
photo by unsplash user @xavi_cabrera

Aykut Erdem // Koç University // Fall 2023

COMP201
Computer
Systems &
Programming

Lecture #13 – Compiling C Programs

Recap
• const
• struct
• Generic stack

6

Recap: const
• Use const to declare global constants in your program. This indicates

the variable cannot change after being created.

const double PI = 3.1415;
const int DAYS_IN_WEEK = 7;

int main(int argc, char *argv[]) {
…
if (x == DAYS_IN_WEEK) {

…
}
…

}
7

Recap: const
• Use const with pointers to indicate that the data that is pointed to

cannot change.

char str[6];
strcpy(str, "Hello");
const char *s = str;

// Cannot use s to change characters it points to
s[0] = 'h';

8

Recap: const
Sometimes we use const with pointer parameters to indicate that the
function will not / should not change what it points to. The actual pointer
can be changed, however.
// This function promises to not change str’s characters
int countUppercase(const char *str) {

int count = 0;
for (int i = 0; i < strlen(str); i++) {

if (isupper(str[i])) {
count++;

}
}
return count;

}
9

Recap: Structs
A struct is a way to define a new variable type that is a group of other
variables.

typedef struct date { // declaring a struct type
int month;
int day; // members of each date structure

} date;
…

date today; // construct structure instances
today.month = 1;
(&today)->day = 28;

date new_years_eve = {12, 31}; // shorter initializer syntax

10

Recap: Stacks
• A Stack is a data structure representing a

stack of things.
• Objects can be pushed on top of or popped

from the top of the stack.
• Only the top of the stack can be accessed;

no other objects in the stack are visible.
• Main operations:

– push(value): add an element to the top of the
stack

– pop(): remove and return the top element in
the stack

– peek(): return (but do not remove) the top
element in the stack

stack

top 31
2

bottom 10

pop, peekpush

11

Recap: Int vs. Generic Stack Structs
typedef struct int_node {

struct int_node *next;
int data;

} int_node;

typedef struct int_stack {
int nelems;
int_node *top;

} int_stack;

12

typedef struct int_node {
 struct int_node *next;
 void *data;
} int_node;

typedef struct stack {
 int nelems;
 int elem_size_bytes;
 node *top;
} stack;

Recap: Int vs. Generic stack_create
int_stack *int_stack_create() {

int_stack *s =
malloc(sizeof(int_stack));

s->nelems = 0;
s->top = NULL;
return s;

}

From previous slide:
typedef struct stack {
 int nelems;
 int elem_size_bytes;
 node *top;
} stack;

13

stack *stack_create(int elem_size_bytes) {
 stack *s = malloc(sizeof(stack));
 s->nelems = 0;
 s->top = NULL;

 s->elem_size_bytes = elem_size_bytes;
 return s;

}

Recap: Int vs. Generic stack_push
void int_stack_push(int_stack *s, int data) {

int_node *new_node =
malloc(sizeof(int_node));

new_node->data = data;

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}

From previous slide:
typedef struct stack {
 int nelems;
 int elem_size_bytes;
 node *top;
} stack;

typedef struct node {
 struct node *next;
 void *data;
} node;

14

void stack_push(stack *s, const void *data) {
 node *new_node = malloc(sizeof(node));
 new_node->data = malloc(s->elem_size_bytes);

 memcpy(new_node->data,data,s->elem_size_bytes);

 new_node->next = s->top;
 s->top = new_node;
 s->nelems++;

}

int main() {
 stack *int_stack = stack_create(sizeof(int));
 add_one(int_stack);
}

void add_one(stack *s) {
 int num = 7;
 stack_push(s, &num);
}

Recap: Int vs. Generic stack_pop
int int_stack_pop(int_stack *s) {

if (s->nelems == 0) {
error(1,0,"Cannot pop from empty stack");

