COMP201
Gor Pital
Sxichicio
eg 10 ginuining
H
7

Recap

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- Signed Integers
- Overflow
- Casting and Combining Types

Recap: Unsigned and Signed Integers

Recap: Overflow in Unsigned Integers

Recap: Overflow in Signed Numbers

Recap: Casting

- What happens at the byte level when we cast between variable types? The bytes remain the same! This means they may be interpreted differently depending on the type.

```
int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);
```

This prints out: " $\mathrm{v}=-12345$, uv $=4294954951$ ".

- The bit representation for -12345 is Ob111111111111111111100111111000111.
If we treat this binary representation as a positive number, it's huge!

Bits and Bytes So Far

- All data is ultimately stored in memory in binary
- When we declare an integer variable, under the hood it is stored in binary

$$
\text { int } x=5 ; ~ / / ~ r e a l l y ~ 0 b 0 . . .0101 \text { in memory! }
$$

- Until now, we only manipulate our integer variables in base 10 (e.g. increment, decrement, set, etc.)
- Today, we will learn about how to manipulate the underlying binary representation!
- This is useful for: more efficient arithmetic, more efficient storing of data, etc.

Plan For Today

- Casting and Combining Types (cont'd.)
- Byte Ordering
- Bitwise Operators
- Bitmasks
- Bit Shift Operators

Disclaimer: Slides for this lecture were borrowed from
—Nick Troccoli's Stanford CS107 class
—Randal E. Bryant and David R. O'Hallaron's CMU 15-213 class

Lecture Plan

- Casting and Combining Types (cont'd.)
- Byte Ordering
- Bitwise Operators
- Bitmasks
- Bit Shift Operators

Comparisons Between Different Types

- Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

Comparisons Between Different Types

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

```
s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2 - true
u1 > u2 - true
s1 > u3 - true
```


Expanding Bit Representations

- Sometimes, we want to convert between two integers of different sizes (e.g. short to int, or int to long).
- We might not be able to convert from a bigger data type to a smaller data type, but we do want to always be able to convert from a smaller data type to a bigger data type.
- For unsigned values, we can add leading zeros to the representation ("zero extension")
- For signed values, we can repeat the sign of the value for new digits ("sign extension")
- Note: when doing $<,>,<=,>=$ comparison between different size types, it will promote to the larger type.

Expanding Bit Representation

unsigned short $s=4$;
// short is a 16-bit format, so $\quad s=0000000000000100 b$
unsigned int $i=s$;
// conversion to 32-bit int, so i = 0000 000000000000000000000000 0100b

Expanding Bit Representation

short $s=4 ;$
// short is a 16-bit format, so $\quad s=000000000000$ 0100b
int i = s;
// conversion to 32-bit int, so i $=0000000000000000000000000000$ 0100b

- or -
short $s=-4$;
// short is a 16-bit format, so

```
s = 1111 1111 1111 1100b
```

int i = s;
// conversion to 32-bit int, so i = 1111111111111111111111111111 1100b

Truncating Bit Representation

If we want to reduce the bit size of a number, C truncates the representation and discards the more significant bits.

```
int x = 53191;
short sx = x;
int y = sx;
```

What happens here? Let's look at the bits in x (a 32-bit int), 53191:
00000000000000001100111111000111
When we cast x to a short, it only has 16 -bits, and C truncates the number:

1100111111000111

This is -12345 ! And when we cast sx back an int, we sign-extend the number.

$$
11111111111111111100111111000111 \text { // still -12345 }
$$

Truncating Bit Representation

If we want to reduce the bit size of a number, C truncates the representation and discards the more significant bits.

```
int x = -3;
short sx = x;
int y = sx;
```

What happens here? Let's look at the bits in x (a 32-bit int), -3 :
11111111111111111111111111111101
When we cast x to a short, it only has 16 -bits, and C truncates the number:

$$
1111111111111101
$$

This is -3 ! If the number does fit, it will convert fine. y looks like this:
11111111111111111111111111111101 // still-3

Truncating Bit Representation

If we want to reduce the bit size of a number, C truncates the representation and discards the more significant bits.

```
unsigned int x = 128000;
unsigned short sx = x;
unsigned int y = sx;
```

What happens here? Let's look at the bits in x (a 32-bit unsigned int), 128000:
00000000000000011111010000000000
When we cast x to a short, it only has 16-bits, and C truncates the number:

$$
1111010000000000
$$

This is 62464 ! Unsigned numbers can lose info too. Here is what y looks like: 00000000000000001111010000000000 // still 62464

The sizeof Operator

long sizeof(type);

sizeof takes a variable type as a parameter and returns the size of that type, in bytes.

