

Lecture \#02 - Bits and Bytes, Representing and Operating on Integers
kOC UNIVERSTTY

Aykut Erdem // Koç University // Fall 2023

Recap

- Course Introduction
- COMP201 Course Policies
- Unix and the Command Line
- Getting Started With C

Plan For Today

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow
- Casting and Combining Types

Disclaimer: Slides for this lecture were borrowed from
—Nick Troccoli's Stanford CS107 class
—Randal E. Bryant and David R. O'Hallaron's CMU 15-213 class

COMP201 Topic 1: How can a computer represent integer numbers?
SHARE

Demo: Unexpected Behavior

Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow
- Casting and Combining Types
0
1

Bits

- Computers are built around the idea of two states: "on" and "off". Transistors represent this in hardware, and bits represent this in software!

One Bit At A Time

- We can combine bits, like with base-10 numbers, to represent more data. 8 bits = 1 byte.
- Computer memory is just a large array of bytes! It is byte-addressable; you can't address (store location of) a bit; only a byte.
- Computers still fundamentally operate on bits; we have just gotten more creative about how to represent different data as bits!
- Images
- Audio
- Video
- Text
- And more...

Base 10

5934

Digits 0-9 (0 to base-1)

Base 10

Base 10

Base 10

$$
\underbrace{2}_{10^{x}:} \underbrace{}_{2} \boldsymbol{4}
$$

Base 2

Digits 0-1 (0 to base-1)

Base 2
$\begin{array}{llll}1 & 0 & 1 & 1 \\ x^{2} & 2 & 1\end{array}$

Base 2

Most significant bit (MSB)

$$
=1 * 8+0 * 4+1^{*} 2+1 * 1=11_{10}
$$

Base 10 to Base 2

Question: What is 6 in base 2?

- Strategy:
- What is the largest power of $2 \leq 6$?

Base 10 to Base 2

Question: What is 6 in base 2?

- Strategy:
- What is the largest power of $2 \leq 6 ? 2^{2}=4$

Base 10 to Base 2

Question: What is 6 in base 2?

- Strategy:
- What is the largest power of $2 \leq 6 ? 2^{2}=4$
- Now, what is the largest power of $2 \leq 6-2^{2}$?

Base 10 to Base 2

Question: What is 6 in base 2?

- Strategy:
- What is the largest power of $2 \leq 6 ? 2^{2}=4$
- Now, what is the largest power of $2 \leq 6-2^{2} ? 2^{1}=2$

Base 10 to Base 2

Question: What is 6 in base 2?

- Strategy:
- What is the largest power of $2 \leq 6 ? 2^{2}=4$
- Now, what is the largest power of $2 \leq 6-2^{2} ? 2^{1}=2$
$-6-2^{2}-2^{1}=0$!

Base 10 to Base 2

Question: What is 6 in base 2?

- Strategy:
- What is the largest power of $2 \leq 6 ? 2^{2}=4$
- Now, what is the largest power of $2 \leq 6-2^{2} ? 2^{1}=2$
$-6-2^{2}-2^{1}=0$!

Base 10 to Base 2

Question: What is 6 in base 2?

- Strategy:
- What is the largest power of $2 \leq 6 ? 2^{2}=4$
- Now, what is the largest power of $2 \leq 6-2^{2} ? 2^{1}=2$
$-6-2^{2}-2^{1}=0$!

Practice: Base 2 to Base 10

What is the base- 2 value 1010 in base-10?
a) 20
b) 101
c) 10
d) 5
e) Other

Practice: Base 10 to Base 2

What is the base-10 value 14 in base 2 ?
a) 1111
b) 1110
c) 1010
d) Other

Byte Values

- What is the minimum and maximum base-10 value a single byte (8 bits) can store?

Byte Values

- What is the minimum and maximum base-10 value a single byte (8 bits) can store? minimum $=0 \quad$ maximum $=$?

Byte Values

- What is the minimum and maximum base-10 value a single byte (8 bits) can store? minimum $=0 \quad$ maximum $=$?

