
Code Optimization - Lab 9
COMP201 Fall 2023

What is Code Optimization?
● A program transformation technique to:

○ improve the intermediate code,

○ make it consume fewer resources

(CPU, memory),

○ reduce the size of the code,

○ speed up execution.

● It is not optimizing an algorithm.

○ It is beyond our scope for now.

2

Types of Code Optimization

3

● Machine Independent Optimization

● Machine Dependent Optimization

Types of Code Optimization

4

Machine Independent Optimization

● Improve the intermediate code to get a better

target code.

● Does not involve any CPU registers, or

absolute memory locations.

do{
item = 10;
value = value + item;

}
while(value<100);

// this code involves repeated
// assignment of ‘item’. Instead:

Types of Code Optimization

5

Machine Independent Optimization

● Improve the intermediate code to get a better

target code.

● Does not involve any CPU registers, or

absolute memory locations.

do{
item = 10;
value = value + item;

}
while(value<100);

// this code involves repeated
// assignment of ‘item’. Instead:

item = 10;
do{

value = value + item;
}
while(value<100);

Types of Code Optimization

6

Machine Dependent Optimization

● Goal: Take maximum advantage of the memory hierarchy.

● After the target code is generated,

○ optimization is done according to the target machine architecture.

● Involves CPU registers,

● May have absolute memory references, rather than relative references

Compiler Optimizations

7

● GCC supports automatic optimizations.

● Without any optimization option, the compiler’s goal is to reduce the cost of compilation
and to make debugging produce the expected results.

● Turning on optimization flags makes the compiler attempt to improve the performance and/or
code size at the expense of compilation time and possibly the ability to debug the program.

● Most optimizations are completely disabled at -O0 or if an -O level is not set on the command
line, even if individual optimization flags are specified. Similarly, -Og suppresses many
optimization passes.

Compiler Optimizations

8

● -O or -O1 option (Optimize). the compiler tries to reduce code size and execution time, without
performing any optimizations that take a great deal of compilation time.

● -O2 (Optimize even more). GCC performs nearly all supported optimizations that do not involve a
space-speed tradeoff. As compared to -O, this option increases both compilation time and the
performance of the generated code.

● -O3 (Optimize yet more). -O3 turns on all optimizations specified by -O2 and also more options
such as loop unrolling and jamming.

● -Os (Optimize for size). -Os enables all -O2 optimizations except those that often increase code
size.

Machine Independent Techniques

9

● Techniques are various and vast

● Be careful about time you spend on optimization

● With practice, you can write your codes optimized in the first place and optimize it further after

having a base code

● Profiling is an invaluable tool

● In practice you should re-use already existing optimized codes

● Compilers offer various optimizations

Inlining
● C functions can be recoded as macros

○ to obtain similar speedup on

compilers with no inlining

capability.

● This should be done after the code is

completely debugged.

● No function call
○ Fewer instructions!

10

int foo(a, b)
{

a = a - b;
b++;
a = a * b;
return a;

}

Can be replaced by:

#define foo(a, b) (((a)-(b)) * ((b)+1))

Avoid Pointer Dereference in Loop

11

● Pointer dereferencing creates lots of trouble in memory. So better assign it to some

temporary variable and then use that temporary variable in the loop.

int a = 0;

int* iptr = &a;

for (int i = 1; i < 11; ++i) {

*iptr = *iptr + i;

}

int a = 0;

int* iptr = &a;

// Dereferencing pointer outside loop & use temp var

int temp = *iptr;

for (int i = 1; i < 11; ++i) {

 temp = temp + i;

}

// Updating pointer using final value of temp

*iptr = temp;

Avoid Pointer Dereference in Loop

12

● Pointer dereferencing creates lots of trouble in memory. So better assign it to some

temporary variable and then use that temporary variable in the loop.

struct Warrior{

double damage; double HP;

...

};

void main(){

struct Warrior* hero1;

struct Warrior* enemies[n];

for (int i = 0; i < n; ++i) {

enemies[i]->HP -= hero1->damage;

}
}

void main(){

struct Warrior* hero1;

struct Warrior* enemies[n];

double damage = hero1->damage;

for (int i = 0; i < n; ++i) {

enemies[i]->HP -= damage;

}
}

Loop Unrolling

13

● gcc -funroll-loops will do this.

 But if you know that yours doesn't, you can

change your source code a bit to get the same

effect.

● This way, the test for i < 100 (and jump to

beginning of for) is done only 21 times

rather than 101

for (i = 0; i < 100; i++){

do_stuff(i);

}

Can be replaced by:

for (i = 0; i < 100;){

do_stuff(i); i++;

do_stuff(i); i++;

do_stuff(i); i++;

do_stuff(i); i++;

do_stuff(i); i++;

}

Loop Unrolling Caveat

14

for (i = 0; i < 100; i++){

do_stuff(i);

}

Can be replaced by:

for (i = 0; i < 100;){

do_stuff(i); i++;

do_stuff(i); i++;

do_stuff(i); i++;

do_stuff(i); i++;

do_stuff(i); i++;

}

● An unrolled loop is larger than the "rolled" version.

