: Naïve Bayes
• NB Assumption: 
 

• NB Classifier: 
 
 

• Assume parametric form for P(Xi|Y) and P(Y)

- Estimate parameters using MLE/MAP and plug in

8
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Gaussian(Naïve(Bayes((GNB)(

4%

There%are%several%distribu$ons%that%can%lead%to%a%linear%decision%
boundary.%
%
As%an%example,%%consider%Gaussian%Naïve%Bayes:%
%
%
%
%
%
%
%
%
What%if%we%assume%variance%is%independent%of%class,%i.e.%%%%%%%%%%%?%

Gaussian class conditional densities 

Gaussian Naïve Bayes (GNB)
• There are several distributions that can lead to a linear 

boundary.

• As an example, consider Gaussian Naïve Bayes: 
 
 

 

• What if we assume variance is independent of class, 
i.e. 

9

Gaussian(Naïve(Bayes((GNB)(

4%

There%are%several%distribu$ons%that%can%lead%to%a%linear%decision%
boundary.%
%
As%an%example,%%consider%Gaussian%Naïve%Bayes:%
%
%
%
%
%
%
%
%
What%if%we%assume%variance%is%independent%of%class,%i.e.%%%%%%%%%%%?%

Gaussian class conditional densities 
Gaussian class conditional densities
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GNB(with(equal(variance(is(a(Linear(
Classifier!(

5%Constant%term% First8order%term%

Decision(boundary:(

log
P (Y = 0)

Qd
i=1 P (Xi|Y = 0)

P (Y = 1)
Qd

i=1 P (Xi|Y = 1)
= log

1� ⇡

⇡
+

dX

i=1

log
P (Xi|Y = 0)

P (Xi|Y = 1)

dY

i=1

P (Xi|Y = 0)P (Y = 0) =
dY

i=1

P (Xi|Y = 1)P (Y = 1)
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GNB(with(equal(variance(is(a(Linear(
Classifier!(

5%Constant%term% First8order%term%

Decision(boundary:(

log
P (Y = 0)

Qd
i=1 P (Xi|Y = 0)

P (Y = 1)
Qd

i=1 P (Xi|Y = 1)
= log

1� ⇡

⇡
+

dX

i=1

log
P (Xi|Y = 0)

P (Xi|Y = 1)

dY

i=1

P (Xi|Y = 0)P (Y = 0) =
dY

i=1

P (Xi|Y = 1)P (Y = 1)
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GNB with equal variance is a 
Linear Classifier!

Decision boundary:
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GNB(with(equal(variance(is(a(Linear(
Classifier!(

5%Constant%term% First8order%term%

Decision(boundary:(

log
P (Y = 0)

Qd
i=1 P (Xi|Y = 0)

P (Y = 1)
Qd

i=1 P (Xi|Y = 1)
= log

1� ⇡

⇡
+

dX

i=1

log
P (Xi|Y = 0)

P (Xi|Y = 1)

dY

i=1

P (Xi|Y = 0)P (Y = 0) =
dY

i=1

P (Xi|Y = 1)P (Y = 1)

slide by Aarti Singh & Barnabás Póczos

GNB with equal variance is a 
Linear Classifier!

Decision boundary:
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GNB(with(equal(variance(is(a(Linear(
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GNB with equal variance is a 
Linear Classifier!

Decision boundary:

{ {
Constant term First-order term



Gaussian Naive Bayes (GNB)

13

Gaussian(Naïve(Bayes((GNB)(

6%

Decision(Boundary(

X = (x1, x2)

P1 = P (Y = 0)

P2 = P (Y = 1)

p1(X) = p(X|Y = 0) ⇠ N (M1,⌃1)

p2(X) = p(X|Y = 1) ⇠ N (M2,⌃2)
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Decision Boundary



Generative vs. Discriminative Classifiers

• Generative classifiers (e.g. Naïve Bayes)

- Assume some functional form for P(X,Y) (or P(X|Y) and P(Y))

- Estimate parameters of P(X|Y), P(Y) directly from training data 


• But arg max_Y P(X|Y) P(Y) = arg max_Y P(Y|X)

• Why not learn P(Y|X) directly? Or better yet, why not learn 

the decision boundary directly?

• Discriminative classifiers (e.g. Logistic Regression)


- Assume some functional form for P(Y|X) or for the decision 
boundary 


- Estimate parameters of P(Y|X) directly from training data

14
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Logistic Regression
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Logis&c(Regression(

8%

Assumes%the%following%func$onal%form%for%P(Y|X):%

Logis&c(
func&on(
(or(Sigmoid):(

Logis$c%func$on%applied%to%a%linear%
func$on%of%the%data%

z%

lo
gi
t%(
z)
%

Features(can(be(discrete(or(con&nuous!(
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Assumes the following functional form for P(Y∣X):

Logistic function applied to linear 
function of the data

Logistic 
function 
(or Sigmoid):

Features can be discrete or continuous!