}
int_node *n = s->top;
int value = n->data;

s->top = n->next;

free(n);
s->nelems--;

return value;
}

15

From previous slide:
typedef struct stack {
 int nelems;
 int elem_size_bytes;
 node *top;
} stack;

typedef struct node {
 struct node *next;
 void *data;
} node;

void stack_pop(stack *s, void *addr) {
 if (s->nelems == 0)
 error(1,0,"Cannot pop from empty stack");
 node *n = s->top;
 memcpy(addr, n->data, s->elem_size_bytes);
 s->top = n->next;
 free(n->data);
 free(n);
 s->nelems--;
}

int main() {
 stack *intstack = stack_create(sizeof(int));
 for (int i = 0; i < TEST_STACK_SIZE; i++) {
 stack_push(intstack, &i);
 }
 // Pop off all elements
 int popped_int;
 while (intstack->nelems > 0) {
 stack_pop(intstack, &popped_int);
 printf("%d\n", popped_int);
 }
}

Plan for Today
• What really happens in GCC?
• Make and Makefiles

Disclaimer: Slides for this lecture were borrowed from
—Gabbi Fisher and Chris Chute's Stanford CS107 class
—Jae Woo Lee’s Columbia COMS W3157 class 16

xkcd.com/303/

Lecture Plan
• What really happens in Gnu Compiler Collection (gcc)?

–The Preprocessor
–The Compiler
–The Assembler
–The Linker

• Make and Makefiles

19

GNU

20

GNU: “GNU's Not Unix”
• GNU is a Unix-like operating system. That means it is a

collection of many programs: applications, libraries, developer
tools, even games. The development of GNU, started in Jan 1984,
is known as the GNU Project. Many of the programs in GNU are
released under the auspices of the GNU Project; those we call GNU
packages.
• The program in a Unix-like system that allocates machine resources and talks

to the hardware is called the “kernel”. GNU is typically used with a kernel
called Linux. This combination is the GNU/Linux operating system. GNU/Linux
is used by millions, though many call it “Linux” by mistake.
• GNU's own kernel, The Hurd, was started in 1990 (before Linux was started).

Volunteers continue developing the Hurd because it is an interesting technical
project.

21
– taken from www.gnu.org

http://www.gnu.org/

Compiling a C program with GCC

gcc -g -O0 hello.c -o hello

22

The GNU Compiler Collection (GCC)

23

The GNU Compiler Collection (GCC)

24

The Preprocessor

#define

#include

25

The Preprocessor – Object Macros
#define BUFFER_SIZE 1024

foo = (char *) malloc (BUFFER_SIZE);

26

The #define directive can be used to set up symbolic replacements in
the source.

The Preprocessor – Object Macros
#define BUFFER_SIZE 1024

foo = (char *) malloc (BUFFER_SIZE);

=> foo = (char *) malloc (1024);

27

The Preprocessor – Function Macros
#define min(X,Y) ((X) < (Y) ? (X) : (Y))
#define twice(X) (2*(X))

y = min(1,2);

y = twice(1+1);

28

The Preprocessor – Function Macros
#define min(X,Y) ((X) < (Y) ? (X) : (Y))
#define twice(X) (2*(X))

y = min(1,2);
=> y = ((1) < (2) ? (1) : (2));

y = twice(1+1);
=> y = (2*(1+1));

29

The Preprocessor – Imports

30

#include

The Preprocessor – Imports

31

header.h

char *test(void);

program.c

#include "header.h"

int x;

int main(int argc, char *argv[]) {
 puts(test());
}

The #include directive just pastes in the text from the given file.

The Preprocessor – Imports

32

header.h

char *test(void);

program.c

char *test(void);

int x;

int main(int argc, char *argv[]) {
 puts(test());
}

The Preprocessor – Demo

33

gcc -E -o hello.i hello.c

Preprocess hello.c, store output in hello.i

The GNU Compiler Collection (GCC)

34

The Compiler
• They’re too complicated to explain in 5 minutes.

¯_(ツ)_/¯

• It’s important to know that they parse source code and compile it
into assembly code. You will learn more about assembly in the
second part the course.

35

The Compiler – Demo

36

gcc -S hello.i

Compile preprocessed .i code into assembly instructions

The GNU Compiler Collection (GCC)

37

The Assembler – Demo

38

as -o hello.o hello.s

Assemble object code from hello.s

The Assembler – ELF

ELF: the Executable and Linkable Format

39

a rare depiction of an Elf made by Tolkien

The Assembler – ELF
ELF: the Executable and Linkable Format
Cross-platform, used across multiple operating systems to represent
components (object code) of a program. This comes in handy for linking
and execution across different computers.

