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Lecture #26 – More on Managing The Heap



Recap: Dynamic memory allocation
• Allocator organizes heap as a collection 

of variable-sized blocks, which are 
either allocated or free
– Allocator requests pages in the heap 

region; virtual memory hardware and OS 
kernel allocate these pages to the process

– Application objects are typically smaller 
than pages, so the allocator manages 
blocks within pages  
• (Larger objects handled too; ignored here)

Top of heap
 (brk ptr)

Program text (.text)
Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)
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Recap: Types of heap allocators
• Explicit allocator:  programmer allocates and frees space 

–Example:  malloc and free in C

• Implicit allocator:  programmer only allocates space (no free)
–Example:  garbage collection in Java, Caml, and Lisp
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Recap: Heap Allocator Functions

void *malloc(size_t size);

void free(void *ptr);

void *realloc(void *ptr, size_t size);
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Recap: Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
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Recap: Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per 

unit time.  This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of 

the limited heap memory to satisfy requests.

These are seemingly conflicting goals – for instance, it may take longer to 
better plan out heap memory use for each request.  

Heap allocators must find an appropriate balance between these two 
goals!
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Recap: Fragmentation
• Internal Fragmentation: an allocated block is larger than what is 

needed (e.g. due to minimum block size)
• External Fragmentation: no single block is large enough to satisfy an 

allocation request, even though enough aggregate free memory is 
available
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Recap: Bump Allocator
• A bump allocator is a heap allocator design that simply allocates the 

next available memory address upon an allocate request and does 
nothing on a free request.
• Throughput: each malloc and free execute only a handful of 

instructions:
– It is easy to find the next location to use
– Free does nothing!

• Utilization: we use each memory block at most once.  No freeing at all, 
so no memory is ever reused. L
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Recap: Implicit Free List Allocator
• Key idea: in order to reuse blocks, we need a way to track which blocks are 

allocated and which are free.
• We could store this information in a separate global data structure, but this is 

inefficient.
• Instead: let’s allocate extra space before each block for a header storing its 

payload size and whether it is allocated or free.
• When we allocate a block, we look through the blocks to find a free one, and 

we update its header to reflect its allocated size and that it is now allocated.
• When we free a block, we update its header to reflect it is now free.
• The header should be 8 bytes (or larger).
• By storing the block size of each block, we implicitly have a list of free blocks.
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Recap: Implicit Free List Allocator
• Standard method

– Keep the length of a block in the word preceding the data
• This word is often called the header field or header

– Requires an extra word for every allocated block

free(p0)

p0 = malloc(32)

p0

block size data

32

= 8-byte word (free)

= 8-byte word (allocated)
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Recap: Representing Headers
• For each block we need:  size, is-allocated?

– Could store using two words, but wasteful

• Standard trick
– If blocks are aligned, some low-order bits of size are always 0
– Use lowest bit as an allocated/free flag (fine as long as aligning to 𝐾>1)
– When reading size, must remember to mask out this bit!

Format of 
allocated and 

free blocks:

a = 1: allocated block  
a = 0: free block

size:  block size (in bytes)

payload:  application data
(allocated blocks only)

size

8 bytes

payload

a

optional
padding

e.g. with 8-byte alignment, 
possible values for size:
    00001000 = 8 bytes
    00010000 = 16 bytes
    00011000 = 24 bytes
    . . .

If x is first word (header):
 
x = size | a;

a = x & 1;

size = x & ~1;

 
 size | a;

 x & 1;

       x & ~1;
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Recap: Implicit Free List Allocator
How can we choose a free block to use for an allocation request?
• First fit: search the list from beginning each time and choose first free block that fits.
• Next fit: instead of starting at the beginning, continue where previous search left off.
• Best fit: examine every free block and choose the one with the smallest size that fits.

• First fit/next fit easier to implement
• What are the pros/cons of each approach?
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Recap: Revisiting Our Goals
Questions we considered:
1. How do we keep track of free blocks?  Using headers!
2. How do we choose an appropriate free block in which to place a 

newly allocated block?  Iterate through all blocks.
3. After we place a newly allocated block in some free block, what do we 

do with the remainder of the free block?  Try to make the most of it!
4. What do we do with a block that has just been freed?  Update its 

header!
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Recap: Implicit Allocator
• An implicit allocator is a more efficient implementation that has 

reasonable throughput and utilization due to its recycling of blocks.

Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?
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Plan for Today
• Explicit Free List Allocator
• Garbage Collection

Disclaimer: Slides for this lecture were borrowed from 
—Nick Troccoli's Stanford CS107 class
—Ruth Anderson’s UW CSE 351 class
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Results of the Previous Attendance Question

What is your 
New Year’s 
resolution?

