
Koc University - COMP201

COMP 201 -Computer Systems and Programming
Assignment 3(Due Date: 27.11.2020)

Contact TA: Muhammad Aditya Sasongko
msasongko17@ku.edu.tr

In this asignment, you are expected to find the shortest path between two cities in a
given road network using the Floyd-Warshall algorithm.

Each road in this road network connects exactly two cities, and the roads in the network
have various lengths. This road network can be considered as an undirected graph since each
road can be used in either direction, and has the same length in both directions. Between
any two cities, there exist at least one path that connects them, though this path might not
be exactly a road that directly connects the two cities.

You can see an example of such a road network.

Gondor

Mordor

London

Narnia

Naboo

Tatooine
Asgard

Wakanda

30

100

20

50

60

160

70
40

90

Given the road network above, if the question is

What is shortest path between Mordor and Narnia, and how long is it?

the answer is:

Mordor - London - Gondor - Narnia

Length: 120

1. Program Description

• Your program reads the road network information from a file whose name is provided
as a command line argument to your program. The file name is passed to the program

1

mailto:msasongko17@ku.edu.tr

as follow.

./your program input file.txt

• The input file for your program consists of lines, each of which describes a road that
connects any two cities. Each line has three entries, and the entries are separated by
blank spaces. The first and second entries are the names of the cities connected by
the road, and the third entry shows the length of the road in kilometer.

Here is an example of a file that can be an input to your program. This program is
based on the figure of road network depicted above.

1 Mordor London 30
2 London Tatooine 100
3 London Gondor 20
4 London Narnia 160
5 London Naboo 50
6 Gondor Narnia 70
7 Narnia Naboo 90
8 Naboo Asgard 60
9 Narnia Wakanda 40

Listing 1: example of input file

The file will not include the number of lines that it contains.

• After reading the input file, the program will prompt its user to enter the names of
two cities whose shortest distance and path are to be searched.

Program: Enter the cities:

User: Mordor Narnia

The names of the cities are separated by a whitespace blank.

• If a shortest path is found between the two cities, the output is printed in two lines.
The first line shows the sequence of cities in the path, and the second line displays
the length of the path in kilometer. If there are more than one shortest path, any one
of them can be a valid output. For the problem in the example, the output is:

Mordor London Gondor Narnia
120

If it was found that there exists no path, the output is a single line which is as follow.

*** NO PATH ***

• To find the shortest path in the problem, you are expected to utilize Floyd-Warshall
algorithm. This algorithm finds and calculates the length of the shortest paths be-
tween all pairs of vertices in a graph. In your code, this algorithm is executed only
once. However, the shortest paths that it finds can be queried repeatedly by a entering
city names in the command prompt. The algorithm is used in your code as follow.

2

Koc University - COMP201

1 c i t i e s // array o f v e r t i c e s ; each array element conta in s a c i t y name and
i t s index becomes the c i t y ’ s numeric id

2 roads // array o f edges ; each array element conta in s the i d s o f two
c i t i e s connected d i r e c t y by a road and the l ength o f the road

3 c i t y g raph // a two−dimens iona l array that shows the l ength o f the
s h o r t e s t path between any two c i t i e s

4 s ho r t e s t pa th s // a two−dimens iona l array that shows the d i r e c t i o n to the
s ho r t e s t path between any two c i t i e s

5

6 void f loydWarsha l l () {
7 f o r (i n t k = 0 ; k < c i t i e s . c i t y coun t ; k++) {
8 f o r (i n t i = 0 ; i < c i t i e s . c i t y coun t ; i++) {
9 f o r (i n t j = 0 ; j < c i t i e s . c i t y coun t ; j++) {

10 i f ((c i t y g raph [i] [k] == INF) | | (c i t y g raph [k] [j] == INF)) {
11 cont inue ;
12 }
13 i f (c i t y g raph [i] [j] > (c i t y g raph [i] [k] + c i ty g raph [k] [j])) {
14 c i t y g raph [i] [j] = c i ty g raph [i] [k] + c i ty g raph [k] [j] ;
15 s ho r t e s t pa th s [i] [j] = sho r t e s t pa th s [i] [k] ;
16 }
17 }
18 }
19 }
20 }
21

22 i n t main (i n t argc , char ∗argv []) {
23 // Al l o ca t e memory r eg i on s dynamical ly to c i t i e s array and roads array .
24 // Read and parse the input f i l e . I n s e r t the c i t y names and id s to

c i t i e s array .
25 // I n s e r t c i t y i d s and road l eng th s to roads array .
26 // Al l o ca t e memory r eg i on s dynamical ly to c i ty graph , d i s tance , and

sho r t e s t pa th s ar rays .
27 // I n i t i a l i z e the va lue s in c i t y g raph array with road lengths , such

that the value in c i t y g raph [i] [j] i s the road length between c i t i e s
i and j i f the se c i t i e s are d i r e c t l y connected by a road . For c i t i e s
m and n that are not connected d i r e c t l y by a road , the value in
c i t y g raph [m] [n] w i l l be INF , which i s a l a r g e value l i k e 10M, that
i s assumed to be i n f i n i t e .