Practice: Truncation

What are the values of cx for the passages of code below?
short x = 130; // 0b1000 0010
char $\mathrm{cx}=\mathrm{x}$;
short x = -132 // 0b1111 111101111100
char $\mathrm{cx}=\mathrm{x}$;
short x = 25; // 0b1 1001
char cx = x;

Practice: Truncation

What are the values of cx for the passages of code below?
short x = 130; // 0b1000 0010
char cx = x; // -126
short x = -132 // 0b1111 111101111100
char cx = x; // 124
short x = 25; // 0b1 1001
char cx = x; // 25

Practice: Truncation

What are the values of cx for the passages of code below?

```
short x = 390; // 0b1 1000 0110
char cx = x;
```

```
short x = -15; // 0b1111 1111 1111 0001
char cx = x;
```


Practice: Truncation

What are the values of cx for the passages of code below?

```
short x = 390; // 0b1 1000 0110
char cx = x; // -122
```

```
short x = -15; // 0b1111 1111 1111 0001
char cx = x; // -15
```


In Sum: Basic Rules of Expanding, Truncating

- Expanding (e.g., short int to int)
- Unsigned: zeros added
- Signed: sign extension
- Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
- Unsigned/signed: bits are truncated
- Result reinterpreted
- Unsigned: mod operation
- Signed: similar to mod
- For small (in magnitude) numbers yields expected behavior

Lecture Plan

- Casting and Combining Types (cont'd.)
- Byte Ordering
- Bitwise Operators
- Bitmasks
- Bit Shift Onerators

Number Representations

C Declaration	Intel IA32	X86-64
int	4	4
double	8	8
float	4	4
char	1	1
char $*$	4	8
short	2	2
long	4	8

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
-Big Endian: Sun (Oracle SPARC), PPC Mac, Internet
- Least significant byte has highest address
-Little Endian: x86, ARM processors running Android, iOS, and Linux
- Least significant byte has lowest address

Byte Ordering Example

- Big Endian: Sun (Oracle SPARC), PPC Mac, Internet
- Least significant byte has highest address
- Little Endian: x86, ARM processors running Android, iOS, and Linux
- Least significant byte has lowest address
- Example:
- Variable x has 4-byte value of 0x01234567
- Address given by \&x is 0×100

Big Endian
\qquad 01 23 45 67 0×100 0×101 0×102 0×103
Little Endian 0×100

On Holy Wars and

a Plea for Peace

Danny Cohen
Information Sciences Institute

This article was written in an attempt to stop a war. I hope it is not too late for peace to prevail again. Many
believe that the central question of this war is, What is the believe that the central question of this war is, What is the proper byte order in messages? More specifically, the
question is, Which bit should travel first-the bit from the ittle end of the word or the bit from the big end of the word?
Followers of the former approach are called Little Endians, or Lilliputians; followers of the latter are called Big Endians, or Blefuscuians. I employ these Swiftian terms because this modern conflict is so reminiscent of the holy war described in Gulliver's Travels. ${ }^{1}$

Approaches to serialization

The above question arises as a result of the serialization process performed on messages to allow them to be sent through communication media. If the unit of communication is a message, this question has no meaning. If the units are computer words, one must determine their size and the order in which they are sent.
Since they are sent virtually at once, there is no need to determine the order of the elements of these words. lf the bytes are meaningful but questions about question abou beles articles that constitute these byes of the
If the units of communication are bits, the ato (quarks?) of computation the only meaninful questio quarks?) of computation, he only meaningful questio modern communication is based on a single stream of information, the bit-stream. Hence, bits, rather than bytes or words, are the units of information that are actually transmitted over channels such as wires and satellites. Facing page: "Audience with the Emperor of Lilliput." Gavarni,
1850's. Couttesy Library of Congress.

Notes on Swift's Gulliver's Travels

Swift's hero, Gulliver, is shipwrecked and washed ashore on Lilliput, whose six-inch inhabitants are reOf course, all those citizens who habitually break their eggs at the big ends are angered by the proclamation. Clivil war breaks out between the Little Endians and the Big Endians, resulting in the Big Endians taking refuge on a nearby island, the kingdom of Blefuscu. The controversy is ethically and politically important for the Lilliputians. In fact, Swift has 11,000 Lilliputian rebels die over the egg question. The issue might seem silly holy wars.
Swift's point is that the difference between break. ing an egg at the liftle end and breaking it at the big end is trivial. He suggests that everyone do it in his preferred way.
Of course, we are making the opposite point. We agree that the difference between sending informa sist with the Mife or he big end firstis trivial, but in anarchy.

