
CMP784: Deep Learning
Spring 2020

PRACTICAL 2

Due on April 29, 2020 (23:59:59)

Instructions. In Practical 2, you will learn all about the convolutional neural networks. In particular, you
will gain a first-hand experience of the training process, understand the architectural details, and familiarize
with transfer learning with deep networks. You are allowed to do this assignment in pairs. If you
wish, you may also do it individually.

Getting set up
In this assignment, you will work on convolutional neural network on artist classification. The starter code
and the dataset for Part 1 can be found at the course website. The details about obtaining the data and
the pretrained models for Part 2 are explained therein in detail.

Part 1 Convolutional Neural Networks1

In this part, you will experiment with a convolutional neural network implementation to perform image
classification. The dataset we will use for this assignment was created by Zoya Bylinskii, and contains 451
works of art from 11 different artists all downsampled and padded to the same size. The task is to identify
which artist produced each image. The original images can be found in the art data/artists directory
included with the practical. The composition of the dataset and a sample painting from each artist are
shown in Table 1.

Table 1: Artists and number of paintings in the dataset.

Artist # Example Artist # Example

Canaletto 20
Paul

Gauguin
37

Claude
Monet

54
Paul

Sandby
36

George
Romney

63
Peter
Paul

Rubens
28

J. M. W.
Turner

70 Rembrandt 40

John
Robert
Cozens

40
Richard
Wilson

23

Paul
Cezanne

40

1Adapted from a homework developed for MIT 6.867 Machine Learning course, offered by Leslie P Kaelbling, Tomas Lozano-
Perez, and Suvrit Sra. Adapted to PyTorch by Sercan Amac.

1



CMP784: Deep Learning
Spring 2020

Figure 1 shows an example of the type of convolutional architecture typically employed for similar image
recognition problems. Convolutional layers apply filters to the image, and produce layers of feature maps.
Often, the convolutional layers are interspersed with pooling layers. The final layers of the network are fully
connected, and lead to an output layer with one node for each of the K classes the network is trying to
detect. We will use a similar architecture for our network.

Figure 1: A typical convolutional architecture. Image taken from
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

The code for performing the data processing and training the network is provided in the starter pack. You
will use PyTorch to implement convolutional neural networks.

In the code, the file DataLoader.py creates a dataset from the artists’ images by downsampling them to
50x50 pixels, and transforming the RGB values to lie within the range [−0.5, 0.5]. The code to train the
network can be found in train.py2. You do not need to understand all of this code to complete the
assignment, but you will need to make changes to the hyperparameters and network structure found in the
CnnModel.py and run.py.

1.1 Convolutional filter receptive field

First, it is important to develop an intuition for how a convolutional layer affects the feature representations
that the network learns. Assume that you have a network in which the first convolutional layer applies a
5× 5 patch to the image, producing a feature map Z1. The next layer of the network is also convolutional;
in this case, a 3 × 3 patch is applied to the feature map Z1 to produce a new feature map, Z2. Assume
the stride used in both cases is 1. Let the receptive field of a node in this network be the portion of the
original image that contributes information to the node (that it can, through the filters of the network,
“see”). What are the dimensions of the receptive field for a node in Z2? Note that you can ignore padding,
and just consider patches in the middle of the image and Z1. Thinking about your answer, why is it effective
to build convolutional networks deeper (i.e. with more layers)?

1.2 Run the Pytorch ConvNet

Study the provided code in the SimpleCNN class in CnnModel.py and the parameters in run.py. Answer
the following questions about the initial implementation:

• How many layers are there? Are they all convolutional? If not, what structure do they have?

• Which activation function is used on the hidden nodes?

• What loss function is being used to train the network?

• How is the loss being minimized?

2Note that this code was optimized for simplicity, not best programming practices.

2

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/


CMP784: Deep Learning
Spring 2020

Now that you are familiar with the code, try training your network! This can be accomplished by simply
running the command python run.py. It should take between 60-120 seconds to train your network for 50
epochs. What is the training accuracy for your network after training? What is the validation accuracy?
What do these two numbers tell you about what your network is doing?

1.3 Add pooling layers

We will now add max pooling layers after each of our convolutional layers. This code has already been
provided for you; all you need to do is switch the pooling flag in the hyperparameters to True, and choose
different values for the pooling filter size and stride. After you applied max pooling, what happened to your
results? How did the training accuracy vs. validation accuracy change? What does that tell you about the
effect of max pooling on your network?

