
Machine Programming
with Assembly

COMP201 Lab Session
Spring 2023

Burak Kızıl

Burak Kızıl

Burak Kızıl

Burak Kızıl
Spring 2024

Burak Kızıl

Burak Kızıl
Fall 2024

2

GDB Recap

● GDB is a debugger for C (and C++), which allows:

○ Run the program up to a certain point,

○ Pause execution and see the current state,

○ Continue execution step by step

● Higher level debugging

○ Simpler to interpret,

○ but not always useful

● What if we want to dive deeper?

3

Debugging using Assembly Language

● Debugging can be easier if we can see what actually happens under the hood:

○ the individual CPU operations,

○ registers,

○ or the memory.

● To go deeper, one must look at the Assembly code.

● The command in GDB command line: ‘disassemble’ outputs the assembly
translation of the function currently being executed, or the translation of a target
function if one is supplied.

○ disassemble

○ disassemble [Function]

4

Assembly
● A (very) low-level programming language

● Designed for a specific type of processor

● It may be produced by compiling source code from a high-level

programming language (such as C/C++)

● It can also be written from scratch.

● Assembly code can be converted to machine code using an

assembler.

5

Assembly Language

● Assembly languages differ between processor architectures

● Often similar instructions and operators

● Below are some examples of instructions supported by x86

processors:

o mov	 - copy data from one location to another

o add	 - add two values

o sub	 - subtract a value from another value

o push - push data onto a stack

o pop	 - pop data from a stack (will be covered later)

o jmp	 - jump to another execution point

o int	 - interrupt a process

o cmp	 - compares two operands

6

• Registers are data storage locations directly on the CPU

• Usually, the size, or width, of a CPU’s registers define its architecture

• In a 64-bit CPU, the registers will be 64 bits wide

• The same is true of 32-bit CPUs (32-bit registers), 16-bit CPUs, and so on.

• Registers are very fast to access and are often the operands for arithmetic

and logic operations.

o %rbp and %rsp are special purpose registers

o %rbp is the base pointer, which points to the base of the current stack

frame

o %rsp is the stack pointer, which points to the top of the current stack

frame

o %rbp always has a higher value than %rsp because the stack starts

at a high memory address and grows downwards.

Registers

7

Understanding Assembly

pushq %rbp
movq %rsp, %rbp

movl %edi, -4(%rbp)

movl -4(%rbp), %eax

imull -4(%rbp), %eax

popq %rbp

ret

Consider the following Assembly code:

8

Understanding Assembly
• Normally these are the first 2 instructions of all Assembly codes:

• The first two instructions are called the function prologue or
preamble.

• First we push the old base pointer onto the stack to save it for
later.

• Then we copy the value of the stack pointer to the base
pointer.

• After this, %rbp points to the base of main‘s stack frame.

pushq %rbp

movq %rsp, %rbp

Understanding Assembly

• The first integer argument is passed in the edi register.

• So this line copies the argument to a local (offset -4 bytes from the frame

pointer value stored in rbp).

• This copies the value in the local to the eax register.

movl %edi, -4(%rbp)

movl -4(%rbp), %eax

9

10

Understanding Assembly

• Multiply the contents of eax register with eax register

imull -4(%rbp), %eax

popq %rbp

• pop original register out of stack

ret

• return

11

Let’s Revisit

Yes, it is just simple squaring function:

square:
pushq %rbp
movq %rsp, %rbp
movl %edi, -4(%rbp)
movl -4(%rbp), %eax
imull -4(%rbp), %eax
popq %rbp
ret

int square(int num) {
return num * num;

}

Example 1:

12

What is the equivalent C code?

; int f1(int a, int b)
f1:
 leal (%rdi,%rsi), %eax
 subl %esi, %edi
 imull %edi, %eax
 ret

Example 2:

13

What is the x86-64 assembly version of this code?

int f2(int a, int b, int c) {
 int max = a;
 if (b > max) {
 max = b;
 }
 if (c > max) {
 max = c;
 }
 return max;
}

Example 3:

14

What is the equivalent C code?

; int f3(int num)
f2:
 movl $1, %edx
 movl $1, %eax
 jmp .L2
.L3:
 imull %edx, %eax
 addl $1, %edx
.L2:
 cmpl %edi, %edx
 jle .L3
 rep ret

Example 4:

15

What is the x86-64 assembly version of this code?

int f4(int n) {
 int fib1 = 0;
 int fib2 = 1;
 int fib = 0;
 for (int i = 2; i <= n; i++) {
 fib = fib1 + fib2;
 fib1 = fib2;
 fib2 = fib;
 }
 return fib;
}

