
photo by unsplash.com user @tobiastu

Aykut Erdem // Koç University // Spring 2023

COMP201
Computer
Systems &
Programming

Lecture #22 – More Cache Memories

Recap
• Cache basics
• Principle of locality
• Cache memory organization and operation

2

Recap: Cache Memories
• Cache memories are small, fast SRAM-based memories managed

automatically in hardware
– Hold frequently accessed blocks of main memory

• CPU looks first for data in cache
• Typical system structure:

Main
memory

I/O
bridgeBus interface

ALU

Register file
CPU chip

System bus Memory bus

Cache
memory

3

Recap: Why Caches Work
• Principle of Locality: Programs tend to use data and instructions with

addresses near or equal to those they have used recently

• Temporal locality:
– Recently referenced items are likely

to be referenced again in the near future

• Spatial locality:
– Items with nearby addresses tend to

be referenced close together in time

4

Recap: Good Locality Example
• Does this function have good locality with respect to array a?

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; j < M; j++)
 for (j = 0; i < N; i++)
 sum += a[i][j];
 return sum;
}

5

Access Pattern:
stride = 1

M = 3,
N = 4

Note: 76 is just one
possible starting
address of array a 76 92 108

Layout in Memory

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a
[0]
[0]

a
[0]
[1]

a
[0]
[2]

a
[0]
[3]

a
[1]
[0]

a
[1]
[1]

a
[1]
[2]

a
[1]
[3]

a
[2]
[0]

a
[2]
[1]

a
[2]
[2]

a
[2]
[3]

1) a[0][0]
2) a[0][1]
3) a[0][2]
4) a[0][3]
5) a[1][0]
6) a[1][1]
7) a[1][2]
8) a[1][3]
9) a[2][0]
10) a[2][1]
11) a[2][2]
12) a[2][3]

Recap: Bad Locality Example
• Does this function have good locality with respect to array a?

int sum_array_cols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];
 return sum;
}

6

Access Pattern:
stride = 4

M = 3,
N = 4

Note: 76 is just one
possible starting
address of array a 76 92 108

Layout in Memory

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a
[0]
[0]

a
[0]
[1]

a
[0]
[2]

a
[0]
[3]

a
[1]
[0]

a
[1]
[1]

a
[1]
[2]

a
[1]
[3]

a
[2]
[0]

a
[2]
[1]

a
[2]
[2]

a
[2]
[3]

1) a[0][0]
2) a[1][0]
3) a[2][0]
4) a[0][1]
5) a[1][1]
6) a[2][1]
7) a[0][2]
8) a[1][2]
9) a[2][2]
10) a[0][3]
11) a[1][3]
12) a[2][3]

Recap: Cache Organization
• Block Size (B): unit of transfer between cache and main memory

– Given in bytes and always a power of 2 (e.g. 64 bytes)
– Blocks consist of adjacent bytes (differ in address by 1)

• Spatial locality!

• Offset field
– Low-order log2(B) = b bits of address tell you which byte within a block

• (address) mod 2n = n lowest bits of address

– (address) modulo (# of bytes in a block)

Block Number Block Offsetm-bit address:
(refers to byte in memory)

b bitsm - b bits

7

Recap: Cache Organization

8

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive memory
caches a subset of the blocks

4

4

4

10

10

10

Recap: Checking for a Requested Address
• CPU sends address request for chunk of data

– Address and requested data are not the same thing!
• Analogy: your friend ≠ their phone number

• TIO address breakdown:

– Index field tells you where to look in cache
– Tag field lets you check that data is the block you want
– Offset field selects specified start byte within block

• Note: t and s sizes will change based on hash function

Tag (t) Offset (b)m-bit address:

Block Number

Index (s)

9

Recap: Checking for a Requested Address
• Using 8-bit addresses.
• Cache Params: block size (B) = 4 bytes, cache size (C) = 32 bytes

(which means number of sets is C/B = 8 sets).
– Offset bits (b) = log2(B) = 2 bits
– Index bits (s) = log2(number of sets) = 3 bits
– Tag bits (t) = Rest of the bits in the address = 8 – 2 – 3 = 3 bits

• What are the fields for address 0xBA?
– Tag bits (unique id for block): 0x5
– Index bits (cache set block maps to): 0x6
– Offset bits (byte offset within block): 0x2