Eat more healthy and 
exercise more

Better Academic life

Being a better person 
in life

Learning new 
language

Pass Comp201

Have fun

Land an internship at a 
prestigious company

Make a relationship 

Reading and thinking 
more

Wriring a short story.

0 2 4 6 8 10



What is your favorite 
programming language?
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Attendance Question

https://forms.gle/UWU9DTJGuJ4DZwsL6 

https://forms.gle/UWU9DTJGuJ4DZwsL6


Lecture Plan
• Explicit Free List Allocator
• Garbage Collection
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Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than 

all blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free 

block and a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free

8 
Used

56 
Free

19



Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than 

all blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free 

block and a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free null 0x50 8 

Used 0x10 0x50 8
Free 0x10 null
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Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than 

all blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free 

block and a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free null 0x50 8 

Used 0x10 0x50 8
Free 0x10 null

This is inefficient – it triples the size of every header, 
when we just need to jump from one free block to 
another.  And even if we just made free headers bigger, 
it’s complicated to have two different header sizes.
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Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than 

all blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block 

and a pointer to the next free block.
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Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than 

all blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block 

and a pointer to the next free block.  This is inefficient / complicated.
• Where can we put these pointers to the next/previous free block?
• Idea: In a separate data structure?  
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Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than 

all blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block 

and a pointer to the next free block.  This is inefficient / complicated.
• Where can we put these pointers to the next/previous free block?
• Idea: In a separate data structure?  More difficult to access in a separate 

place – prefer storing near blocks on the heap itself.
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Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because 

they’re free.  
• Idea: since we only need to store these pointers for free blocks, let’s 

store them in the first 16 bytes of each free block’s payload!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free

24 
Used

32
Free
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Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because 

they’re free.  
• Idea: since we only need to store these pointers for free blocks, let’s 

store them in the first 16 bytes of each free block’s payload!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24 

Used
32

Free 0x10 null

0x10
First free block

26



Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because 

they’re free.  
• Idea: since we only need to store these pointers for free blocks, let’s 

store them in the first 16 bytes of each free block’s payload!
• This means each payload must be big enough to store 2 pointers (16 

bytes).  So we must require that for every block, free and allocated.
(why?)

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24 

Used
32

Free 0x10 null
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Explicit Free Lists

• Use list(s) of free blocks, rather than implicit list of all blocks
– The “next” free block could be anywhere in the heap

• So we need to store next/previous pointers, not just sizes

– Since we only track free blocks, so we can use “payload” for pointers
– Still need boundary tags (header/footer) for coalescing

28

size a

size a

next

prev

Free block:

size

payload and
padding

a

size a

Allocated block:

(same as implicit free list)



Explicit Free List Allocator
• This design builds on the implicit allocator, but also stores pointers to 

the next and previous free block inside each free block’s payload.
• When we allocate a block, we look through just the free blocks using 

our linked list to find a free one, and we update its header and the 
linked list to reflect its allocated size and that it is now allocated.
• When we free a block, we update its header to reflect it is now free and

update the linked list.

This explicit list of free blocks increases 
request throughput, with some costs 
(design and internal fragmentation)
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Explicit Free List: List Design
How do you want to organize your explicit free list?
(compare utilization/throughput)

A. Address-order (each block’s address
is less than successor block’s address)

B. Last-in first-out (LIFO)/like a stack, where
newly freed blocks are at the beginning of the list

C. Other (e.g., by size, etc.)

Better memory util, 
Linear free

Constant free (push 
recent block onto stack)

(more at end of lecture)
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Explicit Free List: List Design
Note that the doubly-linked list does not have to be in address order.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68 0x70 0x78 0x80

16
Free 0x70 0x40 16 

Used
16

Free 0x10 null 16
Used

16
Free null 0x10

0x70
First free block
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Implicit vs. Explicit: So Far
Implicit Free List
• 8B header for size + alloc/free 

status

• Allocation requests are worst-case 
linear in total number of blocks
• Implicitly address-order

Explicit Free List
• 8B header for size + alloc/free 

status
• Free block payloads store 

prev/next free block pointers

• Allocation requests are worst-case 
linear in number of free blocks
• Can choose block ordering



Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?  Yes!  We 

can use a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?
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Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?  Yes!  We 

can use a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?

3. Can we avoid always copying/moving data during realloc?
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

64
Free
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 40

Free
36



Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Used b + pad 16
Free
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Used b + pad 16
Used c
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Free b + pad 16
Used c
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c

We have enough memory space, but 
it is fragmented into free blocks sized 
from earlier requests!

We’d like to be able to merge 
adjacent free blocks back together.
How can we do this?
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c

Hey, look!  I have a 
free neighbor.  Let’s 

be friends! J
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

40
Free

16
Used c

Hey, look!  I have a 
free neighbor.  Let’s 

be friends! J
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

The process of combining adjacent 
free blocks is called coalescing.