Byte Values

- What is the minimum and maximum base-10 value a single byte (8 bits) can store? minimum $=0 \quad$ maximum $=$?

- Strategy 1: $1^{*} 2^{7}+1^{*} 2^{6}+1^{*} 2^{5}+1^{*} 2^{4}+1^{*} 2^{3}+1^{*} 2^{2}+1^{*} 2^{1}+1^{*} 2^{0}=255$

Byte Values

- What is the minimum and maximum base-10 value a single byte (8 bits) can store? minimum $=0 \quad$ maximum $=255$

- Strategy 1: $1^{*} 2^{7}+1^{*} 2^{6}+1^{*} 2^{5}+1^{*} 2^{4}+1^{*} 2^{3}+1^{*} 2^{2}+1^{*} 2^{1}+1^{*} 2^{0}=255$
-Strategy 2: $2^{8}-1=255$

Multiplying by Base

$1450 \times 10=1450 \underline{0}$ $1100_{2} \times 2=1100 \underline{0}$

Key Idea: inserting 0 at the end multiplies by the base!

Dividing by Base

$1450 / 10=145$ $1100_{2} / 2=110$

Key Idea: removing 0 at the end divides by the base!

Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow
- Casting and Combining Types

Hexadecimal

- When working with bits, oftentimes we have large numbers with 32 or 64 bits.
- Instead, we'll represent bits in base-16 instead; this is called hexadecimal.

Hexadecimal

- When working with bits, oftentimes we have large numbers with 32 or 64 bits.
- Instead, we'll represent bits in base-16 instead; this is called hexadecimal.

Each is a base-16 digit!

Hexadecimal

- Hexadecimal is base-16, so we need digits for 1-15. How do we do this?

Hexadecimal

Hex digit	0	1	2	3	4	5	6	7
Decimal value	0	1	2	3	4	5	6	7
Binary value	0000	0001	0010	0011	0100	0101	0110	0111
Hex digit	8	9	A	B	C	D	E	F
Decimal value	8	9	10	11	12	13	14	15
Binary value	1000	1001	1010	1011	1100	1101	1110	1111

Hexadecimal

- We distinguish hexadecimal numbers by prefixing them with $\mathbf{0 x}$, and binary numbers with 0b.
- E.g. 0xf5 is 0b11110101

$$
0 x \underset{\substack{1111}}{\substack{4 \\ \hline \\ \hline \\ \hline \\ \hline 10101}}
$$

Practice: Hexadecimal to Binary

What is 0x173A in binary?

Hexadecimal Binary
 0001
 01110011
 1010

Practice: Hexadecimal to Binary

What is 0b1111001010 in hexadecimal? (Hint; start from the right)

Binary 1111001010 Hexadecimal
 3
 A

Question Break!

Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow
- Casting and Combining Types

Number Representations

- Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, ... 99999...
- Signed Integers: negative, positive and 0 integers. (e.g. ...-2, $-1,0,1, \ldots$ 9999...)
- Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x1012)

Number Representations

- Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, ... 99999...
- Signed Integers: negative, positive and 0 integers. (e.g....-2, $-1,0,1, \ldots$ 9999...)
- Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x1012)
\longrightarrow More on this next week!

Number Representations

C Declaration	Size (Bytes)
int	4
double	8
float	4
char	1
char $*$	8
short	2
long	8

In The Days Of Yore...

C Declaration	Size (Bytes)
int	4
double	8
float	4
char	1
char $*$	4
short	2
long	4

Transitioning To Larger Datatypes

- Early 2000s: most computers were 32-bit. This means that pointers were 4 bytes (32 bits).
- 32-bit pointers store a memory address from 0 to $2^{32}-1$, equaling 2^{32} bytes of addressable memory. This equals 4 Gigabytes, meaning that 32-bit computers could have at most 4GB of memory (RAM)!
- Because of this, computers transitioned to 64-bit. This means that datatypes were enlarged; pointers in programs were now 64 bits.
- 64-bit pointers store a memory address from 0 to $2^{64}-1$, equaling 2^{64} bytes of addressable memory. This equals 16 Exabytes, meaning that 64-bit computers could have at most 1024*1024*1024 GB of memory (RAM)!

Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow
- Casting and Combining Types

Unsigned Integers

- An unsigned integer is 0 or a positive integer (no negatives).
- We have already discussed converting between decimal and binary, which is a nice 1:1 relationship. Examples:
$0 b 0001=1$
0b0101 = 5
0b1011 = 11
$0 b 1111=15$
- The range of an unsigned number is $0 \rightarrow 2^{w}-1$, where w is the number of bits. E.g. a 32 -bit integer can represent 0 to $2^{32}-1(4,294,967,295)$.

Unsigned Integers

Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow
- Casting and Combining Types

Signed Integers

- A signed integer is a negative integer, 0 , or a positive integer.
- Problem: How can we represent negative and positive numbers in binary?

Signed Integers

- A signed integer is a negative integer, 0 , or a positive integer.
- Problem: How can we represent negative and positive numbers in binary?

Idea: let's reserve the most significant bit to store the sign.

Sign Magnitude Representation

Sign Magnitude Representation

Sign Magnitude Representation

$$
\begin{array}{ll}
1000=-0 & 0000=0 \\
1001=-1 & 0001=1 \\
1010=-2 & 0010=2 \\
1011=-3 & 0011=3 \\
1100=-4 & 0100=4 \\
1101=-5 & 0101=5 \\
1110=-6 & 0110=6 \\
1111=-7 & 0111=7
\end{array}
$$

- We've only represented 15 of our 16 available numbers!

Sign Magnitude Representation

- Pro: easy to represent, and easy to convert to/from decimal.
- Con: +-0 is not intuitive
- Con: we lose a bit that could be used to store more numbers
- Con: arithmetic is tricky: we need to find the sign, then maybe subtract (borrow and carry, etc.), then maybe change the sign. This complicates the hardware support for something as fundamental as addition.

Can we do better?

A Better Idea

- Ideally, binary addition would just work regardless of whether the number is positive or negative.

0101
 +???? 0000

A Better Idea

- Ideally, binary addition would just work regardless of whether the number is positive or negative.

0101
 +1011 0000

A Better Idea

- Ideally, binary addition would just work regardless of whether the number is positive or negative.

0011
 +???? 0000

A Better Idea

- Ideally, binary addition would just work regardless of whether the number is positive or negative.

0011 +1101 0000

A Better Idea

- Ideally, binary addition would just work regardless of whether the number is positive or negative.

0000
 +???? 0000

A Better Idea

- Ideally, binary addition would just work regardless of whether the number is positive or negative.

0000 +0000 0000

A Better Idea

Decimal	Positive	Negative
0	0000	0000
1	0001	1111
2	0010	1110
3	0011	1101
4	0100	1100
5	0101	1011
6	0110	1010
7	0111	1001

Decimal	Positive	Negative
8	1000	1000
9	1001 (same as $-7!$)	NA
10	1010 (same as $-6!$)	NA
11	1011 (same as $-5!$)	NA
12	1100 (same as $-4!$)	NA
13	1101 (same as $-3!$)	NA
14	1110 (same as $-2!$)	NA
15	1111 (same as $-1!$)	NA

There Seems Like a Pattern Here...

0101 $\frac{+1011}{0000}+\frac{1101}{0000}$

- The negative number is the positive number inverted, plus one!

There Seems Like a Pattern Here...

A binary number plus its inverse is all 1 s .

$$
\begin{array}{r}
0101 \\
+1010 \\
\hline 1111
\end{array}
$$

Add 1 to this to carry over all 1 s and get 0 !

