Machine Programming | &2 e
with Assembly N UNIVERSITY

Fall 2024

Burak Kızıl

Burak Kızıl

Burak Kızıl

Burak Kızıl
Spring 2024

Burak Kızıl

Burak Kızıl
Fall 2024

GDB Recap

e GDB is a debugger for C (and C++), which allows:
o Run the program up to a certain point,
o Pause execution and see the current state,
o Continue execution step by step

e Higher level debugging
o Simpler to interpret,
o but not always useful

e \What if we want to dive deeper?

Debugging using Assembly Language

e Debugging can be easier if we can see what actually happens under the hood:
o the individual CPU operations,
o registers,
o orthe memory.

e Jo go deeper, one must look at the Assembly code.

e The command in GDB command line: ‘disassemble’ outputs the assembly
translation of the function currently being executed, or the translation of a target
function if one is supplied.

o disassemble
o disassemble [Function]

Assembly

e A (very) low-level programming language

e Designed for a specific type of processor

e |t may be produced by compiling source code from a high-level
programming language (such as C/C++)

e |t can also be written from scratch.

e Assembly code can be converted to machine code using an
assembler.

Assembly Language

Assembly languages differ between processor architectures
Often similar instructions and operators
Below are some examples of instructions supported by x86

processors:
O mov - copy data from one location to another
0 add - addtwo values
o sub - subtract a value from another value
O push - push data onto a stack
O pop - pop datafrom a stack (will be covered later)
O jmp - jump to another execution point
o int -interrupt a process
O cmp - compares two operands

Registers

Registers are data storage locations directly on the CPU
Usually, the size, or width, of a CPU’s registers define its architecture
In a 64-bit CPU, the registers will be 64 bits wide

The same is true of 32-bit CPUs (32-bit registers), 16-bit CPUs, and so on.
Registers are very fast to access and are often the operands for arithmetic
and logic operations.

o %rbp and %rsp are special purpose registers

o %rbpis the base pointer, which points to the base of the current stack
frame

o %rsp is the stack pointer, which points to the top of the current stack

frame
o %rbp always has a higher value than %rsp because the stack starts
at a high memory address and grows downwards.

Understanding Assembly

Consider the following Assembly code:

pushqg %rbp
movqg %rsp, %rbp

movl %edi, -4(%rbp)
movl -4(%rbp), %eax
imull -4(%rbp), %eax
popq %rbp

ret

Understanding Assembly

e Normally these are the first 2 instructions of all Assembly codes:

pushqg %rbp
movq %rsp, %rbp

e The first two instructions are called the function prologue or
preamble.

« First we push the old base pointer onto the stack to save it for
later.

« Then we copy the value of the stack pointer to the base
pointer.

e After this, %rbp points to the base of main‘s stack frame.

Understanding Assembly

movl %edi, -4(%rbp)

The first integer argument is passed in the edi register.

So this line copies the argument to a local (offset -4 bytes from the frame
pointer value stored in rbp).

movl -4 (%rbp), %eax

« This copies the value in the local to the eax register.

Understanding Assembly

imull -4(%rbp), %eax

Multiply the contents of eax register with eax register
popq %rbp

pop original register out of stack

ret

return

Let’s Revisit

square:
pushqg %rbp
movqg %rsp, %rbp
movl %edi, -4(%rbp)
movl -4 (%rbp), %eax
imull -4(%rbp), %eax
popq %rbp
ret

Yes, it is just simple squaring function:

int square(int num) {
return num * num;

}

11

Example 1:

What is the equivalent C code?

; int fl(int a, int b)
fl:
leal (%rdi,%rsi), %eax
subl %esi, %edi

imull %edi, %eax

ret

Example 2:

What is the x86-64 assembly version of this code?

int f2(int a, int b, int c) {
int max = a;
if (b > max) {

max = b;

}

if (¢ > max) {
max = C;

}

return max;

Example 3:

What is the equivalent C code?

; int f£3(int num)
f2:
movl S1, %edx
movl S1, %eax
jmp .L2
.L3:
imull %edx, %eax
addl $1, %edx

L2
cmpl %edi, %edx
jle .L3

rep ret

Example 4:

What is the x86-64 assembly version of this code?

int f4(int n) {

int fibl = 0;
int fib2 = 1;
int fib = 0
for (int i 2; 1 <= n; i++) {

fib = fibl + £fib2;

fibl = fib2;

fib2 = fib;

|| ~e

}

return fib;

