
Valgrind
Fall 2024 - COMP 201

Lab 4

What is Valgrind?

2

- An open source system memory debugger

- Used for memory leak detection and profiling

How to use?

3

$ gcc -g -o out sample.c
-g Enabling the Valgrind
out Output file
sample.c The program for compile

- Using -O0 is also a good idea!

- Valgrind usage:
$ valgrind ./out
$ man valgrind to play around with options

Errors that Valgrind can detect and report:

4

● Invalid read/write errors
○ Reads or writes to a memory address which

you did not allocate
● Use of an uninitialized value

○ Code uses a declared variable before any kind of explicit
assignment

● Invalid free error
○ Code attempts to delete allocated memory twice
○ Delete memory that was not allocated

Invalid read & writes

● Reading freed variables

● Reading uninitialized variables

● Writing to uninitialized memory
- By writing too much data to allocated
memory

int foo (int y) {

int *bar =malloc(sizeof(int));
*bar = y;

free(bar)

printf(“bar: %d \n”, * bar);
return y;

}

Invalid read & writes

Memory Errors Vs. Memory Leaks
● Memory leaks:

○ A program dynamically allocates memory and does not free it
○ Won't cause a program to misbehave, crash, or give wrong answers

● Memory errors:
○ Is a red alert.
○ Reading uninitialized memory
○ Writing past the end of a piece of memory,
○ Accessing freed memory, etc
○ Can have significant consequences.
○ Memory errors should never be treated casually or ignored

!

7

Types of Memory Leaks
● Still Reachable
- Memory plock is still pointed at, programmer could go back and free it

before exiting

● Indirectly Lost
- Block is lost because the blocks that point to it are themselves lost

● Definitely Lost
- No pointer to the block can be found

● Possibly Lost
- Pointer exists but it points to an internal part of the memory block

Memory Leaks

● Memory that is allocated should always be
freed

int foo (int y) {

int *bar =malloc(sizeof(int));
*bar = y;

printf(“bar: %d \n”, * bar);
return y;

}

Example: sample.c
● With a memory error and a memory leak

 $ gcc -g -o out sample.c
 $ valgrind ./out

10

Memory error
➢ valgrind --tool=memcheck ./out

11

process ID
12

➢ valgrind --tool=memcheck ./out

➢ valgrind --tool=memcheck ./out

Types of error
Here; The program wrote to some memory it should not have due to a heap block overrun.

13

➢ valgrind --tool=memcheck ./out

Stack trace → where the problem occurred.

14

Memory error
➢ valgrind --tool=memcheck --leak-check=yes ./out

15

Memory error
➢ valgrind --tool=memcheck --leak-check=yes ./out

16

Now In-Lab Exercise!

Useful links

● Valgrind and GDB in close cooperation
● Valgrind User Manual

https://www.redhat.com/en/blog/valgrind-and-gdb-close-cooperation
https://valgrind.org/docs/manual/manual.html

