Code Optimization - Lab 9 | W% xoc
COMP201 Fall 2023 4y UNIVERSITY

What is Code Optimization?

e A program transformation technique to:
o improve the intermediate code,
o make it consume fewer resources
(CPU, memory),
o reduce the size of the code,

o speed up execution.

e |tis not optimizing an algorithm.

o Itis beyond our scope for now.

W%, xoc
S UNIVERSITY

YOU DON'T HAVE
T0 "OPTIMIZE"

IRVOUINRITE IT OPTIMAL
ININITHEFIRST PLACE

Types of Code Optimization

e Machine Independent Optimization

e Machine Dependent Optimization

A% xoc
S UNIVERSITY

Types of Code Optimization

Machine Independent Optimization

e Improve the intermediate code to get a better

target code.

e Does not involve any CPU registers, or

absolute memory locations.

A% xoc
S UNIVERSITY

do{
item = 10;
value = value + item;

}
while (value<100) ;

// this code involves repeated
// assignment of ‘item’. Instead:

Types of Code Optimization

Machine Independent Optimization

e Improve the intermediate code to get a better

target code.

e Does not involve any CPU registers, or

absolute memory locations.

A% xoc
S UNIVERSITY

do{

item = 10;

value = value + item;
}
while (value<100) ;

// this code involves repeated
// assignment of ‘item’. Instead:

item = 10;
do{
value = value + item;
}
while (value<100) ;

Types of Code Optimization

Machine Dependent Optimization
e Goal: Take maximum advantage of the memory hierarchy.

e After the target code is generated,

o optimization is done according to the target machine architecture.

e Involves CPU registers,

e May have absolute memory references, rather than relative references

A% xoc
S UNIVERSITY

Compiler Optimizations

GCC supports automatic optimizations.

Without any optimization option, the compiler’s goal is to reduce the cost of compilation
and to make debugging produce the expected results.

Turning on optimization flags makes the compiler attempt to improve the performance and/or
code size at the expense of compilation time and possibly the ability to debug the program.

Most optimizations are completely disabled at -00 or if an -0 level is not set on the command
line, even if individual optimization flags are specified. Similarly, -Og suppresses many
optimization passes.

A% koc

KN

UNIVERSITY

Compiler Optimizations

-0 or -O1 option (Optimize). the compiler tries to reduce code size and execution time, without
performing any optimizations that take a great deal of compilation time.

-0O2 (Optimize even more). GCC performs nearly all supported optimizations that do not involve a
space-speed tradeoff. As compared to -O, this option increases both compilation time and the
performance of the generated code.

-O3 (Optimize yet more). -O3 turns on all optimizations specified by -O2 and also more options
such as loop unrolling and jamming.

-Os (Optimize for size). -Os enables all -O2 optimizations except those that often increase code
size.

A% koc

KN

UNIVERSITY

Machine Independent Techniques

e Techniques are various and vast

e Be careful about time you spend on optimization

e With practice, you can write your codes optimized in the first place and optimize it further after

having a base code

e Profiling is an invaluable tool
e In practice you should re-use already existing optimized codes

e Compilers offer various optimizations

A% xoc
S UNIVERSITY

Inlining

C functions can be recoded as macros
o to obtain similar speedup on
compilers with no inlining

capability.
This should be done after the code is

completely debugged.

No function call
o Fewer instructions!

% koc

KN

UNIVERSITY

int foo(a, b)
{
a=a - b;
b++;
a=a* b;
return a;

Can be replaced by:

#define foo(a, b)

(((a)-(b)) * ((b)+1))

Avoid Pointer Dereference in Loop

e Pointer dereferencing creates lots of trouble in memory. So better assign it to some

temporary variable and then use that temporary variable in the loop.

int a = 0;
int a = 0;

int* iptr = &a;
int* iptr = &a;

// Dereferencing pointer outside loop & use temp var
for (int i =1; i < 11; ++i) { int temp = *iptr;
*¥iptr = *iptr + i; for (int i = 1; i < 11; ++i) {

