
photo by pixabay user @ulleo

Aykut Erdem // Koç University // Fall 2023

COMP201
Computer
Systems &
Programming

Lecture #25 – Managing The Heap

Recap
• Static Linking
• Symbol Resolution
• Relocation
• Static Libraries
• Shared Libraries

2

Plan for Today
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Bump Allocator
• Implicit Free List Allocator

Disclaimer: Slides for this lecture were borrowed from
—Nick Troccoli's Stanford CS107 class
—Ruth Anderson’s UW CSE 351 class

5

Multiple Ways to Store Program Data
• Static global data

– Fixed size at compile-time
– Entire lifetime of the program

(loaded from executable)
– Portion is read-only

(e.g. string literals)

• Stack-allocated data
– Local/temporary variables

• Can be dynamically sized (in some versions of C)

– Known lifetime (deallocated on return)

• Dynamic (heap) data
– Size known only at runtime (i.e. based on user-input)
– Lifetime known only at runtime (long-lived data structures)

int array[1024];

int* foo(int n) {
 int tmp;
 int local_array[n];

 int* dyn =
 (int*)malloc(n*sizeof(int));
 return dyn;
}

6

COMP201 Topic 8: How do the
core malloc/realloc/free

memory-allocation operations
work?

How do malloc/realloc/free work?
Pulling together all our COMP201 topics this semester:
• Testing
• Efficiency
• Bit-level manipulation
• Memory management
• Pointers
• Generics
• Assembly
• And more…

8

Learning Goals
• Learn the restrictions, goals and assumptions of a heap allocator
• Understand the conflicting goals of utilization and throughput
• Learn about different ways to implement a heap allocator

9

Lecture Plan
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Bump Allocator
• Implicit Free List Allocator

10

Running a program
• Creates new process
• Sets up address space/segments
• Read executable file, load instructions,

global data
Mapped from file into gray segments
• Libraries loaded on demand

• Set up stack
Reserve stack segment, init %rsp, call main
• malloc written in C, will init self on use

Asks OS for large memory region,
parcels out to service requests

Heap

Stack

Main Memory

0x60000

Shared library text/data0x7ffff770000

0x7ffffffff0000

Global data

Text (machine code)
0x40000

11

The Stack Revisited

Stack memory ”goes
away” after function
call ends.
Automatically
managed at compile-
time by gccHeap

Stack

Main Memory

0x60000

Shared library text/data0x7ffff770000

0x7ffffffff0000

Global data

Text (machine code)
0x40000

12

Today: The Heap

Heap memory persists
until caller indicates it no
longer needs it.

Managed by C standard
library functions
(malloc, realloc, free)
This lecture:
How does heap
management work?

Heap

Stack

Main Memory

0x60000

Shared library text/data0x7ffff770000

0x7ffffffff0000

Global data

Text (machine code)
0x40000

13

Lecture Plan
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Bump Allocator
• Implicit Free List Allocator

14

Revisited: Allocating Memory in C
• Need to #include <stdlib.h>
• void* malloc(size_t size)

– Allocates a continuous block of size bytes of uninitialized memory
– Returns a pointer to the beginning of the allocated block; NULL indicates failed

request
• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
• Returns NULL if allocation failed (also sets errno) or size==0

– Different blocks not necessarily adjacent

• Good practices:
– ptr = (int*) malloc(n*sizeof(int));

• sizeof makes code more portable
• void* is implicitly cast into any pointer type; explicit typecast will help you catch coding

errors when pointer types don’t match
15

Revisited: Allocating Memory in C
• Need to #include <stdlib.h>

• void* malloc(size_t size)
– Allocates a continuous block of size bytes of uninitialized memory
– Returns a pointer to the beginning of the allocated block; NULL indicates failed request

• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
• Returns NULL if allocation failed (also sets errno) or size==0

– Different blocks not necessarily adjacent

• Related functions:
– void* calloc(size_t nitems, size_t size)

• “Zeros out” allocated block

– void* realloc(void* ptr, size_t size)
• Changes the size of a previously allocated block (if possible)

– void* sbrk(intptr_t increment)
• Used internally by allocators to grow or shrink the heap

16

Revisited: Freeing Memory in C
• Need to #include <stdlib.h>
• void free(void* p)