1.4 Regularize your network!

Because this is such a small dataset, your network is likely to overfit the data. Implement the following
ways of regularizing your network. Test each one individually, and discuss how it affects your results.

• Dropout. In PyTorch, this is implemented using the torch.nn.dropout class, which takes a value
called the keep prob, representing the probability that an activation will be dropped out. This value
should be between 0.1 and 0.5 during training, and 0 for evaluation and testing. An example of how
this works is available here. You should add this to your network and try different values to find one
that works well.

• Weight regularization. You should try different optimizers in here. And you should try different
weight decay values for optimizers if it is available.

• Early stopping. Stop training your model after your validation accuracy starts to plateau or decrease
(so that you do not overtrain your model). The number of steps can be controlled through the patience
hyperparameter in run.py.

• Learning Rate Scheduling Learning rate scheduling is an important part of training neural net-
works. There are a lot of techniques for learning rate scheduling. You should try different schedulers
such as StepLR , CosineAnnealing etc.. You may find this link helpful here.

Discuss your results. Which regularization technique was most effective?

1.5 Experiment with your architecture

All those parameters at the top of SimpleCNN still need to be set. You cannot possibly explore all combi-
nations; so try to change some of them individually to get some feeling for their effect (if any). Optionally,
you can explore adding more layers. Report which changes led to the biggest increases and decreases in
performance. In particular, what is the effect of making the convolutional layers have (a) a larger filter size,
(b) a larger stride and (c) greater depth? How does a pyramidal-shaped network in which the feature maps
gradually decrease in height and width but increase in depth (as in Figure 2) compare to a flat architecture,
or one with the opposite shape?

1.6 Optimize your architecture

Based on your experience with these tests, try to achieve the best performance that you can on the validation
set by varying the hyperparameters, architecture, and regularization methods. You can even (optionally)

3

https://pytorch.org/docs/master/nn.html?highlight=nn%20dropout#torch.nn.Dropout
https://github.com/pytorch/examples/blob/master/mnist/main.py
https://pytorch.org/docs/stable/optim.html?highlight=weight%20regularization
https://pytorch.org/docs/stable/optim.html


CMP784: Deep Learning
Spring 2020

Figure 2: Pyramidal architecture with 3 convolutional layers. Figure was adapted from
https://www.udacity.com/course/deep-learning--ud730

try to think of additional ways to augment the data, or experiment with techniques like local response
normalization layers using torch.nn.LocalResponseNorm or the new weight normalization using the imple-
mentation here. Report the best performance you are able to achieve, and the settings you used to obtain
it.

1.7 Test your final architecture on variations of the data

Now that you have optimized your architecture, you are ready to test it on augmented data!

In PyTorch data augmentation can be done dynamically while loading the data using what they call trans-
forms. Note that some of the transforms are already implemented in the file run.py. You can try other
transformations, such as the ones shown in Figure 3 and also try different probabilities for these transforma-
tions. You may find this link helpful. Note that the PyTorch data loader refreshes the data in each epoch
and apply different transformations to the different instances.

Report your performance on each of the transformed datasets. Are you surprised by any of the results?
Which transformations is your network most invariant to, and which lead it to be unable to recognize the
images? What does that tell you about what features your network has learned to use to recognize artists’
images?

Original Translated Brightened Darkened High contrast Low contrast Flipped Inverted

Figure 3: Image transformations used in data augmention.

Part 2 Transfer Learning with Deep Networks3

In this part, you will fine-tune AlexNet model pretrained on ImageNet to recognize faces. For the sake
of simplicity you may use the pretrained AlexNet model provided in PyTorch Hub. You will work with a
subset of the FaceScrub dataset. The subset of male actors is here and the subset of female actors is here.
The dataset consists of URLs of images with faces, as well as the bounding boxes of the faces. The format
of the bounding box is as follows (from the FaceScrub readme.txt file):

3Adapted from a homework developed for Toronto CSC321 Introduction to Machine Learning and Neural Networks course,
offered by Michael Guerzhoy.

