

CSCI0330 Intro Computer Systems Doeppner

gdb Cheatsheet
Fall 2019

1 Introduction
This document contains a short list of ​gdb​ commands to help you debug your cs33 programs.
The commands contained within this document are by no means exhaustive. Consult the GDB
guide, the man pages ​(man gdb)​ or the internet if you require further information.

How to run gdb: ​gdb ./executable [arguments]
Be sure to recompile your program every time you make changes.

2 GDB Commands
For each of the following commands, bolded text is required (commands and arguments),
square brackets are shortcuts, and angle brackets are arguments (non bold ones are optional).

layout <window> Opens a terminal interface that displays the source file
while debugging. The ​<window> ​can either be ​src​ to
display C code, ​asm​ for assembly, or ​regs​ for registers.

focus <window> Switches focus between windows. The ​<window>
parameter can be those supplied to ​layout​ or ​cmd​ ​to
change focuns to the command window.

[b]reak <location> Sets a breakpoint on either a function, a line given by a
line number, or the instruction located at a particular
address. The ​<location> ​can be a function name or
filename:line# or *memory address.

[d]elete​ ​<breakpoint #> Removes the indicated breakpoint. To see breakpoint
numbers, run ​info break​, or ​i b​.

[cond]ition​ ​<breakpoint #>
<condition>

Updates the breakpoint indicated by the given number
so that it’s only hit if ​condition​ is true. ​condition​ is
expressed in C syntax, and can use variables and
functions that are in the scope of the breakpoint.

[i]nfo​ <about> Lists information about the argument (​about​), or lists
what possible arguments are if none are provided.

1

CSCI0330 gdb Cheatsheet Fall 2019

[r]un​ <arg1 arg2 ... argn> Runs the loaded executable program with program
arguments ​arg1 ... argn​.

[c]ontinue Resumes execution of a stopped program, stopping
again at the next breakpoint.

[s]tep[i] ​or
[n]ext[i]

Steps through a single line of code. ​step ​steps ​into
function calls while ​next​ skips over them. If ​i ​is
provided, steps over a single instruction as opposed to a
line.

[b]ack[t]race Prints a stack trace, listing each function and its
arguments. This does the same thing as the commands
info stack​ and ​where​.

[f]rame <number>​ ​or
up​ ​or
down

frame​ ​switches context to a previous frame indexed by
<number>​. To see a list of the current stack frames, use
backtrace​. ​up​ ​goes up one frame, and ​down​ goes down
one frame. (especially helpful when using layout)

[q]uit Quits​ gdb.

[p]rint​ ​<expression> Prints the value which the indicated ​expression
evaluates to. There are various formatting arguments to
change how print outputs things.

[x]​/<number><format><unit_si
ze> ​<address>

Examines the data located in memory at address.
● number​ optionally indicates that several

contiguous elements, beginning at ​address​,
should be examined. This is very useful for
examining the contents of an array. By default,
this argument is 1.

● format​ indicates how data should be printed. In
most cases, this is the same character that you
would use in a call to ​printf()​. One exception
is the format i, which prints an instruction rather
than a decimal integer.

● unit_size​ indicates the size of the data to
examine. It can be ​[b]ytes​, ​[h]alfwords​ (2
bytes), ​[w]ords​, or ​[g]iant​ ​words. By default,
this is bytes, which is perfect for examining
instructions.

2

