
COMP201 - Lab 3

Fall 2024

1

C-Strings and GNU Debugger (GDB)

Strings in C

C-Strings

● 1-D array of characters
● Terminated by null or \0
● Initializing a String

○ char greeting[6] = {'H', 'e', 'l', 'l', 'o',
'\0'};

○ char greeting[] = "Hello";

14

Standard string
functions in C

strcat()
● Concatenates two given strings.
● Concatenates source string at the end of

destination string.

● strcat (char * destination, char * source);

16

strcat()
● Concatenates two given strings.
● Concatenates source string at the end of

destination string.

● strcat (char * destination, char * source);

Output:

17

strncat()

● Concatenates (appends) portion of one string at the
end of another string.

● strncat (char * destination, char * source, size_t num);

18

strncat()

● Concatenates (appends) portion of one string at the
end of another string.

● strncat (char * destination, char * source, size_t num);

Output:

19

strcpy()

● Copies contents of one string into another string.

● strcpy (char * destination, char * source);

20

strcpy()

● Copies contents of one string into another string.

● strcpy (char * destination, char * source);

Output:

21

strncpy()
● Copies portion of contents of one string into another string.

● strncpy (char * destination, char * source, size_t num);

22

strncpy()
● Copies portion of contents of one string into another string.

● strncpy (char * destination, char * source, size_t num);

Output:

23

strlen()

● Gives the length of the given string.

● strlen (char * str);

24

strlen()

● Gives the length of the given string.

● strlen (char * str);

Output:

25

strcmp()
● Compares two given strings and returns zero if they are same.

● If length of string1 < string2, it returns < 0 value.

● If length of string1 > string2, it returns > 0 value.

● strcmp (char * str1, char * str2);

26

strcmp()
● Compares two given strings and returns zero if they are same.

● If length of string1 < string2, it returns < 0 value.

● If length of string1 > string2, it returns > 0 value.

● strcmp (char * str1, char * str2);

Output:
27

strchr()
● Returns pointer to the first occurrence of the character in a given string.

● strchr(char *str, character);

28

strchr()
● Returns pointer to the first occurrence of the character in a given string.

● strchr(char *str, character);

Output:

29

strrchr()
● Returns pointer to the last occurrence of the character in a given string.

● strrchr(char *str, character);

30

strrchr()
● Returns pointer to the last occurrence of the character in a given string.

● strrchr(char *str, character);

Output:

31

strstr()
● Returns pointer to the first occurrence of the string in a given string.

● strstr(char *str1, char *str2);

32

strstr()
● Returns pointer to the first occurrence of the string in a given string.

● strstr(char *str1, char *str2);

Output:

33

strtok()
● Tokenizes/parses the given string using delimiter.

● strtok (char * str, char * delimiters);

34

strtok()
● Tokenizes/parses the given string using delimiter.

● strtok (char * str, char * delimiters);

Output:

35

What is GNU Debugger (GDB)?

“GNU Debugger” is a debugger for several languages, including
C and C++. It was first written by Richard Stallman in 1986 as
part of his GNU system.

● It allows you to inspect what the program is doing at a
certain point during execution.

● Errors like segmentation faults may be easier to find with the
help of gdb.

2

www.gnu.org/software/gdb

https://www.gnu.org/software/gdb

Start with GDB

3

When compiling you need to add a “-g” option to enable built-in
debugging support :

● $ gcc [other flags] -g <source files> -o <output file>
○ e.g. : $ gcc -g main.c -o main.out

To run GDB simply run:

● $ gdb [compiled_file]
○ e.g. : $ gdb main.out

GDB prompt

4

● GDB has an interactive shell, much like the linux terminals. It can recall history
with the arrow keys, auto-complete words (most of the time) with the TAB key, and
has other nice features like help command (help [command]) that provides more
details of the command.

Running a program in GDB

To run the program, just use
● (gdb) run

This runs the program
● If it has no serious problems (i.e. the normal program didn’t get a

segmentation fault, etc.), the program should run fine here too.

● If the program did have issues, then you (should) get some useful
information like the line number where it crashed, and parameters to
the function that caused the error:

5

Line Breakpoint

6

Running the program in case it’s buggy or crashes may not be that useful,
so instead you can set a breakpoint, a line of the code your debugger stops
there and you can run the code line by line while you can observe
variables.

To set a breakpoint use (let’s say your source code file is named my_file.c)
● (gdb) break my_file.c:7

or
● (gdb) b my_file.c:7

This sets a breakpoint in line 7 of the my_file.c code and when you run the
code, if the program ever reaches line 7, the debugger stops there.

Function Name Breakpoint

7

You can also tell gdb to break at a particular function. Suppose you have a function
named “myfunc” then you can set a breakpoint for whenever this function is called using

● (gdb) break myfunc
or

● (gdb) break myfunc

What’s next?

8

After setting suitable Breakpoints and running the program using “ (gdb) run “ command,
it should stop where you tell it to. You can proceed onto the next breakpoint by typing
● (gdb) continue

Or you can execute a single-step (execute just the next line of code) by typing
● (gdb) step step into

or
● (gdb) next

or step over
● (gdb) n

or
● Simply press ENTER after once you called next, the ENTER executes the last

command again

How to check variables?

9

If you reached to a desired point and you want to see things like the values of variables,
etc.

The “print” command prints the value of the specified variable
● (gdb) print [variable]
● e.g. : (gdb) print my_var

And “print/x” prints the value in hexadecimal and “print/t” in binary format
● (gdb) print/x [variable]
● (gdb) print/t [variable]

How to watch for any change?

10

Whereas breakpoints interrupt the program at a particular line or function, watchpoints
act on variables. They pause the program whenever a watched variable’s value is
modified. For example, the following watch command:

● (gdb) watch [variable]
● e.g. : (gdb) watch my_var

 Whenever my_var’s value is modified, the program will interrupt and print out the old and
new values.

Conditional breakpoint!

11

Just like regular breakpoints, except that you get to specify some criterion that must be
met for the breakpoint to trigger.

● (gdb) break my_file.c:6 if i >= ARRAYSIZE

This command sets a breakpoint at line 6 of file my_file.c, which triggers only if the
variable “i” is greater than or equal to the size of the array (suppose ARRAYSIZE is
defined). Conditional breakpoints can most likely avoid all the unnecessary steppings
and time wastings.

More useful commands

12

Other useful commands:

● (gdb) backtrace produces a stack trace of the function calls that lead to a seg fault
(similar to Java exceptions)

● (gdb) where same as backtrace; you can think of this version as working even
when you’re still in the middle of the program

● (gdb) finish runs until the current function is finished
● (gdb) delete deletes a specified breakpoint
● (gdb) info breakpoints shows information about all declared breakpoints
● (gdb) info locals shows local variables and their values in the current score

Want a better user interface?

13

After entering th gdb prompt, by typing “layout next” you can enter to the display layout
that shows you breakpoints and source code with the prompt together. You can also use
-tui option when running gdb as follows: gdb [compiled_file] -tui