The origin of "endian"

"Gulliver finds out that there is a law, proclaimed by the grandfather of the present ruler, requiring all citizens of Lilliput to break their eggs only at the little ends. Of course, all those citizens who broke their eggs at the big ends were angered by the proclamation. Civil war broke out between the Little-Endians and the Big-Endians, resulting in the Big-Endians taking refuge on a nearby island, the kingdom of Blefuscu."

- Danny Cohen, On Holy Wars and A Plea For Peace

Illustration by Chris Beatrice

Representing Integers

Decimal: 15213
Binary: 0011101101101101
Hex: $\quad 3 \quad$ B $6 \quad$ D
int $A=15213 ;$
S|
int $B=-15213 ;$

long int C = 15213;

Two's complement representation

Aside: ASCII

- ASCII is an encoding from common characters (letters, symbols, etc.) to bit representations (chars).
- E.g. 'A' is 0×41
- Neat property: all uppercase letters, and all lowercase letters, are sequentially represented!
- E.g. 'B' is 0×42

More on this next week!

Lecture Plan

- Casting and Combining Types (cont'd.)
- Byte Ordering
- Bitwise Operators
- Bitmasks
- Bit Shift Operators

Now that we understand

 binary representations, how can we manipulate them at the bit level?
Bitwise Operators

- You're already familiar with many operators in C:
- Arithmetic operators: +, -, *, /, \%
- Comparison operators: $==,!=,<,>,\langle=, ~>=$
- Logical Operators: \&\&, ||, !
- Today, we're introducing a new category of operators: bitwise operators:
$-\&, \mid, \sim, \wedge, \ll, \gg$

And (\&)

AND is a binary operator. The AND of 2 bits is 1 if both bits are 1 , and 0 otherwise.

output		
\mathbf{a}	\mathbf{a}	$\boldsymbol{\&} \mathbf{b} ;$
\mathbf{a}	\mathbf{b}	output
0	0	0
1	1	0
1	0	0
with 1 to let a bit through, \& with θ to zero out a bit		

Or (\mid)
OR is a binary operator. The OR of 2 bits is 1 if either (or both) bits is 1.

output		$\mathbf{=}$
\mathbf{a}	$\mathbf{b} ;$	
\mathbf{a}	\mathbf{b}	output
0	0	0
0	1	1
1	0	1
1	1	1
\| with 1 to turn on a bit, $\left.\left\lvert\, \begin{array}{l}\text { with } \theta \text { to let a bit go through }\end{array}\right.\right]$		

$\operatorname{Not}(\sim)$
NOT is a unary operator. The NOT of a bit is 1 if the bit is 0 , or 1 otherwise.

output	$=\sim a ;$
\mathbf{a}	output
0	1
1	0

Exclusive Or (^)

Exclusive $\operatorname{Or}(\mathrm{XOR})$ is a binary operator. The XOR of 2 bits is 1 if exactly one of the bits is 1 , or 0 otherwise.

output	$=a^{\wedge}$	$\mathbf{b} ;$
\mathbf{a}	\mathbf{b}	output
0	0	0
0	1	1
1	0	1
1	1	0

[^0]
Operators on Multiple Bits

- When these operators are applied to numbers (multiple bits), the operator is applied to the corresponding bits in each number. For example:

AND	
0110	
$\&$	1100

0100	

XOR
0110 \wedge 1100 ---- 1010

NOT

Note: these are different from the logical operators AND ($\& \&)$, OR (||) and NOT (!).

Operators on Multiple Bits

- When these operators are applied to numbers (multiple bits), the operator is applied to the corresponding bits in each number. For example:

AND	
0110	
$\&$	1100

0100	

OR
0110 $\mid 1100$ ---- 1110

XOR	
	0110
	1100
	1010

NOT

This is different from logical AND (\&\&). The logical AND returns true if both are nonzero, or false otherwise. With $\& \&$, this would be $6 \& \& 12$, which would evaluate to true (1).

Operators on Multiple Bits

- When these operators are applied to numbers (multiple bits), the operator is applied to the corresponding bits in each number. For example:

AND	
0110	
$\&$	1100

0100	

OR
0110 1100 ---- 1110

XOR
0110 \wedge 1100 ---- 1010

NOT

This is different from logical $\operatorname{OR}(|\mid)$. The logical OR returns true if either are nonzero, or false otherwise. With ||, this would be $6|\mid 12$, which would evaluate to true (1).

Operators on Multiple Bits

- When these operators are applied to numbers (multiple bits), the operator is applied to the corresponding bits in each number. For example:

AND	
	0110
$\&$	1100

0100	

OR
0110
$\|$$\mid 1100$ ---- 1110

NOT

This is different from logical NOT (!). The logical NOT returns true if this is zero, and false otherwise. With!, this would be $!12$, which would evaluate to false (0).

