
COMP 201 - Fall 2021
Assignment 1 - Data Lab: Manipulating Bits

Assigned: 7 October 2021 23:59, Due: 21 October 2021 23:59

Samet Demir (sdemir20@ku.edu.tr) is the lead person for this assignment.

1 Introduction

The purpose of this assignment is to become more familiar with bit-level representations of integers and
floating point numbers. You’ll do this by solving a series of programming “puzzles.” Many of these puzzles
are quite artificial, but you’ll find yourself thinking much more about bits in working your way through
them.

2 Logistics

This is an individual project. All handins are electronic. Clarifications and corrections will be announced
on Blackboard.

3 Handout Instructions

3.1 How to start

I Accept the GitHub Classroom assignment using the link: https://classroom.github.com/a/-XpnTyxU

II Clone the GitHub repository created for you to a Linux machine in which you plan to do your work
(We advice you to do your work on our linux servers [linuxpool.ku.edu.tr]. See Section 8 for details.) :
$ git clone https://github.com/COMP201-Fall21/assignment-1-USER.git
(Replace USER with your GitHub username that you use to accept the assignment)

3.2 Task

There are a number of files in the directory. The only file you will be modifying and turning in is bits.c.
The bits.c file contains a skeleton for each of the 9 programming puzzles. Your assignment is to

complete each function skeleton using only straightline code for the integer puzzles (i.e., no loops or con-
ditionals) and a limited number of C arithmetic and logical operators. Specifically, you are only allowed to
use the following eight operators:

! ˜ & ˆ | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than 8
bits. See the comments in bits.c for detailed rules and a discussion of the desired coding style.

1

https://classroom.github.com/a/-XpnTyxU


4 The Puzzles

This section describes the puzzles that you will be solving in bits.c.

4.1 Bit Manipulations

Table 1 describes a set of functions that manipulate and test sets of bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, and the “Max ops” field gives the maximum number
of operators you are allowed to use to implement each function. See the comments in bits.c for more
details on the desired behavior of the functions. You may also refer to the test functions in tests.c. These
are used as reference functions to express the correct behavior of your functions, although they don’t satisfy
the coding rules for your functions.

Name Description Rating Max Ops
bitAnd(x,y) x&y using only ˜ and | 1 8
isEqual(x,y) return 1 if x == y 2 5
isAsciiDigit(x) return 1 if x is an ASCII codes for characters ’0’ to ’9’ 3 15
logicalNeg(x) implement the logical negation without using ’!’ 4 12

Table 1: Bit-Level Manipulation Functions.

4.2 Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the two’s complement representation of integers. Again,
refer to the comments in bits.c and the reference versions in tests.c for more information.

Name Description Rating Max Ops
tmin(x) return minimum two’s complement integer 1 4
negate(x) return -x 2 5
isGreater(x,y) return 1 if x > y 3 24

Table 2: Two’s Complement Arithmetic Functions

4.3 Floating-Point Operations

For this part of the assignment, you will implement some common single-precision floating-point opera-
tions. In this section, you are allowed to use standard control structures (conditionals, loops), and you may
use both int and unsigned data types, including arbitrary unsigned and integer constants. You may
not use any unions, structs, or arrays. Most significantly, you may not use any floating point data types,
operations, or constants. Instead, any floating-point operand will be passed to the function as having type
unsigned, and any returned floating-point value will be of type unsigned. Your code should perform
the bit manipulations that implement the specified floating point operations.

Table 3 describes a set of functions that operate on the bit-level representations of floating-point num-
bers. Refer to the comments in bits.c and the reference versions in tests.c for more information.

Functions float_abs and float_twice must handle the full range of possible argument values,
including not-a-number (NaN) and infinity. The IEEE standard does not specify precisely how to handle

2



Name Description Rating Max Ops
float_abs(uf) computes |f| 2 10
float_twice(uf) computes 2*f 4 30

Table 3: Floating-Point Functions. Value f is the floating-point number having the same bit representation
as the unsigned integer uf.

NaN’s, and the IA32 behavior is a bit obscure. For both float_abs and float_twice, when the
argument is NaN, return the argument.

The included program fshow helps you understand the structure of floating point numbers. To compile
fshow, switch to the handout directory and type:

$ make

You can use fshow to see what an arbitrary pattern represents as a floating-point number:

$ ./fshow 2080374784

Floating point value 2.658455992e+36
Bit Representation 0x7c000000, sign = 0, exponent = f8, fraction = 000000
Normalized. 1.0000000000 X 2ˆ(121)

You can also give fshow hexadecimal and floating point values, and it will decipher their bit structure.

5 Evaluation

Your score will be computed out of a maximum of 50 points based on the following distribution:

22 Correctness points.

18 Performance points.

5 Effective use of version control points.

5 Style points.

Correctness points. The 9 puzzles you must solve have been given a difficulty rating between 1 and 4,
such that their weighted sum totals to 22. We will evaluate your functions using the btest program, which
is described in the next section. You will get full credit for a puzzle if it passes all of the tests performed by
btest, and no credit otherwise.

Performance points. Our main concern at this point in the course is that you can get the right answer.
However, we want to instill in you a sense of keeping things as short and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we want you to be more clever. Thus, for each function
we’ve established a maximum number of operators that you are allowed to use for each function. This limit
is very generous and is designed only to catch egregiously inefficient solutions. You will receive 2 points
for each correct function that satisfies the operator limit.

Effective use of version control points. You are required to push your changes to the repository fre-
quently. If you only push the final version, even if it is implemented 100% correctly, you will lose a fraction
of the grade because you are expected to learn to use Version Control Systems effectively. You do not have
to push every small piece of change to Github but every meaningful change should be pushed. For example,

3



each of the functions coded and tested can be one commit. For each function, there should be at least one
commit (with proper commit message) that includes just modifications on that function.