10

Tag (t) Offset (b)m-bit address:

Block Number

Index (s)

101 110 10
5 6 2

Plan for Today
• Cache memory organization and operation
• Memory Mountain

Disclaimer: Slides for this lecture were borrowed from
—Randal E. Bryant and David R. O’Hallaroni’s CMU 15-213 class
—Porter Jones’ UW CSE 351 class

11

Lecture Plan
• Cache memory organization and operation
• Memory Mountain

14

Direct-Mapped Cache Problem

• What happens if we access the following
addresses?
– 8, 24, 8, 24, 8, …?
– Conflict in cache (misses!)
– Rest of cache goes unused

• Solution?

Block Num Block Data
00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

Memory Cache
Index Tag Block Data
00 ??
01 ??
10
11 ??

15

Here B = 4 bytes
and C/B = 4

Associativity
• What if we could store data in any place in the cache?

– More complicated hardware = more power consumed, slower

• So we combine the two ideas:
– Each address maps to exactly one set
– Each set can store block in more than one way

16

0

1

2

3

Set

2-way:
4 sets,

2 blocks each

0

1

Set

4-way:
2 sets,

4 blocks each
0
1
2
3
4
5
6
7

1-way:
8 sets,

1 block each

direct-mapped

0

Set

8-way:
1 set,

8 blocks

fully associative

• Based on the following behavior, which of the following block sizes
is NOT possible for our cache?
– Cache starts empty, also known as a cold cache
– Access (addr: hit/miss) stream:

• (14: miss), (15: hit), (16: miss)

A. 4 bytes
B. 8 bytes
C. 16 bytes
D. 32 bytes
E. We’re lost…

17

Cache Puzzle

• Based on the following behavior, which of the following block size
is NOT possible for our cache?
– Cache starts empty, also known as a cold cache
– Access (addr: hit/miss) stream:

• (14: miss), (15: hit), (16: miss)

A. 4 bytes
B. 8 bytes
C. 16 bytes
D. 32 bytes
E. We’re lost…

18

Cache Puzzle

hit: block is already in cache!
miss: block is not in cache,
 pulls block from memory
 and puts it in cache❶ Pulls block /w

 14 into cache
❷ 15 is in
the same
block at 14

❸ 16 is not
 in block w/
 14 and 15

Mem

K = 4

K = 8

K = 16

K = 32

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

✗ ✓ ✗
✗ ✓ ✗
✗ ✓ ✗

✗ ✓ ✓

Cache Organization
• Associativity (E): # of ways for each set

– Such a cache is called an “E-way set associative cache”
– We now index into cache sets, of which there are S = C/B/E
– Use lowest log2(C/B/E) = s bits of block address

• Direct-mapped: E = 1, so s = log2(C/B) as we saw previously
• Fully associative: E = C/B, so s = 0 bits

Decreasing associativity
Fully associative
(only one set)Direct mapped

(only one way)

Increasing associativity

Selects the setUsed for tag comparison Selects the byte from block

Tag (t) Index (s) Offset (b)

19

Example Placement
• Where would data from address 0x1833 be placed?
– Binary: 0b 0001 1000 0011 0011

s = ?

block size: 16 bytes
capacity: 8 blocks
address: 16 bits

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped
Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative

Tag(t) Offset (b)m-bit address: Index (s)
s = log2(C/B/E) b = log2(B)t = m - s - b

s = ? s = ?

20

Example Placement
• Where would data from address 0x1833 be placed?
– Binary: 0b 0001 1000 0011 0011

s = log2(8)=3 bits

block size: 16 bytes
capacity: 8 blocks
address: 16 bits

Set Tag Data
0
1
2
3 ✓
4
5
6
7

Direct-mapped
Set Tag Data

0

1

2

3 ✓
✓

Set Tag Data

0

1

✓
✓
✓
✓

2-way set associative 4-way set associative

Tag(t) Offset (b)m-bit address: Index (s)
s = log2(C/B/E) b = log2(B)t = m - s - b

s = log2(8/2)=2 bits s = log2(8/4)=1 bit

E = 4
E = 2
E = 1

21

Block Placement
• Any empty block in the correct set may be used to store block
• If there are no empty blocks, which one should we replace?

