
Memory Organization

Fall 2023
COMP201

 Lab 8

Yusuf BAYINDIR

Yusuf BAYINDIR

Yusuf BAYINDIR

2

Recall: Memory Hierarchy

Why do we need Memory Hierarchies?

● Fast storage technologies cost more per byte, have less

capacity, and require more power (heat!).

Some fundamental properties of computer systems

Fundamental idea of a memory hierarchy

● The gap between CPU and main memory speed is

widening.

● Locality comes to the rescue!

These fundamental properties of hardware and software

suggest an approach for organizing memory and storage

systems known as a memory hierarchy.

● For each k, the faster, smaller device at level k

serves as a cache for the larger, slower device at

level k+1.

● Because of locality, programs tend to access the

data at level k more often than they access the

data at level k+1.

(Ideal): The memory hierarchy creates a large pool of

storage that costs as much as the cheap storage near the

bottom, but that serves data to programs at the rate of the

fast storage near the top.

Caching in Memory Hierarchy

● Cache Size: 1 MB
● Block Size: 64 Bytes
● 4-way Set-Associative
● 36-bit byte-addressable address space.

Complete the TIO address breakdown:

Cache Example #1: TIO Breakdown

12 636 - 12 - 6

● Cache Size: 16 KB
● Line Size: 32 Bytes

What would be the values of each of the three fields for the following addresses?

Cache Example #2: TIO Breakdown

Assume a system with the following properties:

Address Tag Index Offset

0x00B248AC

0x5002AEF3

0x10203000

0x0023AF7C

● Cache Size: 16 KB
● Line Size: 32 Bytes

What would be the values of each of the three fields for the following addresses?

Cache Example #2: TIO Breakdown

Assume a system with the following properties:

Address Tag Index Offset

0x00B248AC 0x2C9 0x45 0xC

0x5002AEF3 0x1400A 0x177 0x13

0x10203000 0x4080 0x180 0x0

0x0023AF7C 0x8E 0x17B 0x1C

● Simulates usage of Cache

● Step-by-step explanation

● Adjustable system parameters

● Cache hits, misses, counts and history

● Physical Memory and Cache Memory
can be visualized

https://courses.cs.washington.edu/courses/cse351/cachesim/

Cache Simulator

https://courses.cs.washington.edu/courses/cse351/cachesim/

Cache Simulator: Writing 0x13 at 0x22

● Cold (compulsory) miss

○ Cold misses occur because the cache starts empty and this is the first reference to the block.

● Capacity miss

○ Occurs when the set of active cache blocks (working set) is larger than the cache.

● Conflict miss

○ Most catches limit blocks at level k+1 to a small subset (sometimes a singleton) of the block positions at

level k.

■ E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

○ Conflict misses occur when the level k cache is large enough, but multiple data objects all map to the

same level k block.

■ E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

Recall: General Caching Concepts: 3 Types of Cache Misses

● Cache access time: 10 ns
● Cache miss rate: 1%
● Main Memory access time: 200 ns

EAT = T
cache

 + (1-Hit Rate) * T
Memory

= 10 + 0.01 * 200
= 10 + 2
= 12 ns

Cache Example #3: Effective Access Time

Find the EAT for a system with the following properties:

Locality in Programs

● Temporal locality:
○ Recently referenced items are likely

be referenced in the near future.
● Spatial locality:

○ Items with nearby addresses tend to
be referenced close together in time.

Principle of Locality:

● Programs tend to use data and
instructions with addresses near or
equal to those they have used
recently.

Temporal or Spatial Locality?

Locality in Programs

● Temporal locality:
○ Recently referenced items are likely

be referenced in the near future.
● Spatial locality:

○ Items with nearby addresses tend to
be referenced close together in time.

Principle of Locality:

● Programs tend to use data and
instructions with addresses near or
equal to those they have used
recently.

Temporal or Spatial Locality?

Both!

Recall: Spatial Locality in Arrays

C arrays are allocated in row-major order

Good Locality?

No! (Stride-N pattern)

Recall: Spatial Locality in Arrays

C arrays are allocated in row-major order

Good Locality?

Recall: Spatial Locality in Arrays

Good Locality?

No!

Locality in Data

Good Locality?

Locality in Data

How about this one?

Concluding Observations
Programmer can optimize for cache performance

● How data structures are organized
● How data are accessed

○ Nested loop structure
○ Blocking is a general technique

All systems favor “cache friendly code”

● Getting absolute optimum performance is very platform specific
○ Cache sizes, line sizes, associatives, etc.

● Can get most of the advantage with generic code
○ Keep working set reasonably small (temporal locality)
○ Use small strides (spatial locality)

Callgrind

https://valgrind.org/

https://valgrind.org/

Code Profiling

● A code profiler is a tool to analyze a program and report on its resource

usage

○ "resource" could be memory, CPU cycles, network bandwidth, and so on

● The program is run under control of a profiling tool
● During application development, a common step is to improve runtime performance

using profiling tools.