For your explicit heap allocator, you 
should coalesce if possible when a 
block is freed.  You only need to 
coalesce the most immediate right 
neighbor.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

40
Free

16
Used c
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Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?  Yes!  We 

can use a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?  

Yes!  We can coalesce on free().
3. Can we avoid always copying/moving data during realloc?
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Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?  Yes!  We 

can use a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?  

Yes!  We can coalesce on free().
3. Can we avoid always copying/moving data during realloc?
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realloc
• For the implicit allocator, we didn’t worry too much about realloc.  We 

always moved data when they requested a different amount of space.
– Note: realloc can grow or shrink the data size.

• But sometimes we may be able to keep the data in the same place.  
How?
– Case 1: size is growing, but we added padding to the block and can use that
– Case 2: size is shrinking, so we can use the existing block
– Case 3: size is growing, and current block isn’t big enough, but adjacent blocks 

are free.
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realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 48);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

a’s earlier request was too small, so we 
added padding.  Now they are 
requesting a larger size we can satisfy 
with that padding!  So realloc can 
return the same address.
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realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

If a realloc is requesting to 
shrink, we can still use the same 
starting address.  

If we can, we should try to recycle 
the now-freed memory into 
another freed block.
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realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

16
Used a 24

Free a 16
Free

If a realloc is requesting to 
shrink, we can still use the same 
starting address.  

If we can, we should try to recycle 
the now-freed memory into 
another freed block.
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realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

Even with the padding, we don’t 
have enough space to satisfy the 
larger size.  But we have an adjacent 
neighbor that is free – let’s team up!
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realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Used a

Even with the padding, we don’t 
have enough space to satisfy the 
larger size.  But we have an adjacent 
neighbor that is free – let’s team up!

Now we can still return the same 
address.
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realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

16
Used a + pad 16

Free
24

Free

Here, you should combine with 
your right neighbors as much as 
possible until we get enough 
space, or until we know we cannot 
get enough space.
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realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

40
Used a 24

Free

Here, you should combine with 
your right neighbors as much as 
possible until we get enough 
space, or until we know we cannot 
get enough space.
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realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Used a

Here, you should combine with 
your right neighbors as much as 
possible until we get enough 
space, or until we know we cannot 
get enough space.
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realloc
• For the implicit allocator, we didn’t worry too much about realloc.  We 

always moved data when they requested a different amount of space.
– Note: realloc can grow or shrink the data size.

• But sometimes we may be able to keep the data in the same place.  
How?
– Case 1: size is growing, but we added padding to the block and can use that
– Case 2: size is shrinking, so we can use the existing block
– Case 3: size is growing, and current block isn’t big enough, but adjacent blocks 

are free.

• If you can’t do an in-place realloc, then you should move the data 
elsewhere.
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Practice 3
• For the following heap layout, what would the heap look like after the 

following request is made, assuming we are using an explicit free list 
allocator with a first-fit approach and coalesce on free + realloc
in-place?

[24 byte payload, allocated for B] [16 byte payload, free] [16 byte payload, 
allocated for A]

free(B);

[48 byte payload, free] [16 byte payload, allocated for A]
57



Practice 4
• For the following heap layout, what would the heap look like after the 

following request is made, assuming we are using an explicit free list 
allocator with a first-fit approach and coalesce on free + realloc
in-place?

[16 byte payload, allocated for A] [32 byte payload, free] [16 byte payload, 
allocated for B]

realloc(A, 24);

[24 byte payload, allocated for A] [24 byte payload, free] [16 byte payload, 
allocated for B]
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Heap metadata

Going beyond: Explicit list w/size buckets
• Explicit lists are much faster than implicit lists.
• However, a first-fit placement policy is still linear in total # of free blocks.
• What about an explicit free list sorted by size (e.g., as a tree)?
• What about several explicit free lists bucketed by size? (below)

59

small
medium

large
jumbo

Heap 
memory

Read B&O Section 9.9.14!



More Info on Allocators
• D. Knuth, “The Art of Computer Programming”, 2nd edition, Addison 

Wesley, 1973
– The classic reference on dynamic storage allocation

• Wilson et al, “Dynamic Storage Allocation: A Survey and Critical Review”, 
Proc. 1995 Int’l Workshop on Memory Management, Kinross, Scotland, 
Sept, 1995.
– Comprehensive survey
– Available from CS:APP student site (csapp.cs.cmu.edu)



Wouldn’t it be nice…
• If we never had to free memory?
• Do you free objects in Java?