– No choice for direct-mapped caches
– Caches typically use something close to least recently used (LRU)

(hardware usually implements “not most recently used”)

Set Tag Data
0
1
2
3 ✓
4
5
6
7

Direct-mapped
Set Tag Data

0

1

2

3 ✓
✓

Set Tag Data

0

1

✓
✓
✓
✓

2-way set associative 4-way set associative

22

Question
• We have a cache of size 2 KB with block size of 128 bytes. If our cache

has 2 sets, what is its associativity?

A. 2
B. 4
C. 8
D. 16
E. We’re lost…

• If addresses are 16 bits wide, how wide is the Tag field?

23

Question
• We have a cache of size 2 KB with block size of 128 bytes. If our cache

has 2 sets, what is its associativity?

A. 2
B. 4
C. 8
D. 16
E. We’re lost…

• If addresses are 16 bits wide, how wide is the Tag field?

(C = 2*210 bytes) (B = 27 bytes)

(S = 2)
num

blocks
per set

blocks = C / K = 211/27 = 24 = 16 blocks

= E = 16 /2 = 8

24

= 16 – 7 -1 = 8

General Cache Organization (S, E, B)
E = 2e lines per set

S = 2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
C = S ⨉ E x B data bytes

valid bit
25

Cache Read
E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set has

matching tag
• Yes + line valid: hit
• Locate data starting at offset

26

Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

27

Example: Direct Mapped Cache (E = 1)

28

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

block offset

tag

Direct mapped: One line per set
Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

29

t bits 0…01 100

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

int (4 Bytes) is here

block offset

If tag doesn’t match: old line is evicted and replaced

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:

Direct-Mapped Cache Simulation
M=16 bytes (4-bit addresses), B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Block

miss

1 0 M[0-1] hit
miss

1 0 M[6-7]
miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3

30

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

31

E-way Set Associative Cache (Here: E = 2)

32

t bits 0…01 100

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

tag

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

E-way Set Associative Cache (Here: E = 2)

t bits 0…01 100

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

short int (2 Bytes) is hereNo match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

Address of short int:

E = 2: Two lines per set
Assume: cache block size 8 bytes

33

2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Block

0

0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss1 10 M[8-9]

hit

Set 0

Set 1

34

What about writes?
• Multiple copies of data exist:

– L1, L2, L3, Main Memory, Disk

• What to do on a write-hit?
– Write-through (write immediately to memory)
– Write-back (defer write to memory until replacement of line)

• Need a dirty bit (line different from memory or not)

• What to do on a write-miss?
– Write-allocate (load into cache, update line in cache)

• Good if more writes to the location follow
– No-write-allocate (writes straight to memory, does not load into cache)

• Typical
– Write-through + No-write-allocate
– Write-back + Write-allocate

35

Write-back, Write Allocate Example
Note: While unrealistic, this example assumes that all requests have offset 0
and are for a block’s worth of data.

0xBEEFG01

Valid Dirty Tag Block Contents

Memory:

0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

There is only one set in this tiny cache,
so the tag is the entire block number!

36

Cache:

Write-back, Write Allocate Example

0xBEEFG01

Valid Dirty Tag Block Contents

0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1) mov $0xFACE, (F)

Step 1: Bring F into cache

Write Miss!

Not valid x86, just using block num instead
of full byte address to keep the example simple

37

Memory:

Cache:

Write-back, Write Allocate Example

0xCAFEF01

Valid Dirty Tag Block Contents

0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

(1) mov $0xFACE, (F)

Step 1: Bring F into cache

Step 2: Write 0xFACE to cache
only and set the dirty bit

38

Memory:

Cache:

Write Miss

Write-back, Write Allocate Example

0xFACEF11

Valid Dirty Tag Block Contents

0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

Step 1: Bring F into cache

Step 2: Write 0xFACE to cache
only and set the dirty bit

39

Memory:

Cache:

(1) mov $0xFACE, (F)
Write Miss

Write-back, Write Allocate Example

0xFACEF11

Valid Dirty Tag Block Contents

0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

Step: Write 0xFEED to cache
only (and set the dirty bit)

(2) mov $0xFEED, (F)
Write Hit!