} temp = temp + i;

}
// Updating pointer using final value of temp

*iptr = temp;

%, xoc
S UNIVERSITY

Avoid Pointer Dereference in Loop

e Pointer dereferencing creates lots of trouble in memory. So better assign it to some
temporary variable and then use that temporary variable in the loop.

struct Warrior{

void main() {
double damage; double HP;

struct Warrior* herol;

} struct Warrior* enemies|[n];
;

. . double damage = herol->damage;
void main () {

struct Warrior* herol; for (int i = 0; i < n; ++i) {
struct Warrior* enemies[n]; enemies[i] ->HP -= damage;
for (int i = 0; i < n; ++i) { } }

enemies[i]->HP -= herol->damage;

%, xoc
S UNIVERSITY

Loop Unrolling

e gcc -funroll-loops Will do this.

But if you know that yours doesn't, you can
change your source code a bit to get the same

effect.

e Thisway, thetestfori < 100 (and jump to
beginning of for) is done only 21 times
rather than 101

%, xoc
S UNIVERSITY

for (i = 0; 1 < 100; i++){

do_stuff (i) ;

Can be replaced by:

for (1 = 0; i < 100;){
do_stuff(i); i++;
do_stuff(i); i++;
do_stuff(i); i++;
do_stuff(i); i++;

do_stuff(i); i++;

Loop Unrolling Caveat

e Anunrolled loop is larger than the "rolled" version.
o So, may no longer fit into the instruction
cache

o This will make the unrolled version slower.

e Also, in this example, the call to do_stuff ()
overshadows the cost of the loop.

o So any savings from loop unrolling are

insignificant in comparison to what you'd

achieve from inlining in this case.

A% xoc
S UNIVERSITY

for (i = 0; i < 100; i++){

do_stuff (i) ;

Can be replaced by:

for (1 = 0; 1 < 100;){
do_stuff(i); i++;
do_stuff(i); i++;
do_stuff(i); i++;
do_stuff(i); i++;

do_stuff(i); i++;

Code Motion

void foo(double *a, double *b,long i, long n) {
e Replace redundant computations in long j;
aloop for (j = 0; J < n; j++)
a[n*i+j] = b[]];

e Move the computation outside the

loop Can be replaced by:

void foo(double *a, double *b,long i, long n) {

long j;
int ni = n¥*i;
for (j = 0; j < n; j++)

a[ni+j] = b[]l’

A% koc
Y UNIVERSITY

Share Common Subexpressions

/* Sum neighbors of i,j */

up = val[(i-1)*n + Jj 1; 3 multiplications
down = val[(i+l)*n + 3J 1;

>

left = val[i*n + j-1];

right = val[i*n + j+1];

sum = up + down + left + right;

e Especially problematic if this function is
getting called inside a loop

A% koc
S UNIVERSITY

leaq 1(%rsi), %rax # i+l
leag -1(%rsi), %r8 # i-1
imulg %$rcx, %$rsi # i*n
imulg %$rcx, %$rax # (i+l)*n
imulqg %rcx, %r8 # (i-1)*n
addg %rdx, %rsi # i*n+j
addg %$rdx, %rax # (i+1l)*n+j

addg %rdx, %r8 # (i-1)*n+j

Share Common Subexpressions

/* Sum neighbors of i,j */

imulg %$rcx, %$rsi # i*n

long inj = i*n + j; 1 multiplication addq %$rdx, %rsi # i*n+j
up = val[inj - n]; | > movqg %rsi, $rax # i*n+j
down = val[in]j + n]; . .
subg %rcx, %rax # i*n+j-n
left = val[inj - 1];
right = val[inj + 1]; leaqg (%rsi,%rcx), %$rcx # i*n+j+n
sum = up + down + left +
right;
e Reuse portions of expressions

WS

GCC will do this with —O1

KOC
UNIVERSITY

Reduction in Strength

e Replace costly operations with simpler ones

e E.g. replace Shift/add with multiply/divide

o Eg =x<< 4; // is equivalent to x * 16;

A% xoc
S UNIVERSITY

Loop Jamming

Combine adjacent loops which
loop over the same range of the
same variable.