40

The Assembler – ELF
ELF: the Executable and Linkable Format

41

readelf -e hello.o

Actually read hello.o!
“-e” flag is for printing headers out only

The Assembler – ELF

42

Section Contents Code Example
.text Executable code (x86 assembly) mov -0x8(%rbp),%rax

.data
Any global or static vars that have a pre-
defined value and can be modified

int val = 3
(as global var)

.rodata Variables that are only read (never written) const int a = 0;

.bss
All uninitialized data; global variables and static
variables initialized to zero or or not explicitly
static int i; initialized in source code

static int i;

.comment
Comments about the generated ELF (details
such as compiler version and execution
platform)

The Assembler – ELF

43

The Assembler – ELF

44

The Assembler

45

nm hello.o

Dump the variables and functions in hello and
see what sections they belong to!

The Assembler – ELF

46

The GNU Compiler Collection (GCC)

47

The Linker – Shared vs. Static Libraries

48

Static Linking
1. When your program uses static

linking, the machine code of
external functions used in your
program is copied into the
executable.

2. A static library has file extension of
".a" (archive file) in Unix.

Dynamic Linking
1. When your program is dynamically

linked, only an offset table is created in
the executable. The operating system
loads the machine code needed for
external functions during execution
—a process known as dynamic linking.

2. A shared library has file extension of
".so" (shared objects) in Unix.

The Linker
ld --dynamic-linker /lib64/ld-linux-x86-64.so.2 hello.o

-o hello -lc --entry main

49

1. --dynamic-linker is used to specify the linker we
must use to load stdlib.

2. -lc tells the linker to link to the standard C library.
3. --entry main specifies the entry point of the program

(the method “main”).

Note: You may not get this command working, because it will be slightly different
on different Linux distributions

Finally…

50

(Run your executable!)

./hello

The Executable

51

Let’s prove to ourselves linking did something...

nm hello

The Assembler – ELF

52

Finally… (Really!)

53

(Run your executable!)

./hello

Linking Multiple Files and Library

54

gcc -c myfile1.c
gcc -c myfile2.c
gcc -g myfile1.o myfile2.o -lm -o myprogram

Using Multiple Functions
• function declaration (also called

a prototype)
• a function must have been seen

before it’s called
• enables compiler to do type-

checking

55

program.c

int add(int x, int y);

int main(int argc, char **argv)
{
 int sum;
 sum = add(1, 2);
 printf("%d\n", sum);
 return 0;
}

int add(int x, int y)
{
 return x + y;
}

Using Multiple Files

56

myadd.h (called a header file)

#ifndef _MYADD_H_
#define _MYADD_H_

int add(int x, int y);

#endif

main.c

#include "myadd.h"

int main(int argc, char **argv)
{
 int a = 1;
 int b = 2;

 c = add(a,b);

 printf("%d + %d = %d", a, b, c);
}

myadd.c

#include "myadd.h"
int add(int x, int y)
{
 return x + y;
}

Lecture Plan
• What really happens in GCC?

• Make and Makefiles
– Overview of Make
– Makefiles from scratch
– Template for your Makefiles

57

What is Make?
Main Idea
• You write the “recipe”
• Make builds target

58

C Make

What is Make?
Main Idea
• You write the “recipe”
• Make builds target

Definition
• “GNU Make is a tool which controls the generation of executables... from the

program's source files.”
- GNU Make Docs

59

C Make

What is Make?
Example
- Target: simple
- Ingredients: simple.c
- Recipe: gcc -o simple simple.c

60

C Make

simple.c simple

What is Make?
Example
- Target: simple
- Ingredients: simple.c
- Recipe: gcc -o simple simple.c

Makefile Demo

61

C Make

simple.c simple

What is Make?
Example
- Target: simple
- Ingredients: simple.c
- Recipe: gcc -o simple simple.c

Makefile Demo
simple: simple.c

gcc –o simple simple.c

62

C Make

simple.c simple

So is Make just a shorter GCC?
No!
• More general
• Any target, any shell command