4

https://www.udacity.com/course/deep-learning--ud730
https://prateekvjoshi.com/2016/04/05/what-is-local-response-normalization-in-convolutional-neural-networks/
https://pytorch.org/docs/stable/_modules/torch/nn/modules/normalization.html#LocalResponseNorm
https://arxiv.org/abs/1602.07868
https://pytorch.org/docs/stable/_modules/torch/nn/utils/weight_norm.html#weight_norm
https://pytorch.org/docs/stable/torchvision/transforms.html
https://pytorch.org/hub/pytorch_vision_alexnet/
http://vintage.winklerbros.net/facescrub.html
http://www.cs.toronto.edu/~guerzhoy/321/proj1/subset_actors.txt
http://www.cs.toronto.edu/~guerzhoy/321/proj1/subset_actresses.txt


CMP784: Deep Learning
Spring 2020

The format is x1,y1,x2,y2, where (x1,y1) is the coordinate of the top-left corner

of the bounding box and (x2,y2) is that of the bottom-right corner, with (0,0) as

the top-left corner of the image. Assuming the image is represented as a Python

NumPy array I, a face in I can be obtained as I[y1:y2, x1:x2].

You may find it helpful to use and/or modify this script for downloading the image data. Note that you
should crop out the images of the faces and resize them to appropriate size before proceeding further. Make
sure to check the SHA-256 hashes, and make sure to only keep faces for which the hashes match. You should
set aside 70 images per faces for the training set, and use the rest for the test and validation set.

2.1 Train a multilayer perceptron

First resize the images to 28× 28 pixels. Use a fully-connected neural network with a single hidden layer of
size 300 units.

In your report, include the learning curve for the test, training, and validation sets, and the final performance
classification on the test set. Include a text description of your system. In particular, describe how you
preprocessed the input and initialized the weights, what activation function you used, and what the exact
architecture of the network that you selected was. You might get performances close to 80-85% accuracy
rate.

2.2 AlexNet as a fixed feature extractor

Extract the values of the activations of AlexNet on the face images. Use those as features in order to perform
face classification: learn a fully-connected neural network that takes in the activations of the units in the
AlexNet layer as inputs, and outputs the name of the person. In your report, include a description of the
system you built and its performance. It is recommended to start out with only using the conv4 activations.
Using conv4 is sufficient here.

2.3 Visualize weights

Train two networks the way you did in Part 2.1. Use 300 and 800 hidden units in the hidden layer. Visualize
2 different hidden features (neurons) for each of the two settings, and briefly explain why they are interesting.
A sample visualization of a hidden feature is shown in Figure 4.

Figure 4: A sample visualization of a hidden feature.

Note that you probably need to use L2 regularization while training to obtain nice weight visualiza-
tions.

5

http://www.cs.toronto.edu/~guerzhoy/321/proj1/get_data.py


CMP784: Deep Learning
Spring 2020

2.4 Finetuning AlexNet

In Part 2.2, you used the (intermediate) outputs of AlexNet as inputs to a different network. You could
view this as adding more layers to AlexNet (starting from e.g. conv4). Modify the classification layer of
the AlexNet model so that you have the same output dimensions as in Part 2.2. In your report, include an
example of using the network (i.e., plugging in an input face image into a placeholder, and getting the label
as an output.)

2.5 Bonus: Gradient Visualization

Here, you will use Utku Ozbulak’s PyTorch CNN Visualizations Library to visualize the important parts of
the input image for a particular output class. In particular, just select a specific picture of an actor, and
then using your trained network in Part 4, perform Gradient visualization with guided backpropagation to
understand the prediction for that actor with respect to the input image. Comment on your results.

What to turn in

You will be turning in a written report of your solutions in a single PDF file. These reports should be
prepared using LaTeX using NeurIPS style and will be submitted via e-mail. A zip file containing
the corresponding template and style files are provided at the course website. The write-up must be 6-8
pages long. You should present your results in a clear way using well-designed tables, plots and figures.
Do not include your codes.

Grading

The practical will be graded out of 100 points: 0 (no submission), 20 (an attempt at a solution), 40
(a partially correct solution), 60 (a mostly correct solution), 80 (a correct solution), 100 (a particularly
creative or insightful solution). Note that the grading depends on both the content and clarity of
your report.

Late Policy

You may use up to five slip days (in total) over the course of the semester for the three practicals you will
take. Any additional unapproved late submission will be weighted by 0.5 and no submission after five days
will be accepted.

Academic Integrity

All work on assignments must be done individually unless stated otherwise. You are encouraged to discuss
with your classmates about the given practical, but these discussions should be carried out in an abstract
way. That is, discussions related to a particular solution to a specific problem (either in actual code or in
the pseudocode) will not be tolerated. In short, turning in someone else’s work, in whole or in part, as your
own will be considered as a violation of academic integrity. Please note that the former condition also holds
for the material found on the web as everything on the web has been written by someone else.

6

https://github.com/utkuozbulak/pytorch-cnn-visualizations/

