
Photo: Dennis Ritchie and Ken Thompson

Aykut Erdem // Koç University // Fall 2023

COMP201
Computer
Systems &
Programming

Lecture #27 – Wrapping Up

Recap
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator
• Method 1: Implicit Free List Allocator
• Method 2: Explicit Free List Allocator

4

Plan for Today
• Recap: Where We’ve Been
• COMP201 Tools and Techniques
• What’s Next?
• Q&A

Disclaimer: Slides for this lecture were borrowed from
—Nick Troccoli's Stanford CS107 class

5

Lecture Plan
• Recap: Where We’ve Been
• COMP201 Tools and Techniques
• What’s Next?
• Q&A

6

We’ve covered a lot in just
13 weeks! Let’s take a look

back.

Our COMP201 Journey

Bits and
Bytes

Chars and
C Strings

Pointers,
Stack and

Heap

Generics

Assembly

Cache
Memories

Optimization

Linking

Heap
Allocation

8

Course Overview
1. Bits and Bytes - How can a computer represent integer and float numbers?
2. Chars and C-Strings - How can a computer represent and manipulate more

complex data like text?
3. Pointers, Stack and Heap – How can we effectively manage all types of memory

in our programs?
4. Generics - How can we use our knowledge of memory and data representation to

write code that works with any data type?
5. Assembly - How does a computer interpret and execute C programs?
6. Cache Memories - How does the memory system is organized as a hierarchy of

different storage devices with unique capacities?
7. Optimization- How we can optimize our code to improve efficiency and speed?

The optimizations GCC can perform.
8. Linking- How to construct programs from multiple object files?
9. Heap Allocators - How do core memory-allocation operations like malloc and free

work?
9

First Day
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

10

First Day
• The command-line is a text-based interface to navigate a computer,

instead of a Graphical User Interface (GUI).

Graphical User Interface Text-based interface

11

Bits And Bytes
Key Question: How can a computer represent integer numbers?

12

Bits And Bytes
Why does this matter?
• Limitations of representation and arithmetic impact programs!
• We can also efficiently manipulate data using bits.

https://kotaku.com/why-gandhi-is-such-an-asshole-in-civilization-1653818245

13

Floats
• IEEE Floating Point is a carefully-thought-out standard. It’s

complicated, but engineered for their goals.
• Floats have an extremely wide range, but cannot represent every

number in that range.
• Some approximation and rounding may occur! This means you

definitely don’t want to use floats e.g. for currency.
• Associativity does not hold for numbers far apart in the range
• Equality comparison operations are often unwise.

14

C Strings
Key Question: How can a computer represent and manipulate more
complex data like text?
• Strings in C are arrays of characters ending with a null terminator!
• We can manipulate them using pointers and C library functions (many

of which you could probably implement).

15

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
value 'H' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

C Strings
Why does this matter?
• Understanding this representation is key to efficient string manipulation.
• This is how strings are represented in both low- and high-level

languages!
– C++: https://www.quora.com/How-does-C++-implement-a-string
– Python: https://www.laurentluce.com/posts/python-string-objects-

implementation/

16

https://www.quora.com/How-does-C++-implement-a-string
https://www.laurentluce.com/posts/python-string-objects-implementation/
https://www.laurentluce.com/posts/python-string-objects-implementation/

Pointers, Stack and Heap
Key Question: How can we effectively manage all types of memory in our
programs?
• Arrays let us store ordered lists of information.
• Pointers let us pass addresses of data instead of the data itself.
• We can use the stack, which cleans up memory for us, or the heap, which we

must manually manage.

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

17

Stack And Heap
Why does this matter?
• The stack and heap allow for two ways to store

data in our programs, each with their own
tradeoffs, and it’s crucial to understand the
nuances of managing memory in any program
you write!
• Pointers let us pass around references to data

efficiency

18

Generics
Key Question: How can we use our knowledge of memory and data
representation to write code that works with any data type?
• We can use void * to circumvent the type system, memcpy, etc. to

copy generic data, and function pointers to pass logic around.

Why does this matter?
• Working with any data type lets us write more generic, reusable code.
• Using generics helps us better understand the type system in C and

other languages, and where it can help and hinder our program.
19

Assembly Language
Key Question: How does a computer interpret and execute C programs?
• GCC compiles our code into machine code instructions executable by

our processor.
• Our processor uses registers and instructions like mov to manipulate

data.