Logistic Regression is a Linear 
Classifier!

16

Logis&c(Regression(is(a(Linear(
Classifier!(

9%

Assumes%the%following%func$onal%form%for%P(Y|X):%
%
%
%
%
Decision%boundary:%

(Linear Decision Boundary) 

1%

1%

(Linear Decision Boundary)
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Assumes the following functional form for P(Y∣X):

Decision boundary:
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Logis&c(Regression(is(a(Linear(
Classifier!(

10%

Assumes%the%following%func$onal%form%for%P(Y|X):%
%
%
%
%

1%
1%

1%
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Logistic Regression is a Linear 
Classifier!

Assumes the following functional form for P(Y∣X):



Logistic Regression for more 
than 2 classes
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Logis&c(Regression(for(more(than(2(
classes(

11%

•  Logis$c%regression%in%more%general%case,%where%%
Y%    {y1,…,yK}%

%for%k<K%
%
%
%

%for%k=K%(normaliza$on,%so%no%weights%for%this%class)%
%
%
%
%Is%the%decision%boundary%s$ll%linear?%

2
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Logistic regression in more general case, where 

for k<K

for k=K (normalization, so no weights for this class)



Training Logistic Regression
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Training(Logis&c(Regression(

12%

We’ll%focus%on%binary%classifica$on:%
%

How(to(learn(the(parameters(w0,(w1,(…(wd?(

Training%Data%

Maximum%Likelihood%Es$mates%

%

But there is a problem …  
Don’t have a model for P(X) or P(X|Y) – only for P(Y|X) 
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We’ll focus on binary classification:

Training Data

Maximum Likelihood Estimates

How to learn the parameters w0, w1, …, wd?



Training Logistic Regression
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Training(Logis&c(Regression(

12%

We’ll%focus%on%binary%classifica$on:%
%

How(to(learn(the(parameters(w0,(w1,(…(wd?(

Training%Data%

Maximum%Likelihood%Es$mates%

%

But there is a problem …  
Don’t have a model for P(X) or P(X|Y) – only for P(Y|X) 
But there is a problem … 
Don’t have a model for P(X) or P(X|Y) — only for P(Y|X)
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We’ll focus on binary classification:

How to learn the parameters w0, w1, …, wd?

But there is a problem… 
Don’t have a model for P(X) or P(X|Y) — only for P(Y|X)

   

Training Data

Maximum Likelihood Estimates



Training Logistic Regression
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Training(Logis&c(Regression(

13%

How(to(learn(the(parameters(w0,(w1,(…(wd?(

Training%Data%

Maximum%(Condi$onal)%Likelihood%Es$mates%

%

%

%
Discrimina$ve%philosophy%–%Don’t%waste%effort%learning%P(X),%
focus%on%P(Y|X)%–%that’s%all%that%maders%for%classifica$on!%

%
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How to learn the parameters w0, w1, …, wd?
Training Data

Maximum (Conditional) Likelihood Estimates

Discriminative philosophy — Don’t waste effort learning P(X), 
focus on P(Y|X) — that’s all that matters for classification!



Expressing Conditional log Likelihood

22
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value of X in the lth training example. The expression to the right of the argmax
is the conditional data likelihood. Here we include W in the conditional, to em-
phasize that the expression is a function of the W we are attempting to maximize.

Equivalently, we can work with the log of the conditional likelihood:

W  argmax
W

Â
l

lnP(Y l|Xl,W )

This conditional data log likelihood, which we will denote l(W ) can be written
as

l(W ) = Â
l

Y
l lnP(Y l = 1|Xl,W )+(1�Y

l) lnP(Y l = 0|Xl,W )

Note here we are utilizing the fact that Y can take only values 0 or 1, so only one
of the two terms in the expression will be non-zero for any given Y

l .
To keep our derivation consistent with common usage, we will in this section

flip the assignment of the boolean variable Y so that we assign

P(Y = 0|X) =
1

1+ exp(w0 +Ân

i=1 wiXi)
(24)

and
P(Y = 1|X) =

exp(w0 +Ân

i=1 wiXi)
1+ exp(w0 +Ân

i=1 wiXi)
(25)