Style points. Finally, we’ve reserved 5 points for a subjective evaluation of the style of your solutions
and your commenting. Your solutions should be as clean and straightforward as possible. Your comments
should be informative, but they need not be extensive.

Important Note: We use automated plagiarism detection to compare your assignment submission
with others and also the code repositories on GitHub and similar sites. Moreover, we plan to ask randomly
selected 10% of students to explain their code verbally after the assignments are graded. And one may lose
full credit if he or she fails from this oral part.

Autograding your work

We have included some autograding tools in the handout directory — btest, dlc, and driver.pl — to
help you check the correctness of your work.

• btest: This program checks the functional correctness of the functions in bits.c. To build and
use it, type the following two commands:

$ make
$ ./btest

Notice that you must rebuild btest each time you modify your bits.c file.

You’ll find it helpful to work through the functions one at a time, testing each one as you go. You can
use the -f flag to instruct btest to test only a single function:

$ ./btest -f bitXor

You can feed it specific function arguments using the option flags -1, -2, and -3:

$ ./btest -f bitXor -1 7 -2 10

Check the file README for documentation on running the btest program.

• dlc: This is a modified version of an ANSI C compiler from the MIT CILK group that you can use
to check for compliance with the coding rules for each puzzle. The typical usage is:

$ ./dlc bits.c

The program runs silently unless it detects a problem, such as an illegal operator, too many operators,
or non-straightline code in the integer puzzles. Running with the -e switch:

$ ./dlc -e bits.c

causes dlc to print counts of the number of operators used by each function. Type ./dlc -help
for a list of command line options.

• driver.pl: This is a driver program that uses btest and dlc to compute the correctness and
performance points for your solution. It takes no arguments:

$ ./driver.pl

Your instructors will use driver.pl to evaluate your solution.

4



6 Handin Instructions

As with Assignment 0, we use GitHub for the submissions as follows. Note that we want you to get used
to using a version management system (Git) in terms of writing good commit messages and frequently
committing your work so that you can get most out of Git.

I Commit all the changes you make: $ git commit -a -m "commit message"
Note: please use meaningful commit messages because

II Push your work to GitHub servers: $ git push origin main

7 Advice

• Don’t include the <stdio.h> header file in your bits.c file, as it confuses dlc and results in
some non-intuitive error messages. You will still be able to use printf in your bits.c file for
debugging without including the <stdio.h> header, although gcc will print a warning that you
can ignore.

• The dlc program enforces a stricter form of C declarations than is the case for C++ or that is enforced
by gcc. In particular, any declaration must appear in a block (what you enclose in curly braces) before
any statement that is not a declaration. For example, it will complain about the following code:

int foo(int x)
{

int a = x;
a *= 3; /* Statement that is not a declaration */
int b = a; /* ERROR: Declaration not allowed here */

}

• Use linuxpool.ku.edu.tr linux servers to test your code in order to avoid compatibility issues.

8 How to use linuxpool.ku.edu.tr linux servers 1

I Connect to KU VPN (If you are connected to the KU network, you can skip this step.)
See for details: https://confluence.ku.edu.tr/kuhelp/ithelp/it-services/network-and-wireless/vpn-access

II Connect to linuxpool.ku.edu.tr server using SSH (Replace USER with your Koç University username):
$ ssh USER@linuxpool.ku.edu.tr
(It will ask your password, type your Koç University password.)

III When you are finished with your work, you can disconnect by typing: $ exit

Your connection to the server may drop sometimes. In that case, you need to reconnect.
We advice you to watch the following video about the usage of SSH, which is used to connect re-

mote servers, and SCP, which is used to transfer files between remote servers and your local machine:
https://www.youtube.com/watch?v=rm6pewTcSro

1For details, please see the guide on linuxpool that we have announced on Blackboard

5

https://confluence.ku.edu.tr/kuhelp/ithelp/it-services/network-and-wireless/vpn-access
https://www.youtube.com/watch?v=rm6pewTcSro


Figure 1: How to connect and disconnect using SSH

9 Academic Integrity

All work on assignments must be done individually unless stated otherwise. You are encouraged to discuss
with your classmates about the given assignments, but these discussions should be carried out in an abstract
way. That is, discussions related to a particular solution to a specific problem (either in actual code or in
the pseudocode) will not be tolerated. In short, turning in someone else’s work, in whole or in part, as your
own will be considered as a violation of academic integrity. Please note that the former condition also holds
for the material found on the web as everything on the web has been written by someone else. See Koç
University - Student Code of Conduct.

10 Late Submission Policy

You may use up to 7 grace days (in total) over the course of the semester for the assignments. That
is you can submit your solutions without any penalty if you have free grace days left. Any additional
unapproved late submission will be punished (1 day late: 20% off, 2 days late: 40% off) and no submission
after 2 days will be accepted.

Acknowledgement

This assignment is adapted from ”Carnegie Mellon University, CS 15-213 Course - Data Lab Assignment”.

6

https://apdd.ku.edu.tr/en/academic-policies/student-code-of-conduct/
https://apdd.ku.edu.tr/en/academic-policies/student-code-of-conduct/

	Introduction
	Logistics
	Handout Instructions
	How to start
	Task

	The Puzzles
	Bit Manipulations
	Two's Complement Arithmetic
	Floating-Point Operations

	Evaluation
	Handin Instructions
	Advice
	How to use linuxpool.ku.edu.tr linux servers For details, please see the guide on linuxpool that we have announced on Blackboard
	Academic Integrity
	Late Submission Policy