20

Assembly Language
Why does this matter?
• We write C code because it is higher

level and transferrable across machines.
But it is not the representation executed
by the computer!

• Understanding how programs are
compiled and executed, as well as
computer architecture, is key to writing
performant programs (e.g. fewer lines of
code is not necessarily better).
• We can reverse engineer and exploit

programs at the assembly level!

21

48 Chapter 1 A Tour of Computer Systems

Disk

CPU

Register file

PC ALU

Bus interface
I/O

bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

“hello, world\n”

hello code

hello executable
stored on disk

Figure 1.6 Loading the executable from disk into main memory.

CPU

Register file

PC ALU

Bus interface
I/O

bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

Disk“hello, world\n”

“hello, world\n”

hello code

hello executable
stored on disk

Figure 1.7 Writing the output string from memory to the display.

Caching
• Processor speed is not the only bottleneck in program performance –

memory access is perhaps even more of a bottleneck!
• Memory exists in levels and goes from really fast (registers) to really

slow (disk).
• As data is more frequently used, it ends up in faster and faster memory.

Caching
Why does this matter?
Being able to look at code and get a qualitative sense of its locality is a
key skill for a professional programmer.

• Temporal locality
– Repeat access to the same data tends to be co-located in TIME
– Intuitively: things I have used recently, I am likely to use again soon

• Spatial locality
– Related data tends to be co-located in SPACE
– Intuitively: data that is near a used item is more likely to also be accessed

Linking
• Linking is a technique that allows programs to be constructed from

multiple object files.
• Linking can happen at different times in a program’s lifetime:

– Compile time (when a program is compiled)
– Load time (when a program is loaded into memory)
– Run time (while a program is executing)

Why does this matter?
• Understanding linking can help you avoid nasty errors and make you a

better programmer.

24

Heap Allocators
Key Question: How do core memory-allocation operations
like malloc and free work?
• A heap allocator manages a block of memory for the heap and

completes requests to use or give up memory space.
• We can manage the data in a heap allocator using headers, pointers to

free blocks, or other designs

Why does this matter?
• Designing a heap allocator requires making many design decisions to

optimize it as much as possible. There is no perfect design!
• All languages have a “heap” but manipulate it in different ways.

25

COMP201 Learning Goals
The goals for COMP201 are for students
to gain mastery of
- writing C programs with complex use of memory and
pointers
- an accurate model of the address space and
compile/runtime behavior of C programs

to achieve competence in
- translating C to/from assembly
- writing programs that respect the limitations of computer
arithmetic
- finding bottlenecks and improving runtime performance
- working effectively in a Unix development environment

and have exposure to
- a working understanding of the basics of cache memories

26

Lecture Plan
• Recap: Where We’ve Been
• COMP201 Tools and Techniques
• What’s Next?
• Q&A

27

Tools and Techniques
• Unix and the command line
• Coding Style
• Debugging (GDB)
• Testing (Sanity Check)
• Memory Checking (Valgrind)
• Writing Cache-friendy Code (Callgrind)

28

Unix And The Command Line
Unix and command line tools are extremely popular tools outside of
COMP201 for:
• Running programs (web servers, python programs, remote programs…)
• Accessing remote servers (Amazon Web Services, Microsoft Azure,

Heroku…)
• Programming embedded devices (Raspberry Pi, etc.)

Our goal for COMP201 was to help you become proficient in navigating
Unix

29

Coding Style
• Writing clean, readable code is crucial for any computer science project
• Unfortunately, a fair amount of existing code is poorly-

designed/documented

Our goal for COMP201 was to help you write with good coding style, and
read/understand/comment provided code.

30

Debugging (GDB)
• Debugging is a crucial skill for any computer scientist
• Our goal for COMP201 was to help you become a better debugger

– narrow in on bugs
– diagnose the issue
– implement a fix

• Practically every project you work on will have debugging facilities
– Python: “PDB”
– IDEs: built-in debuggers (e.g. QT Creator, Eclipse)
– Web development: in-browser debugger

31

Testing (Sanity Check)
• Testing is a crucial skill for any computer scientist
• Our goal for COMP201 was to help you become a better tester

– Writing targeted tests to validate correctness
– Use tests to prevent regressions
– Use tests to develop incrementally

32

Memory Checking and Profiling
• Memory checking and profiling are crucial for any computer scientist to

analyze program performance and increase efficiency.
• Many projects you work on will have profiling and memory analysis

facilities:
– Mobile development: integrated tools (XCode Instruments, Android Profiler, etc.)
– Web development: in-browser tools

33

Tools
You’ll see manifestations of these tools throughout projects you work on.
We hope you can use your COMP201 knowledge to take advantage of
them!