1111 +0001 0000

Another Trick

- To find the negative equivalent of a number, work right-to-left and write down all digits through when you reach a 1. Then, invert the rest of the digits.

$$
\begin{array}{r}
100100 \\
++? ? ? ? ? \\
+\quad+? ? 0000
\end{array}
$$

Another Trick

- To find the negative equivalent of a number, work right-to-left and write down all digits through when you reach a 1. Then, invert the rest of the digits.

> 100100 $+\stackrel{? ? ? 100}{0}+\mathbf{? ~ ? ~}$

Another Trick

- To find the negative equivalent of a number, work right-to-left and write down all digits through when you reach a 1. Then, invert the rest of the digits.

$$
\begin{array}{r}
100100 \\
+\quad+011100 \\
\hline 000000
\end{array}
$$

Two's Complement

Two's Complement

- In two's complement, we represent a positive number as itself, and its negative equivalent as the two's complement of itself.
- The two's complement of a number is the binary digits inverted, plus 1.
- This works to convert from positive to negative, and back from negative to positive!

Two's Complement

- Con: more difficult to represent, and difficult to convert to/from decimal and between positive and negative.
- Pro: only 1 representation for 0 !
- Pro: all bits are used to represent as many numbers as possible
- Pro: the most significant bit still indicates the sign of a number.
- Pro: addition works for any combination of positive and negative!

Two's Complement

- Adding two numbers is just... adding! There is no special case needed for negatives. E.g. what is $2+-5$?

$$
\begin{array}{rr}
0010 & 2 \\
+1011 & -5 \\
\hline 1101 & -3
\end{array}
$$

Two's Complement

- Subtracting two numbers is just performing the two's complement on one of them and then adding. E.g. $4-5=-1$.
$\begin{array}{r}0100 \\ .0101 \\ \hline\end{array}$

4
-5
-1

Practice: Two's Complement

What are the negative or positive equivalents of the numbers below?
a) -4 (1100)
b) 7 (0111)
c) 3 (0011)
d) $-8(1000)$

Lecture Plan

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Sianed Integers
- Overflow
- Casting and Combining Types

Overflow

- If you exceed the maximum value of your bit representation, you wrap around or overflow back to the smallest bit representation.

```
0b1111 + 0b1 = 0b0000
```

- If you go below the minimum value of your bit representation, you wrap around or overflow back to the largest bit representation.

```
0b0000 - 0b1 = 0b1111
```


Overflow

- If you exceed the maximum value of your bit representation, you wrap

0b0000 - 0b1 = 0b1111

Title text: If androids someday DO dream of electric sheep, don't forget to declare sheepCount as a long int.

Min and Max Integer Values

Type	Size (Bytes)	Minimum	Maximum
char	1	-128	127
unsigned char	1	0	255
	2	-32768	32767
short	2	0	65535
unsigned short	4	-2147483648	2147483647
	4	0	4294967295
int	8	-9223372036854775808	9223372036854775807
unsigned int	8	0	18446744073709551615
long			

Min and Max Integer Values

INT_MIN, INT_MAX, UINT_MAX, LONG_MIN, LONG_MAX, ULONG_MAX, ...

Overflow

Practice: Overflow

At which points can overflow occur for signed and unsigned int? (assume binary values shown are all 32 bits)
A. Signed and unsigned can both overflow at points X and Y
B. Signed can overflow only at X, unsigned only at Y
C. Signed can overflow only at Y , unsigned only at X
D. Signed can overflow at X and Y, unsigned only at X
E. Other

