
Bits, Ints and Floats, Vim

COMP201 Lab 2
Fall 2024

Vi/Vim Reminder

Vi/Vim Reminder

● Normal mode
○ The default mode when launching Vim
○ Mainly allows navigating through text
○ Press u or type :undo (then Enter) to undo
○ Type :redo (then Enter) to redo
○ Cannot type in this mode!

3

● Insert mode
○ Every character you type is put to the file.
○ Cue the --INSERT-- on the left bottom
○ To switch from normal mode to insert

mode, type i in the normal mode.
○ To switch back to normal mode, press esc

4

Vi/Vim Reminder

● Visual mode
○ Allows selecting a text block with arrow keys.
○ After selecting the block:

■ Type d to delete the block
■ Type x to cut the block
■ Type y to copy the block
■ Type p to paste copied (or cut) block

○ To switch from normal mode to visual mode,
type v.

○ To switch back to normal mode, type Esc.

5

Vi/Vim Reminder

● Basic navigation: Arrow keys
● Navigating across words: w (next word), b (beginning of word), e (end of word)
● Jumping in a line: 0 (beginning of line), $ (end of line)
● Jumping in a file: gg (beginning of file), G (end of file), :{num}<Enter> (moving to line

number num)
● Searching for a string: /{regex}, n (moving forward to find the next match), N (moving

backward to find a previous match)
● Quitting a file without saving: :q
● Quitting a file by discarding modification: :q!
● Saving a file without quitting the file: :w
● Saving a file and quitting it: :x

6

Basic Commands in Vi/Vim (in Normal Mode)

Bitwise Operations
and

Bit Representation of
Integers & Floats

Bitwise Operations
● In today’s lab practice, you are going to use some bitwise operators.

○ & ^ >> +
○ Examples of bitwise operations:

■ Getting least significant 2 bits of 1110:
● 1110 & 0011 = 0010

■ Flipping least significant 2 bits of 1110:
● 1110 ^ 0011 = 1101

■ Arithmetic right shifting 1010 by 2 bits:
● 1010 >> 2 = 1110

■ Getting the most significant 2 bits of 1010:
● (1010 >> 2) & 0011 = 1110 & 0011 = 0010

8

Bitwise Operations at Byte Level
● Getting the least 4-bits of 0x6e

0x6e & 0x0f = 01101110 & 00001111 = 00001110 = 0x0e

● Flipping the least significant 4-bits of 0x6e
0x6e ^ 0x0f = 01101110 ^ 00001111 = 01100001 = 0x061

● Arithmetic right shifting 0xee by 4 bits
0xee >> 4 = 11101110 >> 4 = 11111110 = 0xfe

● Getting the most significant 4 bits of 0xe5
(0xe5 >> 4) & 0x0f = (11100101 >> 4) & 00001111 = 11111110 & 00001111 = 00001110 = 0x0e

9

Two’s Complement (Bit Representation of Integers)
● We represent a positive number by itself

and a negative number by the two’s
complement of the corresponding positive
number

● The two’s complement of a number is the
binary digits inverted, plus 1.

○ e.g. -0001 (1) = 1111 (-1)
● Standard addition works

○ e.g. 1111 (-1) + 0001 (1) = 0000 (0)
● All bits are used to represent as many

numbers as possible (efficient)

10

Signed vs Unsigned

11

Two’s Complement Exercises
● minusOne - return a value of -1

○ Example: minusOne() = -1

○ Legal ops: ! ~ & ^ | + << >>

● negate - return -x given x

○ Example: negate(5) = -5, negate(-4) = 4

○ Legal ops: ! ~ & ^ | + << >>

● fitsShort - return 1 if x can be represented as a 16-bit, two's complement integer.

○ Examples: fitsShort(33000) = 0, fitsShort(-32768) = 1

○ Legal ops: ! ~ & ^ | + << >>
12

Bit Representation of Floating Point Numbers (32-bits)

● 1 bit is for sign
● 8 bits are for exponent
● 23 bits are for fraction
● Bias = 2 (8 - 1) -1 = 127
● How to read:

○ If exp > 0 (normalized), floating point number = (s ? -1 : 1) * (1.frac) * 2 (exp - 127)

○ If exp = 0 (denormalized), floating point number = (s ? -1 : 1) * (0.frac) * 2 - 126

13

exps frac
1 8 bits 23 bits

Bit Representation of Floating Point Numbers (32-bits)

14

● Not A Number (NaN):

● ± Infinity (± ∞):

● Zero (0):

Now, the in lab assignment :)

15