63

So is Make just a shorter GCC?
No!
• More general
• Any target, any shell command

Makefile Demo

64

So is Make just a shorter GCC?
No!
• More general
• Any target, any shell command

Makefile Demo
clean:

rm -rf simple

Usage:
make clean

65

So is Make just a shorter GCC?
Advantages of Make
• General: Not just for compiling C source files
• Fast: Only rebuilds what’s necessary
• Shareable: End users just call “make”

66

Makefiles
Makefile
• Makefile: A list of rules.
• Rule: Tells Make the commands to build a target from 0 or more dependencies

target: dependencies...
commands
…

67

Makefiles
Makefile
• Makefile: A list of rules.
• Rule: Tells Make the commands to build a target from 0 or more dependencies

target: dependencies...
commands
…

68

Must indent with ‘\t’, not spaces

Makefiles
Makefile = List of Rules
• Rule: Tells Make how to get to a target from source files

target: dependencies...
commands
…

69

“If dependencies have changed or don’t exist, rebuild them...
Then execute these commands.”

Realistic Example
• Like Zip
• Traverses FS tree, builds a list of files
• Don’t know length ahead of time? Need growable data structure

70

all_files.ark

Realistic Example
File Archiver
• Target file: Far (an executable)
• Source files: Far.c Far.h vector.c vector.h

71

C
vector.c/.h

FarC
vector.o

C
Far.c/.h

C
Far.o

What is Make?
Example
• Target: Far
• Ingredients: Far.o, vector.o
• Recipe: gcc -o Far Far.o vector.o

7272

C
vector.c/.h

FarC
vector.o

C
Far.c/.h

C
Far.o

What is Make?
Example
• Target: Far
• Ingredients: Far.o, vector.o
• Recipe: gcc -o Far Far.o vector.o

Makefile Demo

7373

C
vector.c/.h

FarC
vector.o

C
Far.c/.h

C
Far.o

What is Make?
Example
• Target: Far
• Ingredients: Far.o, vector.o
• Recipe: gcc -o Far Far.o vector.o

Makefile Demo
CC=gcc
CFLAGS=-g -std=c99 -pedantic –Wall

all: Far

Far: Far.o vector.o
${CC} ${CFLAGS} $^ -o $@

Far.o: Far.c Far.h vector.h
${CC} ${CFLAGS} -c Far.c

vector.o: vector.c vector.h
${CC} ${CFLAGS} -c vector.c

clean:
${RM} Far.o vector.o Far

7474

C
vector.c/.h

FarC
vector.o

C
Far.c/.h

C
Far.o

$@: The file name of the target of the rule
$^ : The names of all the prerequisites,
with spaces between them

What is Make?
Example
• Target: Far
• Ingredients: Far.o, vector.o
• Recipe: gcc -o Far Far.o vector.o

Good Test Problem!
Suppose I update Far.c,
Then call make Far.

7575

C
vector.c/.h

FarC
vector.o

C
Far.c/.h

C
Far.o

What is Make?
Example
• Target: Far
• Ingredients: Far.o, vector.o
• Recipe: gcc -o Far Far.o vector.o

Good Test Problem!
Suppose I update Far.c,
Then call make Far.
Which commands does
Make run?

7676

C
vector.c/.h

FarC
vector.o

C
Far.c/.h

C
Far.o

What is Make?
Example
• Target: Far
• Ingredients: Far.o, vector.o
• Recipe: gcc -o Far Far.o vector.o

Good Test Problem!
Suppose I update Far.c,
Then call make Far.
Which commands does
Make run?
Answer:
gcc -g -std=c99 -pedantic -Wall -c Far.c
gcc -g -std=c99 -pedantic -Wall Far.o vector.o -o Far

7777

C
vector.c/.h

FarC
vector.o

C
Far.c/.h

C
Far.o

Takeaways
Takeaways from File Archiver Example
• Recursive rules
• Bigger projects practically need Make (or another build system)
• Makefile variables (e.g., CC and CFLAGS)
• Target need not be a file! (e.g., clean)