28 i n i t i a l i s e () ;
29 f l oydWarsha l l () ;
30 whi le (1) {
31 // prompt user to ente r two c i t y names
32 // p r in t the s h o r t e s t path between the two c i t i e s
33 // p r in t the l ength o f the path
34 }
35 re turn 0 ;
36 }

Listing 2: FloydWarshall Algorithm

• A template code is provided that will help you create your final program. Please read
the comments in the template code carefully before working on your code.

3

• You are allowed to use ONLY dynamic memory allocation to create any array in the
code.

• When a dynamically allocated array is no longer used, the memory regions allocated
for it have to be freed.

2. Work Instruction

1. Accept the assignment link: https://classroom.github.com/a/g YOXrS3, and open
the generated private Github repository.

2. Clone the repository locally to your machine or import it to REPL.it.

3. Work on the floyd warshall.c template code by modifying the insert to cities,
printPath, and main functions to add the missing parts that are necessary to make
the code work properly.

4. To ensure that your code works correctly, you can use the provided input.txt file
as an input to your program, and compare your output with the content of the
expected-output.txt file. In the expected-output.txt file, there is a list of in-
puts and outputs that your code is supposed to produce when the input file is the
input.txt file.

5. To ensure that all dynamically allocated memory regions have been freed by the end
of your code, you can use Valgrind to check if there is still unfreed allocated memory.

6. After you finish working on your code, commit and push your code to your repository.

3. Evauation Criteria

You will be graded out of 50 maximal points. The total grade comprises the following
criteria.

• 25 points for code correctness

This criterion covers correctness of printed output, and the code being free from
syntax errors, segmentation faults, stack smashing, infinite loop/recursion, and other
logical errors. Please make sure that your code can handle input files that have much
higher number of cities and roads than the provided input.txt file.

• 10 points for using only dynamic memory allocations for creating arrays

You must not declare arrays statically such as ”int array1[100]”, but, instead, use
functions like malloc, calloc, and realloc in allocating memory regions for the
arrays in your code.

• 10 points for freeing all dynamically allocated memory before the end of your code

• 5 points for coding style and comments

4

https://classroom.github.com/a/g_YOXrS3

Koc University - COMP201

4. Oral Assessment

Important Note: We use automated plagiarism detection to compare your assignment
submission with others and also the code repositories on GitHub and similar sites. Moreover,
we plan to ask randomly selected 10% of students to explain their code verbally after the
assignments are graded. And one may lose full credit if he or she fails from this oral part.

5. Late Submission Policy

• You may use up to 5 grace days (in total) over the course of the semester for the
assignments. That is you can submit your solutions without any penalty if you have
free grace days left.

• Any additional unapproved late submission will be punished (1 day late: 20% off, 2
days late: 40% off) and no submission after 2 days will be accepted.

6. Coding Style Evaluation

We have reserved 5 points for a subjective evaluation of the style of your solutions and
your commenting. Your solutions should be as clean and straightforward as possible. Your
comments should be informative, but they need not be extensive.

7. Academic Integrity

All work on assignments must be done individually unless stated otherwise. You are en-
couraged to discuss with your classmates about the given assignments, but these discussions
should be carried out in an abstract way. That is, discussions related to a particular solution
to a specific problem (either in actual code or in the pseudocode) will not be tolerated. In
short, turning in someone else’s work, in whole or in part, as your own will be considered
as a violation of academic integrity. Please note that the former condition also holds for
the material found on the web as everything on the web has been written by someone else.
See Koç University - Student Code of Conduct.

8. Acknowledgement

This assignment is adapted from Middle East Technical University Course C programming
assignment.

5

https://apdd.ku.edu.tr/en/academic-policies/student-code-of-conduct/

	Program Description
	Work Instruction
	Evauation Criteria
	Oral Assessment
	Late Submission Policy
	Coding Style Evaluation
	Academic Integrity
	Acknowledgement