○ So, may no longer fit into the instruction

cache

○ This will make the unrolled version slower.

● Also, in this example, the call to do_stuff()

overshadows the cost of the loop.

○ So any savings from loop unrolling are

insignificant in comparison to what you'd

achieve from inlining in this case.

Code Motion

15

void foo(double *a, double *b,long i, long n){

long j;

for (j = 0; j < n; j++)

a[n*i+j] = b[j];

}

void foo(double *a, double *b,long i, long n){

long j;

int ni = n*i;
for (j = 0; j < n; j++)

a[ni+j] = b[j];

}

● Replace redundant computations in

a loop

● Move the computation outside the

loop Can be replaced by:

Share Common Subexpressions

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];

down = val[(i+1)*n + j];

left = val[i*n + j-1];

right = val[i*n + j+1];

sum = up + down + left + right;

leaq 1(%rsi), %rax # i+1

leaq -1(%rsi), %r8 # i-1

imulq %rcx, %rsi # i*n

imulq %rcx, %rax # (i+1)*n

imulq %rcx, %r8 # (i-1)*n

addq %rdx, %rsi # i*n+j

addq %rdx, %rax # (i+1)*n+j

addq %rdx, %r8 # (i-1)*n+j

3 multiplications

16

● Especially problematic if this function is
getting called inside a loop

Share Common Subexpressions

/* Sum neighbors of i,j */

long inj = i*n + j;
up = val[inj - n];

down = val[inj + n];

left = val[inj - 1];

right = val[inj + 1];
sum = up + down + left +
right;

imulq %rcx, %rsi # i*n

addq %rdx, %rsi # i*n+j

movq %rsi, %rax # i*n+j

subq %rcx, %rax # i*n+j-n

leaq (%rsi,%rcx), %rcx # i*n+j+n

1 multiplication

17

● Reuse portions of expressions

● GCC will do this with –O1

Reduction in Strength

18

● Replace costly operations with simpler ones

● E.g. replace Shift/add with multiply/divide

○ E.g x << 4; // is equivalent to x * 16;

Loop Jamming

19

for (i = 0; i < MAX; i++) /* initialize 2d array to 0's */
for (j = 0; j < MAX; j++)

a[i][j] = 0.0;

for (i = 0; i < MAX; i++) /* put 1's along the diagonal */

a[i][i] = 1.0;

for (i = 0; i < MAX; i++){

for (j = 0; j < MAX; j++)

a[i][j] = 0.0;

a[i][i] = 1.0;

/* initialize 2d array to 0's */

/* put 1's along the diagonal */

}

Can be replaced by:

● Combine adjacent loops which
loop over the same range of the
same variable.

● Incrementing and testing of i is
done only half as often

● Assuming nothing in the second
loop indexes forward

○ e.g array[i+3].

Loop Inversion

20

for (i = 1; i < MAX; i++){

...

}

Can be replaced by:

for (i = MAX; i--;){

...

}

Some machines have a special instruction for:

 decrement and compare with 0.

Positive values interprets as True while
negatives interpret as False

Assuming the loop is insensitive to
direction:

Table Lookup

21

long factorial(int i){

 if (i == 0)

return 1;

else

return i * factorial(i - 1);

}

static long factorial_table[] =

{1, 1, 2, 6, 24, 120, 720 /* etc */};

long factorial(int i){

return factorial_table[i];

}

Can be replaced by:

● Consider using lookup tables
especially if a computation is
iterative or recursive.

○ e.g. convergent series or
factorial.

● If the table is too large to type, you can
have some initialization code compute
all the values on startup

Stack Usage

22

● A typical cause of stack-related problems is having large arrays as local variables.

● In that case the solution is to rewrite the code so it can use a static or global array, or perhaps
allocate it from the heap.

● Similar solution applies to functions which have large structs as locals or parameters.

Recap: Struct Padding

struct foo{
char c;

 int x;
 short s;
};

● Generally when a struct is stored in RAM, it is
padded to correspond to the word-size of the
architecture of the CPU.

● Additional padding is provided for arrays to make the
first bytes of each item in the array, a multiple of the
item size.

23

4 5 6 7
 x

8 9
 s

 10 11
 padding

0
c

1 2 3
 padding

/* Assume 32 bit Architecture
 Sizeof foo = 12 bytes */

Reduce Padding

24

● You can save a tiny amount of space by
arranging similarly-typed fields together
in a structure

○ with the most restrictively
aligned types first.

● A typical use of char or short
variables is to hold a flag or mode bit.

● You can combine several of these flags
into one byte using bit-fields at the cost
of data portability.

/* sizeof = 64 bytes
*/
struct foo {

float a;
double b;
float c;
double d;
short e;
long f;
short g;
long h;
char i;
int j;
char k;
int l;

};

/* sizeof = 48 bytes
*/
struct foo {
double b;
double d;
long f;
long h;
float a;
float c;
int j;
int l;
short e;
short g;
char i;
char k;
};

References

25

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://www.cs.cmu.edu/afs/cs/academic/class/15213-s19/www/schedule.html

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://www.cs.cmu.edu/afs/cs/academic/class/15213-s19/www/schedule.html