– Releases whole block pointed to by p to the pool of available memory
– Pointer p must be the address originally returned by m/c/realloc (i.e. beginning

of the block), otherwise system exception raised
– Don’t call free on a block that has already been released or on NULL

17

Memory Allocation Example in C
void foo(int n, int m) {
 int i, *p;
 p = (int*) malloc(n*sizeof(int)); /* allocate block of n ints */
 if (p == NULL) { /* check for allocation error */
 perror("malloc");
 exit(0);
 }
 for (i=0; i<n; i++) /* initialize int array */
 p[i] = i;
 /* add space for m ints to end of p block */
 p = (int*) realloc(p,(n+m)*sizeof(int));
 if (p == NULL) { /* check for allocation error */
 perror("realloc");
 exit(0);
 }
 for (i=n; i < n+m; i++) /* initialize new spaces */
 p[i] = i;
 for (i=0; i<n+m; i++) /* print new array */
 printf("%d\n", p[i]);
 free(p); /* free p */
}

18

Your role so far: Client
void *malloc(size_t size);

Returns a pointer to a block of heap memory of at least size bytes, or
NULL if an error occurred.

void free(void *ptr);
Frees the heap-allocated block starting at the specified address.

void *realloc(void *ptr, size_t size);
Changes the size of the heap-allocated block starting at the specified
address to be the new specified size. Returns the address of the new,
larger allocated memory region.

19

Your role now: Heap Hotel Concierge

http://screencrave.com/wp-content/uploads/2014/03/the-grand-budapest-hotel-anderson-image-2.jpg
(aka Heap Allocator)

20

Types of heap allocators
• Explicit allocator: programmer allocates and frees space

– Example: malloc and free in C

• Implicit allocator: programmer only allocates space (no free)
– Example: garbage collection in Java, Caml, and Lisp

21

Dynamic memory allocation
• Allocator organizes heap as a collection

of variable-sized blocks, which are
either allocated or free
– Allocator requests pages in the heap

region; virtual memory hardware and OS
kernel allocate these pages to the process

– Application objects are typically smaller
than pages, so the allocator manages
blocks within pages
• (Larger objects handled too; ignored here)

Top of heap
 (brk ptr)

Program text (.text)
Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)

22

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap

memory.
• On initialization, a heap allocator is provided the starting address and

size of a large contiguous block of memory (the heap).

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE
23

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap

memory.
• On initialization, a heap allocator is provided the starting address and

size of a large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no

longer need pieces of it.
Request 1: Hi! May I
please have 2 bytes of

heap memory?

Allocator: Sure, I’ve
given you address 0x10.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE
24

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap

memory.
• On initialization, a heap allocator is provided the starting address and

size of a large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no

longer need pieces of it.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 AVAILABLE

Request 1: Hi! May I
please have 2 bytes of

heap memory?

Allocator: Sure, I’ve
given you address 0x10.

25

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap

memory.
• On initialization, a heap allocator is provided the starting address and

size of a large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no

longer need pieces of it.
Request 2: Howdy!
May I please have 3

bytes of heap memory?

Allocator: Sure, I’ve
given you address 0x12.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 AVAILABLE
26

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap

memory.
• On initialization, a heap allocator is provided the starting address and

size of a large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no

longer need pieces of it.
Request 2: Howdy!
May I please have 3

bytes of heap memory?

Allocator: Sure, I’ve
given you address 0x12.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 FOR REQUEST 2 AVAILABLE
27

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap

memory.
• On initialization, a heap allocator is provided the starting address and

size of a large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no

longer need pieces of it.
Request 1: I’m done
with the memory I

requested. Thank you!

Allocator: Thanks. Have
a good day!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 FOR REQUEST 2 AVAILABLE
28

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap

memory.
• On initialization, a heap allocator is provided the starting address and

size of a large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no

longer need pieces of it.
Request 1: I’m done
with the memory I

requested. Thank you!

Allocator: Thanks. Have
a good day!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE FOR REQUEST 2 AVAILABLE
29

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap

memory.
• On initialization, a heap allocator is provided the starting address and

size of a large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no

longer need pieces of it.
Request 3: Hello there!
I’d like to request 2 bytes
of heap memory, please.