Lecture Plan

- Casting and Combining Types (cont'd.)
- Byte Orderina
- Bitwise Operators
- Bitmasks
- Bit Shift Operators

Bit Vectors and Sets

- We can use bit vectors (ordered collections of bits) to represent finite sets, and perform functions such as union, intersection, and complement.
- Example: we can represent current courses taken using a char.

0	0	1	0	0	0	1	1

Bit Vectors and Sets

- How do we find the union of two sets of courses taken? Use OR:

00100011
| 01100001
01100011

Bit Vectors and Sets

0	0	1	0	0	0	1	1

- How do we find the intersection of two sets of courses taken? Use AND:

$$
\begin{array}{r}
00100011 \\
\& 01100001 \\
------- \\
00100001
\end{array}
$$

Bit Masking

- We will frequently want to manipulate or isolate out specific bits in a larger collection of bits. A bitmask is a constructed bit pattern that we can use, along with bit operators, to do this.
- Example: how do we update our bit vector to indicate we've taken COMP202?

00100011
00001000

Bit Masking

\#define COMP100	0x1	/* 00	0001
fine COMP106	0x2	/* 000	0010
define COMP132	0x4	/* 000	0100
efine COMP201	0x8	/* 000	1000
fine COMP202	0x10	/* 000	0000
fine COMP291	0x20	/* 001	0000
ne COMP301	0x40	/* 010	0000
COMP302	0x80	/* 10	

char myClasses = ...; myClasses = myClasses | COMP201; // Add COMP201

Bit Masking

\#define COMP100	0x1	/* 00	0001
fine COMP106	0x2	/* 000	0010
define COMP132	0x4	/* 000	0100
efine COMP201	0x8	/* 000	1000
fine COMP202	0x10	/* 000	0000
fine COMP291	0x20	/* 001	0000
ne COMP301	0x40	/* 010	0000
COMP302	0x80	/* 10	

char myClasses = ...; myClasses |= COMP201; // Add COMP201

Bit Masking

- Example: how do we update our bit vector to indicate we've not taken COMP132?

0	0	1	0	0	0	1	1

char myClasses = ...; myClasses = myClasses \& ~COMP132; // Remove COMP132

Bit Masking

- Example: how do we update our bit vector to indicate we've not taken COMP132?

0	0	1		0	0	0	1	1
00100011								
\& 11011111								
00000011								

char myClasses = ...;
myClasses \&= ~COMP132; // Remove COMP132

Bit Masking

- Example: how do we check if we've taken COMP301?

00100011
\& 00000010
00000010
char myClasses = ...;
if (myClasses \& COMP301) \{...
// taken COMP301!

Bit Masking

- Example: how do we check if we've not taken COMP201?

0	0	1		0	0	0	1	1

char myClasses = ...;
if (!(myClasses \& COMP201)) \{...
// not taken COMP201!

Bit Masking

- Example: how do we check if we've not taken COMP201?

char myClasses = ...;
if ((myClasses \& COMP201) ^ COMP201) \{...

Practice: Bitwise Operations

How can we use bitmasks + bitwise operators to...

0b00001101

1. ...turn on a particular set of bits? OR

0b00001101 0b00000010

0b00001111
2. ...turn off a particular set of bits? AND

0b00001101
0b11111011
0b00001001
3. ...flip a particular set of bits? XOR

0b00001101
0b00000110
0b00001011

Bitwise Operator Tricks

- | with 1 is useful for turning select bits on
- \& with 0 is useful for turning select bits off
- \mid is useful for taking the union of bits
- \& is useful for taking the intersection of bits
- ^ is useful for flipping select bits
- ~ is useful for flipping all bits

Bit Masking

- Bit masking is also useful for integer representations as well. For instance, we might want to check the value of the most-significant bit, or just one of the middle bytes.
- Example: If I have a 32-bit integer \mathbf{j}, what operation should I perform if I want to get just the lowest byte in \mathbf{j} ?

```
int j = ...;
int k = j & 0xff; // mask to get just lowest byte
```


Practice: Bit Masking

- Practice 1: write an expression that, given a 32-bit integer \mathbf{j}, sets its least-significant byte to all 1s, but preserves all other bytes.
j | 0xff

Practice: Bit Masking

- Practice 1: write an expression that, given a 32-bit integer \mathbf{j}, sets its least-significant byte to all 1s, but preserves all other bytes.
j | 0xff
- Practice 2: write an expression that, given a 32-bit integer j, flips ("complements") all but the least-significant byte, and preserves all other bytes.
j ^ ~0xff

Powers of 2

Without using loops, how can we detect if a binary number is a power of 2? What is special about its binary representation and how can we leverage that?