In this case, we can reexpress the log of the conditional likelihood as:

l(W ) = Â
l

Y
l lnP(Y l = 1|Xl,W )+(1�Y

l) lnP(Y l = 0|Xl,W )

= Â
l

Y
l ln

P(Y l = 1|Xl,W )
P(Y l = 0|Xl,W )

+ lnP(Y l = 0|Xl,W )

= Â
l

Y
l(w0 +

n

Â
i

wiX
l

i
)� ln(1+ exp(w0 +

n

Â
i

wiX
l

i
))

where X
l

i
denotes the value of Xi for the lth training example. Note the superscript

l is not related to the log likelihood function l(W ).
Unfortunately, there is no closed form solution to maximizing l(W ) with re-

spect to W . Therefore, one common approach is to use gradient ascent, in which
we work with the gradient, which is the vector of partial derivatives. The ith
component of the vector gradient has the form

∂l(W )
∂wi

= Â
l

X
l

i
(Y l� P̂(Y l = 1|Xl,W ))

where P̂(Y l|Xl,W ) is the Logistic Regression prediction using equations (24) and
(25) and the weights W . To accommodate weight w0, we assume an illusory
X0 = 1 for all l. This expression for the derivative has an intuitive interpretation:
the term inside the parentheses is simply the prediction error; that is, the difference
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Y can take only values 0 or 1, so only one of the two 
terms in the expression will be non-zero for any given Yl
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Expressing Conditional 
log Likelihood
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component of the vector gradient has the form

∂l(W )
∂wi

= Â
l

X
l

i
(Y l� P̂(Y l = 1|Xl,W ))

where P̂(Y l|Xl,W ) is the Logistic Regression prediction using equations (24) and
(25) and the weights W . To accommodate weight w0, we assume an illusory
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where X
l

i
denotes the value of Xi for the lth training example. Note the superscript

l is not related to the log likelihood function l(W ).
Unfortunately, there is no closed form solution to maximizing l(W ) with re-

spect to W . Therefore, one common approach is to use gradient ascent, in which
we work with the gradient, which is the vector of partial derivatives. The ith
component of the vector gradient has the form

∂l(W )
∂wi

= Â
l

X
l

i
(Y l� P̂(Y l = 1|Xl,W ))

where P̂(Y l|Xl,W ) is the Logistic Regression prediction using equations (24) and
(25) and the weights W . To accommodate weight w0, we assume an illusory
X0 = 1 for all l. This expression for the derivative has an intuitive interpretation:
the term inside the parentheses is simply the prediction error; that is, the difference
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Maximizing(Condi&onal(log(Likelihood(
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Bad%news:%no%closed8form%solu$on%to%maximize%l(w) 

Good%news:%%l(w)%is%concave%func$on%of%w(!%concave%func$ons%
easy%to%op$mize%(unique%maximum)%
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Bad news: no closed-form solution to maximize l(w)

Good news: l(w) is concave function of w! concave 
functions easy to optimize (unique maximum) 



Optimizing concave/convex functions
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Op&mizing(concave/convex(func&on(

16%

•  Condi$onal%likelihood%for%Logis$c%Regression%is%concave% 
•  Maximum%of%a%concave%func$on%=%minimum%of%a%convex%func$on%

Gradient(Ascent((concave)/(Gradient(Descent((convex)(

Gradient:(

Learning(rate,(η>0(Update(rule:(
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• Conditional likelihood for Logistic Regression is concave

• Maximum of a concave function = minimum of a convex function

Gradient Ascent (concave)/ Gradient Descent (convex)

Learning rate, ƞ>0

Gradient:

Update rule:



Gradient Ascent for Logistic Regression
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Gradient(Ascent(for(Logis&c(
Regression(

17%

•  Gradient%ascent%is%simplest%of%op$miza$on%approaches%
–  e.g.,%Newton%method,%Conjugate%gradient%ascent,%IRLS%(see%Bishop%4.3.3)%

Gradient%ascent%algorithm:%iterate%un$l%change%<%ε#

#

#

For%i=1,…,d,%%

%

%

repeat%%%% Predict%what%current%weight%
thinks%label%Y%should%be%
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Predict what current weight 
thinks label Y should be

• Gradient ascent is simplest of optimization approaches

− e.g. Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)

repeat

For i-1,…,d,

Gradient ascent algorithm: iterate until change < ɛ



Effect of step-size η
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18%

Large%η%%=>%Fast%convergence%but%larger%residual%error%
%%%%%%%%Also%possible%oscilla$ons%

%
Small%η%%=>%Slow%convergence%but%small%residual%error%

%%%%
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Large ƞ → Fast convergence but larger residual error  
                  Also possible oscillations 