Incrementing and testing of i is
done only half as often

Assuming nothing in the second
loop indexes forward
© e.garray[i+3].

A% koc

KN

UNIVERSITY

for (i = 0; i < MAX; i++)
for (j = 0; j < MAX; j++)

af[i] [3]
for (i = 0; i < MAX; i++)

af[i] [1]

= 0.0;

=1.0;

Can be replaced by:

for (i = 0; i < MAX; i++){

for (j = 0;

af[i]l [3] =

af[i] [1]

1.0;

j < MAX;

0.0;

/* initialize 2d array to O's */

/* put 1's along the diagonal */

j++)
/* initialize 2d array to 0's */

/* put 1's along the diagonal */

Loop Inversion

Some machines have a special instruction for:

decrement and compare with 0.

Positive values interprets as True while
negatives interpret as False

Assuming the loop is insensitive to
direction:

A% koc
Y UNIVERSITY

for (i = 1; i < MAX; i++){

Can be replaced by:

for (i = MAX; i--;){

Table Lookup

long factorial (int i) {

, , if (1 ==0

e Consider using lookup tables ()
especially if a computation is return 1:
iterative or recursive.

o e.g. convergent series or else
factorial. return i * factorial(i - 1);
}
e Ifthe table is too large to type, you can Can be replaced by:

have some initialization code compute

all the values on startup static long factorial table[] =

{1, 1, 2, 6, 24, 120, 720 /* etc */};
long factorial (int i) {

return factorial table[i];

%, xoc
S UNIVERSITY

Stack Usage

e Atypical cause of stack-related problems is having large arrays as local variables.

e In that case the solution is to rewrite the code so it can use a static or global array, or perhaps
allocate it from the heap.

e Similar solution applies to functions which have large structs as locals or parameters.

A% xoc
S UNIVERSITY

Recap: Struct Padding

e Generally when a struct is stored in RAM, it is
padded to correspond to the word-size of the
architecture of the CPU.

e Additional padding is provided for arrays to make the
first bytes of each item in the array, a multiple of the
item size.

A% xoc
S UNIVERSITY

/* Assume 32 bit Architecture
Sizeof foo = 12 bytes */

struct foof{
char c;
int x;
short s;

};

Reduce Padding

/* sizeof = 64 bytes /* sizeof = 48 bytes

*/ */
e You can save a tiny amount of space by Struc‘f:lf°z { Ztr;it f°°b{
. .. . oa a; ouble ;
arranging similarly-typed fields together double b double Qs
in a structure float c: long £
o with the most restrictively double d; long h;
aligned types first. short e; float a;
long £; float c;
e Atypical use of char or short short g; int J;
variables is to hold a flag or mode bit. long b int Li
char i; short e;
int I short g;
e You can combine several of these flags char k; char i;
into one byte using bit-fields at the cost int 1; char k;

of data portability. }i }i

%, xoc
S UNIVERSITY

References

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://www.cs.cmu.edu/afs/cs/academic/class/15213-s19/www/schedule.html

%,
~
N

/I

w1y

a

KOC
UNIVERSITY

N/
%
\

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://www.cs.cmu.edu/afs/cs/academic/class/15213-s19/www/schedule.html

(base) 192:sort doga$ cat makefile
all: compile run

compile:
gcc main.c —-o main

run:
./main
(base) 192:sort doga$ make compile
gcc main.c —-o main
(base) 192:sort doga$ make run
./main
Execution time for the normal bubble sort is 28.640430 seconds
Execution time for the selection sort is 10.288672 seconds
Execution time for the Optimized bubble sort is 26.750361 seconds
(base) 192:sort doga$ [