● To not waste time on optimizing functions which are rarely used, one needs to

know in which parts of the program most of the time is spent.

● Some example:

○ Callgrind, GProf, JConsol, CLR

Valgrind
the Valgrind framework supports a variety of runtime analysis tools

● memcheck

○ detects memory errors/leaks

● massif

○ reports on heap usage

● helgrind

○ detects multithreaded race conditions

● callgrind/cachegrind

○ profiles CPU/cache performance

Callgrind/cachegrind

● The Valgrind profiling tools are cachegrind and callgrind

● The cachegrind tool simulates the L1/L2 caches and counts cache

misses/hits.
● The callgrind tool counts function calls and the CPU instructions executed within each call

and builds a function callgraph

● The callgrind tool includes a cache simulation feature adopted from cachegrind, so you
can actually use callgrind for both CPU and cache profiling.

Basic Usage of Callgrind
● First, we need to compile our program with debugging enabled

○ gcc -g -ggdb name.c -o name.out
● You first need to run your program under Valgrind and explicitly request the callgrind tool (if

unspecified, the tool defaults to memcheck)

 valgrind --tool=callgrind [possible options] name.out
program-arguments

● The result will be stored on the files callgrind.out.PID, where PID will be the process
identifier.

Process identifier

Number of Instruction read (Ir)

● The callgrind output file is a text file, but its

contents are not intended for you to read

yourself.

● You can properly read the output using

callgrind_annotate

○ callgrind_annotate --auto=yes
callgrind.out.PID

● The --auto=yes option report counts for

each C statement

● Do not forget to replace PID by the

actual number.

Sorts a 1000-member array using selection sortBasic Usage of Callgrind
Counting instructions with callgrind

● The Ir counts are basically the count of

assembly instructions executed.

● By default, the counts are exclusive

○ The counts for a function include only the
time spent in that function and not in the
functions that it calls.

● By using exclusive counts you can detect the

bottlenecks.

● Here, the work is concentrated in the loop to find
the min value

Interpreting the results

Adding in cache simulation

● Invoke valgrind by --simulate-cache=yes

valgrind --tool=callgrind --simulate-cache=yes name.out args

● The cache simulator models a machine with a split L1 cache (separate instruction I1 and

data D1), backed by a unified second-level cache (L2).

● Similar to the previous example, callgrind_annotate should be used to interpret the

output.

Basic Usage of Callgrind

Ir: I cache reads (instructions executed)

I1mr: I1 cache read misses (instruction wasn't in I1 cache but was
in L2)

I2mr: L2 cache instruction read misses (instruction wasn't in I1 or
L2 cache, had to be fetched

Dr: D cache reads (memory reads)

D1mr: D1 cache read misses (data location not in D1 cache, but
in L2)
D2mr: L2 cache data read misses (location not in D1 or

L2) Dw: D cache writes (memory writes)

D1mw: D1 cache write misses (location not in D1 cache, but in L2)

D2mw: L2 cache data write misses (location not in D1 or
L2)

It sounds like we have a cache friendly code.

Callgrind Example

Ir: I cache reads (instructions executed)

I1mr: I1 cache read misses (instruction wasn't in I1 cache
but was in L2)

I2mr: L2 cache instruction read misses (instruction wasn't in I1
or L2 cache, had to be fetched

Dr: D cache reads (memory reads)

D1mr: D1 cache read misses (data location not in D1 cache,
but in L2)
D2mr: L2 cache data read misses (location not in D1 or

L2) Dw: D cache writes (memory writes)

D1mw: D1 cache write misses (location not in D1 cache, but
in
L2)

D2mw: L2 cache data write misses (location not in D1 or L2)

Callgrind Example

Additional Points

● L2 misses are much more expensive than L1 misses, so pay attention to

passages with high D2mr or D2mw counts.

● Even a small number of misses can be quite important, as a L1 miss will

typically cost around 5-10 cycles, an L2 miss can cost as much as 100-200

cycles

● Callgrind cannot detect the bottleneck of your program if it is related to file I/O

● Try to examine different paths of your program

References

1. Some of the slides are borrowed from materials in Stanford CS107, CMU15-213 and CS201,
Portland State University

2. https://stackoverflow.com/questions/16699247/what-is-a-cache-friendly-code
3. https://www.valgrind.org/docs/manual/manual.html
4. The Cache Simulator and its demos are borrowed from materials in University of

Washington,
CSE 351

https://stackoverflow.com/questions/16699247/what-is-a-cache-friendly-code
https://www.valgrind.org/docs/manual/manual.html