Allocator: Sure thing.
I’ve given you address

0x10.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE FOR REQUEST 2 AVAILABLE
30

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap

memory.
• On initialization, a heap allocator is provided the starting address and

size of a large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no

longer need pieces of it.
Request 3: Hello there!
I’d like to request 2 bytes
of heap memory, please.

Allocator: Sure thing.
I’ve given you address

0x10.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 3 FOR REQUEST 2 AVAILABLE
31

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap

memory.
• On initialization, a heap allocator is provided the starting address and

size of a large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no

longer need pieces of it. Allocator: Sure thing.
I’ve given you address

0x15.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 3 FOR REQUEST 2 AVAILABLE
32

Request 3: Hi again!
 I’d like to request the

region of memory at 0x10
be reallocated to 4 bytes.

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap

memory.
• On initialization, a heap allocator is provided the starting address and

size of a large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no

longer need pieces of it.Request 3: Hi again!
I’d like to request the

region of memory at 0x10
be reallocated to 4 bytes.

Allocator: Sure thing.
I’ve given you address

0x15.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE FOR REQUEST 2 FOR REQUEST 3 AVAILABLE

33

Lecture Plan
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Bump Allocator
• Implicit Free List Allocator

34

Heap Allocator Functions

void *malloc(size_t size);

void free(void *ptr);

void *realloc(void *ptr, size_t size);

35

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay

36

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay

A heap allocator cannot assume anything about the order of
allocation and free requests, or even that every allocation request is
accompanied by a matching free request.

37

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay

A heap allocator marks memory regions as allocated or available. It
must remember which is which to properly provide memory to
clients.

38

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay

A heap allocator may have options for which memory to use to fulfill
an allocation request. It must decide this based on a variety of
factors.

39

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay

A heap allocator must respond immediately to allocation requests
and should not e.g. prioritize or reorder certain requests to improve
performance.

40

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

41

Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per

unit time. This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of

the limited heap memory to satisfy requests.

42

Utilization
• The primary cause of poor utilization is fragmentation. Fragmentation

occurs when otherwise unused memory is not available to satisfy allocation
requests.
• In this example, there is enough aggregate free memory to satisfy the request,

but no single free block is large enough to handle the request.
• In general: we want the largest address used to be as low as possible.

Request 6: Hi! May I
please have 4 bytes of

heap memory?

Allocator: I’m sorry, I
don’t have a 4 byte block

available…

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Req. 1 Free Req. 2 Free Req. 3 Free Req. 4 Free Req. 5 Free
43

Utilization
Question: what if we shifted these blocks down to make more space?
Can we do this?

A. YES, great idea!
B. YES, it can be done, but not a good idea for some reason (e.g. not

efficient use of time)
C. NO, it can’t be done!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 Free
44

Utilization
Question: what if we shifted these blocks down to make more space?
Can we do this?
• No - we have already guaranteed these addresses to the client. We

cannot move allocated memory around, since this will mean the client
will now have incorrect pointers to their memory!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 Free
45

Fragmentation
• Poor memory utilization is caused by fragmentation

– Sections of memory are not used to store anything useful, but cannot satisfy
allocation requests

– Two types: internal and external

• Recall: Fragmentation in structs
– Internal fragmentation was wasted space inside of the struct (between fields)

due to alignment
– External fragmentation was wasted space between struct instances (e.g. in an

array) due to alignment

• Now referring to wasted space in the heap inside or between allocated
blocks

46

Internal Fragmentation
• For a given block, internal fragmentation occurs if payload is smaller

than the block

• Causes:
– Padding for alignment purposes
– Overhead of maintaining heap data structures (inside block, outside payload)
– Explicit policy decisions (e.g. return a big block to satisfy a small request)

• Easy to measure because only depends on past requests

payload Internal
fragmentation

block

Internal
fragmentation

47

External Fragmentation
• For the heap, external fragmentation occurs when allocation/free pattern leaves

“holes” between blocks
– That is, the aggregate payload is non-continuous
– Can cause situations where there is enough aggregate heap memory to satisfy request, but no

single free block is large enough

• Don’t know what future requests will be
– Difficult to impossible to know if past placements will become problematic

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(48) Oh no! (What would happen now?)