40

Memory:

Cache:

(1) mov $0xFACE, (F)
Write Miss

Write-back, Write Allocate Example

0xFEEDF11

Valid Dirty Tag Block Contents

0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

41

Memory:

Cache:

(1) mov $0xFACE, (F)
Write Miss

(2) mov $0xFEED, (F)
Write Hit!

Write-back, Write Allocate Example

0xFEEDF11

Valid Dirty Tag Block Contents

0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

(3) mov (G), %ax
Read Miss!

Step 1: Write F back to memory
since it is dirty

42

Memory:

Cache:

(1) mov $0xFACE, (F)
Write Miss

(2) mov $0xFEED, (F)
Write Hit!

Write-back, Write Allocate Example

0xFEEDCache: F11

Valid Dirty Tag Block Contents

0xFEED

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

(3) mov (G), %ax
Read Miss!

Step 1: Write F back to memory
since it is dirty

Step 2: Bring G into the cache
so that we can copy it into %ax

0 G 0xBEEF

43

Memory:

(1) mov $0xFACE, (F)
Write Miss

(2) mov $0xFEED, (F)
Write Hit!

Cache Simulator
https://courses.cs.washington.edu/courses/cse351/cachesim

44

https://courses.cs.washington.edu/courses/cse351/cachesim

Polling Question
• Which of the following cache statements is FALSE?

A. We can reduce compulsory misses by decreasing our
block size

B. We can reduce conflict misses by increasing associativity

C. A write-back cache will save time for code with good
temporal locality on writes

D. A write-through cache will always match data with the
memory hierarchy level below it

E. We’re lost…
45

Polling Question
• Which of the following cache statements is FALSE?

A. We can reduce compulsory misses by decreasing our
block size

B. We can reduce conflict misses by increasing associativity

C. A write-back cache will save time for code with good
temporal locality on writes

D. A write-through cache will always match data with the
memory hierarchy level below it

E. We’re lost…
46

smaller block size pulls fewer
bytes into cache on a miss

yes, its main goal is
data consistency

frequently-used
blocks rarely get
evicted, so fewer
write-backs

more options to
place blocks before
evictions occur

Intel Core i7 Cache Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
 256 KB, 8-way,
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for all caches.
47

Lecture Plan
• Cache memory organization and operation
• The memory mountain

48

Writing Cache Friendly Code
• Make the common case go fast

– Focus on the inner loops of the core functions

• Minimize the misses in the inner loops
– Repeated references to variables are good (temporal locality)
– Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified through our
understanding of cache memories

49

The Memory Mountain
• Read throughput (read bandwidth)

– Number of bytes read from memory per second (MB/s)

• Memory mountain: Measured read throughput as a function of spatial
and temporal locality.

– Compact way to characterize memory system performance.

50

Memory Mountain Test Function
long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of
 * array “data” with stride of "stride", using
 * using 4x4 loop unrolling.
 */
int test(int elems, int stride) {
 long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
 long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
 long length = elems, limit = length - sx4;

 /* Combine 4 elements at a time */
 for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];
acc1 = acc1 + data[i+stride];
acc2 = acc2 + data[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
 for (; i < length; i++) {

acc0 = acc0 + data[i];
}

 return ((acc0 + acc1) + (acc2 + acc3));
}

Call test() with many
combinations of elems and
stride.

For each elems and stride:

1. Call test() once to
warm up the caches.

2. Call test() again and
measure the read
throughput(MB/s)

mountain/mountain.c

51

The Memory Mountain

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1 s2 s3 s4 s5 s6 s7 s8 s9
s10 s11

Size (bytes)

Re
ad

 th
ro

ug
hp

ut
 (M

B/
s)

Stride (x8 bytes)

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slopes
of spatial
locality

Ridges
of temporal
locality

L1

Mem

L2

L3

Aggressive
prefetching

52

Lecture Plan
• Cache memory organization and operation
• Memory Mountain

53

Recap
• Cache memories can have significant performance impact
• You can write your programs to exploit this!

– Focus on the inner loops, where bulk of computations and memory accesses
occur.

– Try to maximize spatial locality by reading data objects with sequentially with
stride 1.

– Try to maximize temporal locality by using a data object as often as possible
once it’s read from memory.

Next time: Optimization
54