Demo: Powers of 2

Lecture Plan

- Casting and Combining Types (cont'd.)
- Byte Ordering
- Bitwise Operators
- Bitmasks
- Bit Shift Operators

Left Shift (<<)

The LEFT SHIFT operator shifts a bit pattern a certain number of positions to the left. New lower order bits are filled in with 0s, and bits shifted off the end are lost.

```
x << k; // evaluates to x shifted to the left by k bits
x <<= k; // shifts x to the left by k bits
```

8-bit examples:

```
00110111 << 2 results in 11011100
01100011 << 4 results in 00110000
10010101 << 4 results in 01010000
```


Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off the end are lost.

$$
\begin{aligned}
& \text { x >> k; // evaluates to } x \text { shifted to the right by } k \text { bit } \\
& x \text { >> k; // shifts } x \text { to the right by } k \text { bits }
\end{aligned}
$$

Question: how should we fill in new higher-order bits?
Idea: let's follow left-shift and fill with 0s.

$$
\begin{array}{ll}
\text { short } x=2 ; & / / 00000000 \\
x & \gg=1 ; \\
\text { printf("\%d\n", } & \text { // } 00000000000000000 \\
\hline
\end{array}
$$

Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off the end are lost.

$$
\begin{aligned}
& \text { x >> k; // evaluates to } x \text { shifted to the right by } k \text { bit } \\
& \text { x >>= k; // shifts } x \text { to the right by } k \text { bits }
\end{aligned}
$$

Question: how should we fill in new higher-order bits?
Idea: let's follow left-shift and fill with 0s.

```
short x = -2; // 1111 1111 1111 1110
x >>= 1; // 0111 1111 1111 1111
printf("%d\n", x); // 32767!
```


Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off the end are lost.

```
x >> k; // evaluates to x shifted to the right by k bit
x >>= k; // shifts x to the right by k bits
```

Question: how should we fill in new higher-order bits?
Problem: always filling with zeros means we may change the sign bit.
Solution: let's fill with the sign bit!

Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off the end are lost.

$$
\begin{aligned}
& x \gg k ; \quad / / \text { evaluates to } x \text { shifted to the right by } k \text { bit } \\
& x \gg=k ; \quad / / \text { shifts } x \text { to the right by } k \text { bits }
\end{aligned}
$$

Question: how should we fill in new higher-order bits?
Solution: let's fill with the sign bit!

Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off the end are lost.

$$
\begin{aligned}
& x \gg k \text {; // evaluates to } x \text { shifted to the right by } k \text { bit } \\
& x \gg=k ; ~ / / ~ s h i f t s ~ \\
& x \text { to the right by } k \text { bits }
\end{aligned}
$$

Question: how should we fill in new higher-order bits?
Solution: let's fill with the sign bit!

```
short x = -2; // 1111 1111 1111 1110
x >>= 1; // 1111 1111 1111 1111
printf("%d\n", x); // -1!
```


Right Shift (>>)

There are two kinds of right shifts, depending on the value and type you are shifting:

- Logical Right Shift: fill new high-order bits with 0s,
- Arithmetic Right Shift: fill new high-order bits with the most-significant bit.

Unsigned numbers are right-shifted using Logical Right Shift. Signed numbers are right-shifted using Arithmetic Right Shift.

This way, the sign of the number (if applicable) is preserved!

Shift Operation Pitfalls

1. Technically, the C standard does not precisely define whether a right shift for signed integers is logical or arithmetic. However, almost all compilers/machines use arithmetic, and you can most likely assume this.
2. Operator precedence can be tricky! For example:
$1 \ll 2+3 \ll 4$ means $1 \ll(2+3) \ll 4$ because addition and subtraction have higher precedence than shifts! Always use parentheses to be sure:
```
(1<<2) + (3<<4)
```


Bit Operator Pitfalls

- The default type of a number literal in your code is an int.
- Let's say you want a long with the index-32 bit as 1 :
long num $=1 \ll 32$;
- This doesn't work! 1 is by default an int, and you can't shift an int by 32 because it only has 32 bits. You must specify that you want 1 to be a long.

$$
\text { long num }=1 \underline{L} \text { << 32; }
$$

Recap

- Casting and Combining Types (cont'd.)
- Byte Ordering
- Bitwise Operators
- Bitmasks
- Bit Shift Operators

Next time: More on how can a computer represent floating point numbers?

[^0]: ^ with 1 to flip a bit, ^ with 0 to let a bit go through