78

Generic Makefile
Reusable Makefile
• Any simple project
• Main program and its header
• Can be easily extended to include libraries
• Feel free to copy-paste

79

Generic Makefile
A simple makefile for building a program composed of C source files.
#
PROGRAMS = hello

all: $(PROGRAMS)

It is likely that default C compiler is already gcc, but explicitly
set, just to be sure
CC = gcc

The CFLAGS variable sets compile flags for gcc:
-g compile with debug information
-Wall give verbose compiler warnings
-O0 do not optimize generated code
-std=gnu99 use the GNU99 standard language definition
CFLAGS = -g -Wall -O0 -std=gnu99

The LDFLAGS variable sets flags for linker
-lm says to link in libm (the math library)
LDFLAGS = -lm

$(PROGRAMS): %:%.c
$(CC) $(CFLAGS) -o $@ $^ $(LDFLAGS)

.PHONY: clean all

clean:
rm -f $(PROGRAMS) *.o

80

Example – Source Files

81

myadd.h (called a header file)

#ifndef _MYADD_H_
#define _MYADD_H_

int add(int x, int y);

#endif

main.c

#include "myadd.h"

int main(int argc, char **argv)
{
 int a = 1;
 int b = 2;

 c = add(a,b);

 printf("%d + %d = %d", a, b, c);
}

myadd.c

#include "myadd.h"
int add(int x, int y)
{
 return x + y;
}

Example – Makefile

82

This Makefile should be used as a template for future Makefiles.
It’s heavily commented, so hopefully you can understand what each
line does.

We’ll use gcc for C compilation and g++ for C++ compilation
CC = gcc
CXX = g++

Let’s leave a place holder for additional include directories
INCLUDES =

Compilation options:
-g for debugging info and -Wall enables all warnings
CFLAGS = -g -Wall $(INCLUDES)
CXXFLAGS = -g -Wall $(INCLUDES)

Linking options:
-g for debugging info
LDFLAGS = -g

List the libraries you need to link with in LDLIBS
For example, use "-lm" for the math library
LDLIBS =

The 1st target gets built when you type "make".
It’s usually your executable. ("main" in this case.)
#
Note that we did not specify the linking rule.
Instead, we rely on one of make’s implicit rules:
#
$(CC) $(LDFLAGS) <all-dependent-.o-files> $(LDLIBS)
#
Also note that make assumes that main depends on main.o,
so we can omit it if we want to.

main: main.o myadd.o

main.o depends not only on main.c, but also on myadd.h because
main.c includes myadd.h. main.o will get recompiled if either
main.c or myadd.h get modified.
#
make already knows main.o depends on main.c, so we can omit main.c
in the dependency list if we want to.
#
make uses the following implicit rule to compile a .c file into a .o
file:
#
$(CC) -c $(CFLAGS) <the-.c-file>
#
main.o: main.c myadd.h

And myadd.o depends on myadd.c and myadd.h.
myadd.o: myadd.c myadd.h

Always provide the "clean" target that removes intermediate files.
What you remove depend on your choice of coding tools
(different editors generate different backup files for example).
#
And the "clean" target is not a file name, so we tell make that
it’s a "phony" target.
.PHONY: clean
clean:
 rm -f *.o a.out core main

"all" target is useful if your Makefile builds multiple programs.
Here we’ll have it first do "clean", and rebuild the main target.
.PHONY: all
all: clean main

Make Takeaways
In The Wild
• Will see very complex makefiles — Don’t be intimidated
• Will see other build systems (e.g., CMake) — Same idea as Make
• Will see Make for other languages — Same source -> executable mapping

References
• https://www.gnu.org/software/make/
• https://www.cs.swarthmore.edu/~newhall/unixhelp/howto_makefiles.html

Good Makefile examples/templates.

83

https://www.gnu.org/software/make/
https://www.cs.swarthmore.edu/~newhall/unixhelp/howto_makefiles.html

Recap
• What really happens in GCC?

–The Preprocessor
–The Compiler
–The Assembler
–The Linker

• Make and Makefiles
– Overview of Make
– Makefiles from scratch
– Template for your Makefiles

Next Time: Assembly language
84

xkcd.com/303/