– Reminder:  implicit allocator
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Lecture plan
• Explicit Free List Allocator
• Garbage Collection
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Garbage Collection (GC)
• Garbage collection:  automatic reclamation of heap-allocated storage –

application never explicitly frees memory

• Common in implementations of functional languages, scripting languages, 
and modern object oriented languages:
– Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua, 

JavaScript, Dart, Mathematica, MATLAB, many more…

• Variants (“conservative” garbage collectors) exist for C and C++
– However, cannot necessarily collect all garbage

63

void foo() {
   int* p = (int*) malloc(128);
   return;  /* p block is now garbage! */
}

(Automatic Memory Management)



Garbage Collection
• How does the memory allocator know when memory can be freed? 

– In general, we cannot know what is going to be used in the future since it 
depends on conditionals

– But, we can tell that certain blocks cannot be used if they are unreachable 
(via pointers in registers/stack/globals)

• Memory allocator needs to know what is a pointer and what is not –
how can it do this?
– Sometimes with help from the compiler
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Memory as a Graph
• We view memory as a directed graph

– Each allocated heap block is a node in the graph
– Each pointer is an edge in the graph
– Locations not in the heap that contain pointers into the heap are called root

nodes (e.g. registers, stack locations, global variables)

65

A node (block) is reachable if there is a path from any root to that node
Non-reachable nodes are garbage (cannot be needed by the application)

Root nodes

Heap nodes

not reachable
(garbage)

reachable



Garbage Collection
• Dynamic memory allocator can free blocks if there are no pointers to them

• How can it know what is a pointer and what is not?

• We’ll make some assumptions about pointers:
– Memory allocator can distinguish pointers from non-pointers
– All pointers point to the start of a block in the heap
– Application cannot hide pointers 

(e.g. by coercing them to a long, and then back again)

66
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Classical GC Algorithms
• Mark-and-sweep collection (McCarthy, 1960)

– Does not move blocks (unless you also “compact”)
• Reference counting (Collins, 1960)

– Does not move blocks (not discussed)
• Copying collection (Minsky, 1963)

– Moves blocks (not discussed)
• Generational Collectors (Lieberman and Hewitt, 1983)

– Most allocations become garbage very soon, so
focus reclamation work on zones of memory recently allocated.

• For more information:
– Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of Automatic 

Memory Management, CRC Press, 2012.
– Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic Memory, John Wiley 

& Sons, 1996.
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Mark and Sweep Collecting
• Can build on top of malloc/free package

– Allocate using malloc until you “run out of space”

• When out of space:
– Use extra mark bit in the header of each block
– Mark: Start at roots and set mark bit on each reachable block
– Sweep: Scan all blocks and free blocks that are not marked

68

Before mark

root

After mark Mark bit set

After sweep freefree

Arrows are NOT 
free list pointers



Assumptions For a Simple Implementation
• Application can use functions to allocate memory:

– b=malloc(…) returns pointer, b, to new block with all locations cleared
– b[i] read location i of block b into register
– b[i]=v write v into location i of block b

• Each block will have a header word (accessed at b[-1])

• Functions used by the garbage collector:
– is_ptr(p) determines whether p is a pointer to a block
– length(p) returns length of block pointed to by p, not including

header
– get_roots() returns all the roots

69



Mark
• Mark using depth-first traversal of the memory graph

70

ptr mark(ptr p) {               // p: some word in a heap block
   if (!is_ptr(p))    return;   // do nothing if not pointer
   if (markBitSet(p)) return;   // check if already marked
   setMarkBit(p);               // set the mark bit
   for (i=0; i<length(p); i++)  // recursively call mark on
      mark(p[i]);               //    all words in the block
   return;
}      

Before mark

root

After mark Mark bit set



Sweep
• Sweep using sizes in headers

71

ptr sweep(ptr p, ptr end) {       // ptrs to start & end of heap
   while (p < end) {              // while not at end of heap
      if (markBitSet(p))          // check if block is marked
         clearMarkBit(p);         // if so, reset mark bit
      else if (allocateBitSet(p)) // if not marked, but allocated
         free(p);                 // free the block
      p += length(p);             // adjust pointer to next block
   }
}     

After mark Mark bit set

After sweep freefree



Conservative Mark & Sweep in C
• Would mark & sweep work in C?

– is_ptr determines if a word is a pointer by checking if it points to an allocated 
block of memory

– But in C, pointers can point into the middle of allocated blocks 
(not so in Java)

• Makes it tricky to find all allocated blocks in mark phase

– There are ways to solve/avoid this problem in C, but the resulting garbage collector 
is conservative:

• Every reachable node correctly identified as reachable, but some unreachable nodes might be 
incorrectly marked as reachable

– In Java, all pointers (i.e. references) point to the starting address of an object 
structure – the start of an allocated block
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header
ptr



Recap
• Explicit Free List Allocator
• Garbage Collection

Next time: Wrapping up
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