Small ƞ → Slow convergence but small residual error 
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Gaussian(Naïve(Bayes(vs.(Logis&c(
Regression(

19%

•  Representa$on%equivalence%
–  But(only(in(a(special(case!!!((GNB%with%class8independent%
variances)(

•  But%what’s%the%difference???%
•  LR(makes(no(assump&ons(about%P(X|Y)%in(learning!!!%
•  Loss(func&on!!!(

–  Op$mize%different%func$ons%!%Obtain%different%solu$ons%

Set(of(Gaussian((
Naïve(Bayes(parameters(

(feature(variance((
independent(of(class(label)(

Set(of(Logis&c((
Regression(parameters(
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• Representation equivalence 

− But only in a special case!!! (GNB with class-independent  

variances)

• But what’s the difference???

Naïve Bayes vs. Logistic 
Regression
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• Representation equivalence 

− But only in a special case!!! (GNB with class-independent  

variances)

• But what’s the difference??? 

• LR makes no assumption about P(X|Y) in learning!!! 
• Loss function!!!


− Optimize different functions! Obtain different solutions

Naïve Bayes vs. Logistic 
Regression



Naïve Bayes vs. Logistic 
Regression
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Consider Y Boolean, Xi continuous X=<X1 … Xd>


Number of parameters:

• NB: 4d+1                                                                       y=0,1

• LR: d+1


Estimation method:

• NB parameter estimates are uncoupled

• LR parameter estimates are coupled

Naïve(Bayes(vs.(Logis&c(Regression(

20%

Consider%Y%boolean,%Xi%con$nuous,%X=<X1%...%Xd>%

%

Number%of%parameters:%

•  NB:%4d%+1 %%%%π, (µ1,y, µ2,y, …,  µd,y),%(σ2
1,y, σ2

2,y, …, σ2
d,y)%%%%y%=%0,1#

•  LR:%d+1 %%%%w0,%w1,%…,%wd%

Es$ma$on%method:%

•  NB%parameter%es$mates%are%uncoupled%

•  LR%parameter%es$mates%are%coupled%

%



Generative vs. Discriminative

Given infinite data (asymptotically), 


   If conditional independence assumption holds, 

      Discriminative and generative NB perform similar. 


   If conditional independence assumption does NOT holds, 

      Discriminative outperforms generative NB.
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[Ng & Jordan, NIPS 2001]

Genera&ve(vs(Discrimina&ve(

21%
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%
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%
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Generative vs. Discriminative
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[Ng & Jordan, NIPS 2001]

Given finite data (n data points, d features), 


Naïve Bayes (generative) requires n = O(log d) to converge to its 
asymptotic error, whereas Logistic regression (discriminative) 
requires n = O(d). 


Why? “Independent class conditional densities” 

• parameter estimates not coupled – each parameter is learnt 

independently, not jointly, from training data.

Genera&ve(vs(Discrimina&ve(

22%

Given%finite(data((n%data%points,%d%features),%
%

%

%

%

%

%

%

%%% %Naïve%Bayes%(genera$ve)%requires%n%=%O(log%d)%to%converge%to%its%%

%asympto$c%error,%whereas%Logis$c%regression%(discrimina$ve)%%

%requires%n%=%O(d).%

%

Why?% %“Independent%class%condi$onal%densi$es”%
%%%%*%parameter%es$mates%not%coupled%–%each%parameter%is%learnt%%

%%%%%%%independently,%not%jointly,%from%training%data. %%

[Ng%&%Jordan,%NIPS%2001]%
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Verdict 

Both learn a linear decision boundary. 

Naïve Bayes makes more restrictive assumptions 

and has higher asymptotic error, 

BUT 


converges faster to its less accurate asymptotic 
error.

Naïve Bayes vs. Logistic 
Regression



Experimental Comparison (Ng-Jordan’01)
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UCI Machine Learning Repository 15 datasets, 8 continuous features, 7 discrete features

More in  
the paper...
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Naïve Bayes Logistic Regression



What you should know
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• LR is a linear classifier

− decision rule is a hyperplane 


• LR optimized by maximizing conditional likelihood

− no closed-form solution

− concave ! global optimum with gradient ascent 


• Gaussian Naïve Bayes with class-independent variances  
representationally equivalent to LR 

− Solution differs because of objective (loss) function 


• In general, NB and LR make different assumptions

− NB: Features independent given class! assumption on P(X|Y)

− LR: Functional form of P(Y|X), no assumption on P(X|Y) 


• Convergence rates

− GNB (usually) needs less data

− LR (usually) gets to better solutions in the limit