Unsigned Integers

Signed Numbers

Overflow In Practice: PSY

```
PSY - GANGNAM STYLE (가ᄋ나ᄆ스타이ᄅ) M/V
    officialpsy [a
Subscribe

Published on Jul 15, 2012
- Watch HANGOVER feat. Snoop Dogg M/V @
http://youtu.be/HkMNOIYcpHg

YouTube: "We never thought a video would be watched in numbers greater than a 32 -bit integer ( \(=2,147,483,647\) views), but that was before we met PSY. "Gangnam Style" has been viewed so many times we had to upgrade to a 64 -bit integer ( \(9,223,372,036,854,775,808\) )!"

\section*{Overflow In Practice: Gandhi}
- In the game "Civilization", each civilization leader had an "aggression" rating. Gandhi was meant to be peaceful, and had a score of 1 .
- If you adopted "democracy", all players' aggression reduced by 2. Gandhi's went from 1 to 255 !
- Gandhi then became a big fan of nuclear weapons.

https://kotaku.com/why-gandhi-is-such-an-asshole-in-civilization-1653818245

\section*{Windows 95 can only run for 49.7 days before crashing,}
- Windows 95 was unable to run longer than 49.7 days of runtime!
- There exists GetTickTime function part of the Windows API - which returns the number of milliseconds which has elapsed since the system has started up as a 32-bit uint.
- And there's 86M ms in a day, i.e. 1000 * 60 * 60 * \(24=86,400,000\) and 32 bits is \(4,294,967,296\) so \(4,294,967,296\) \(/ 86,400,000=49.7102696\) days!


PWintrin
4.027 .571 .153 millseconds since boot

46 days 24 h . 45 m
\(267,420,143\) m until CRASH TIME
TTLI 1 dayz 02his 17 m
Etfineted crach time: Augert 28 at 12.48 PM
(Pesific Daylight Tine)
Tha syten istior patched:

https://youtu,be/tdrRoSdBM5M

\section*{Overflow in Practice:}
- Pacman Level 256
- Make sure to reboot Boeing Dreamliners every 248 days
- Comair/Delta airline had to cancel thousands of flights days before Christmas
- Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to remotely execute code
- Donkey Kong Kill Screen

\title{
Demo Revisited: Unexpected Behavior
}

airline.c

\section*{Lecture Plan}
- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow
- Casting and Combining Types

\section*{printf and Integers}
- There are 3 placeholders for 32-bit integers that we can use:
- \%d: signed 32-bit int
- \%u: unsigned 32-bit int
- \%x: hex 32-bit int
- The placeholder-not the expression filling in the placeholderdictates what gets printed!

\section*{Casting}
- What happens at the byte level when we cast between variable types? The bytes remain the same! This means they may be interpreted differently depending on the type.
```

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

```

This prints out: "v = -12345, uv = 4294954951". Why?

\section*{Casting}
- What happens at the byte level when we cast between variable types? The bytes remain the same! This means they may be interpreted differently depending on the type.
```

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

```

The bit representation for - 12345 is
Ob111111111111111111100111111000111.
If we treat this binary representation as a positive number, it's huge!

\section*{Casting}


\section*{Comparisons Between Different Types}
- Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.


\section*{Comparisons Between Different Types}

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)
\begin{tabular}{lll}
s 3 & \(>\mathrm{u} 3\) \\
u 2 & \(>\mathrm{u} 4\) \\
s 2 & \(>\) & s 4 \\
s 1 & \(>\) & s 2 \\
u & \(>\) & u 2 \\
s 1 & \(>\mathrm{u} 3\)
\end{tabular}


\section*{Comparisons Between Different Types}

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)
```

s3 > u3 - true
u2 > u4
s2 > s4
s1 > s2
u1 > u2
s1 > u3

```


\section*{Comparisons Between Different Types}

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)
```

s3 > u3 - true
u2 > u4 - true
s2 > s4
s1 > s2
u1 > u2
s1 > u3

```


\section*{Comparisons Between Different Types}

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)
```

s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2
u1 > u2
s1 > u3

```


\section*{Comparisons Between Different Types}

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)
```

s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2 - true
u1 > u2
s1 > u3

```


\section*{Comparisons Between Different Types}

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)
```

s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2 - true
u1 > u2 - true
s1 > u3

```


\section*{Comparisons Between Different Types}

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)
```

s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2 - true
u1 > u2 - true
s1 > u3 - true

```


\section*{Recap}
- Getting Started With C
- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow


Next time: How can we manipulate individual bits and bytes? How can we represent floating point numbers?```