34

Lecture Plan
• Recap: Where We’ve Been
• Larger Applications
• What’s Next?
• Q&A

35

After COMP201, you are
prepared to take a variety of

classes in various areas. What
are some options?

Role within COMP Curriculum

37

Data Reps.
Memory Model

COMP317
Embedded

Systems

COMP303
Computer

Architecture

COMP416
Computer
Networks

COMP301
Programming

Language
Concepts

COMP306
Database

Management
Systems

COMP304
Operating
Systems

COMP201
Computer Systems
and Programming

Programming
Languages

Network
Protocols

Execution Model
Memory System

COMP132
Advanced

Programming

COMP100
Intro. to CS &
Programming

Processes,
Memory

Management

Courses
How is an operating system implemented? (take COMP304!)
• Threads
• User Programs
• Virtual Memory
• Filesystem

How a programming language is designed? (take COMP301!)
• Lexical analysis
• Parsing
• Semantic Analysis
• Code Generation

38

Courses
What are the principles of designing computer hardware
(take COMP303)
• Computer organization

How can we write programs that execute on special hardware?
(take COMP317!)
• Embedded systems

How can applications communicate over a network?
(take COMP416!)
• How can we weigh different tradeoffs of network architecture design?
• How can we effectively transmit bits across a network?

39

Machine Learning
Can we speed up machine learning training with reduced precision
computation?
• https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-

generation-of-ai-chips/
• https://devblogs.nvidia.com/mixed-precision-training-deep-neural-

networks/

How can we implement performant machine learning libraries?
• Popular tools such as TensorFlow and PyTorch are implemented using C!
• https://pytorch.org/blog/a-tour-of-pytorch-internals-1/
• https://www.tensorflow.org/guide/extend/architecture

40

https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-generation-of-ai-chips/
https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-generation-of-ai-chips/
https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
https://pytorch.org/blog/a-tour-of-pytorch-internals-1/
https://www.tensorflow.org/guide/extend/architecture

Web Development
How can we efficiently translate Javascript code to machine code?
• The Chrome V8 JavaScript engine converts Javascript into machine code for

computers to execute: https://medium.freecodecamp.org/understanding-
the-core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
• The popular Node.js web server tool is built on Chrome V8

How can we compile programs into an efficient binary instruction format
that runs in a web browser?
• WebAssembly is an emerging standard instruction format that runs in

browsers: https://webassembly.org
• You can compile C/C++/other languages into WebAssembly for web

execution
41

https://medium.freecodecamp.org/understanding-the-core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
https://medium.freecodecamp.org/understanding-the-core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
https://webassembly.org/
https://blog.chromium.org/2019/06/webassembly-brings-google-earth-to-more.html
https://blog.chromium.org/2019/06/webassembly-brings-google-earth-to-more.html

Programming Languages / Runtimes
How can programming languages and runtimes efficiently manage
memory?
• Manual memory management (C/C++)
• Reference Counting (Swift)
• Garbage Collection (Java)

How can we design programming languages to reduce the potential for
programmer error?
• Haskell/Swift ”Optionals”

How can we design portable programming languages?
• Java Bytecode: https://en.wikipedia.org/wiki/Java_bytecode

42

https://en.wikipedia.org/wiki/Java_bytecode

Theory
How can compilers output efficient machine code instructions for
programs?
• Languages can be represented as regular expressions and context-free

grammars
• We can model programs as control-flow graphs for additional

optimization

43

Security
How can we find / fix vulnerabilities at various levels in our
programs?
• Understand machine-level representation and data manipulation
• Understand how a computer executes programs
• macOS High Sierra Root Login Bug: https://objective-

see.com/blog/blog_0x24.html

44

https://objective-see.com/blog/blog_0x24.html
https://objective-see.com/blog/blog_0x24.html

Lecture Plan
• Recap: Where We’ve Been
• Larger Applications
• What’s Next?
• Q&A

45

Course Evaluations
• I hope you can take the time to fill out the end-semester COMP201

course evaluation.
• I sincerely appreciate any feedback you have about the course and read

every piece of feedback we receive.
• I am always looking for ways to improve!

46

Q&A

47