= 8-byte word

48

Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per

unit time. This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of

the limited heap memory to satisfy requests.

These are seemingly conflicting goals – for instance, it may take longer to
better plan out heap memory use for each request.

Heap allocators must find an appropriate balance between these two
goals!

49

Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per

unit time. This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of

the limited heap memory to satisfy requests.

Other desirable goals:
Locality (“similar” blocks allocated close in space)

Robust (handle client errors)
Ease of implementation/maintenance

50

Lecture Plan
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Bump Allocator
• Implicit Free List Allocator

51

Bump Allocator
Let’s say we want to entirely prioritize throughput, and do not care about
utilization at all. This means we do not care about reusing memory. How
could we do this?

52

Bump Allocator Performance

1. Utilization

😱

Never reuses memory

2. Throughput

⭐

Ultra fast, short routines

Bump Allocator
• A bump allocator is a heap allocator design that simply allocates the

next available memory address upon an allocate request and does
nothing on a free request.
• Throughput: each malloc and free execute only a handful of

instructions:
– It is easy to find the next location to use
– Free does nothing!

• Utilization: we use each memory block at most once. No freeing at all,
so no memory is ever reused. L

54

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

AVAILABLE
55

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a AVAILABLE

Variable Value

a 0x10

56

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding AVAILABLE
57

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

c 0x20

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding c
58

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

c 0x20

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding c
59

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

c 0x20

d NULL

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding c
60

Summary: Bump Allocator
• A bump allocator is an extreme heap allocator – it optimizes only for

throughput, not utilization.
• Better allocators strike a more reasonable balance. How can we do this?

Questions to consider:
1. How do we keep track of free blocks?
2. How do we choose an appropriate free block in which to place a newly

allocated block?
3. After we place a newly allocated block in some free block, what do we do

with the remainder of the free block?
4. What do we do with a block that has just been freed?

61

Implementation Issues
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation (when many might fit)?
• What do we do with the extra space when allocating a structure that is

smaller than the free block it is placed in?
• How do we reinsert a freed block into the heap?

62

Knowing How Much to Free
• Standard method

– Keep the length of a block in the word preceding the data
• This word is often called the header field or header

– Requires an extra word for every allocated block

free(p0)

p0 = malloc(32)

p0

block size data

32

= 8-byte word (free)

= 8-byte word (allocated)

63

Lecture Plan
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Bump Allocator
• Implicit Free List Allocator

64

Implicit Free List Allocator
• Key idea: in order to reuse blocks, we need a way to track which blocks are

allocated and which are free.
• We could store this information in a separate global data structure, but this is

inefficient.
• Instead: let’s allocate extra space before each block for a header storing its

payload size and whether it is allocated or free.
• When we allocate a block, we look through the blocks to find a free one, and

we update its header to reflect its allocated size and that it is now allocated.
• When we free a block, we update its header to reflect it is now free.
• The header should be 8 bytes (or larger).
• By storing the block size of each block, we implicitly have a list of free blocks.

65

Implicit Free List Allocator
• Key idea: in order to reuse blocks, we need a way to track which blocks are

allocated and which are free.
• We could store this information in a separate global data structure, but this is

inefficient.
• Instead: let’s allocate extra space before each block for a header storing its

payload size and whether it is allocated or free.
• When we allocate a block, we look through the blocks to find a free one, and

we update its header to reflect its allocated size and that it is now allocated.
• When we free a block, we update its header to reflect it is now free.
• The header should be 8 bytes (or larger).
• By storing the block size of each block, we implicitly have a list of free blocks.

66

This is larger than the 4 byte headers
specified in the book, as this makes it
easier to satisfy the alignment
constraint and store information!.

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Free

67

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

56
Free

Variable Value

a 0x18

68

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Used b 40

Free

Variable Value

a 0x18

b 0x28

69

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Used b 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

70

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Free b 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

71

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Used d 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

72

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

73

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

e 0x48

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Used e

74

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

e 0x48

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Used e

75

Representing Headers
• For each block we need: size, is-allocated?

– Could store using two words, but wasteful

• Standard trick
– If blocks are aligned, some low-order bits of size are always 0
– Use lowest bit as an allocated/free flag (fine as long as aligning to 𝐾>1)
– When reading size, must remember to mask out this bit!

Format of
allocated and

free blocks:

a = 1: allocated block
a = 0: free block

size: block size (in bytes)

payload: application data
(allocated blocks only)

size

8 bytes

payload

a

optional
padding

e.g. with 8-byte alignment,
possible values for size:
 00001000 = 8 bytes
 00010000 = 16 bytes
 00011000 = 24 bytes
 . . .

If x is first word (header):

x = size | a;

a = x & 1;

size = x & ~1;

 size | a;

 x & 1;

 x & ~1;
76

Implicit Free List Allocator
How can we choose a free block to use for an allocation request?
• First fit: search the list from beginning each time and choose first free block that fits.
• Next fit: instead of starting at the beginning, continue where previous search left off.
• Best fit: examine every free block and choose the one with the smallest size that fits.

• First fit/next fit easier to implement
• What are the pros/cons of each approach?

78

Implicit List: Finding a Free Block
• First fit

– Can take time linear in total number of blocks
– In practice can cause “splinters” at beginning of list

• Next fit
– Like first-fit, but search list starting where previous search finished
– Should often be faster than first-fit: avoids re-scanning unhelpful blocks
– Some research suggests that fragmentation is worse

• Best fit
– Search the list, choose the best free block: large enough AND with fewest bytes

left over
– Keeps fragments small—usually helps fragmentation
– Usually worse throughput

79

Practice 1
• For the following heap layout, what would the heap look like after the

following request is made, assuming we are using an implicit free list
allocator with a first-fit approach?

[24 byte payload, free] [16 byte payload, free] [8 byte payload, allocated for A]

void *b = malloc(8);

[8 byte payload, allocated for B] [8 byte payload, free] [16 byte payload, free]
[8 byte payload, allocated for A]

80

Practice 2
• For the following heap layout, what would the heap look like after the

following request is made, assuming we are using an implicit free list
allocator with a best-fit approach?

[24 byte payload, free] [8 byte payload, free] [8 byte payload, allocated for A]

void *b = malloc(8);

[24 byte payload, free] [8 byte payload, allocated for B] [8 byte payload,
allocated for A]

81

Implicit Free List Summary
For all blocks,
• Have a header that

stores size and status.
• Our list links all blocks,

allocated (A) and free (F).

Keeping track of free blocks:
• Improves memory utilization (vs bump allocator)
• Decreases throughput (worst case allocation request has O(A + F) time)
• Increases design complexity J

Header (8B)

Block size 00X

alloc/free

0364

82

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Free

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

83

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

16
Used e ???

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

84

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Used e + pad

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

A. Throw into allocation for e as extra padding? Internal fragmentation –
unused bytes because of padding

85

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

16
Used e 0

Free

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

A. Throw into allocation for e as extra padding?
B. Make a “zero-byte free block”? External fragmentation – unused free
blocks

86

Revisiting Our Goals
Questions we considered:
1. How do we keep track of free blocks? Using headers!
2. How do we choose an appropriate free block in which to place a

newly allocated block? Iterate through all blocks.
3. After we place a newly allocated block in some free block, what do we

do with the remainder of the free block? Try to make the most of it!
4. What do we do with a block that has just been freed? Update its

header!

87

Coalescing
void *e = malloc(24); // returns NULL!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

8
Free

8
Free

24
Used

We do not need to worry about this
problem for the implicit allocator, but
investigate this for the explicit allocator!
(More about this later).

88

In-Place Realloc
void *a = malloc(4);
void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Free

89

In-Place Realloc
void *a = malloc(4);
void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

56
Free

90

Variable Value

a 0x10

In-Place Realloc
void *a = malloc(4);
void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used b 40

Free

Variable Value

a 0x10

b 0x28

The implicit allocator can always move memory to a new
location for a realloc request. The explicit allocator
must support in-place realloc (more on this later).

91

Summary: Implicit Allocator
• An implicit allocator is a more efficient implementation that has

reasonable throughput and utilization due to its recycling of blocks.

Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

92

Recap
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Bump Allocator
• Implicit Free List Allocator

• Next time: More on heap allocators
93

