
Photo: Dennis Ritchie and Ken Thompson

Aykut Erdem // Koç University // Fall 2024

COMP201
Computer
Systems &
Programming

Lecture #01 – Introduction

A little about me…

2

Koç University
Associate Professor

2020-now

Hacettepe University
Associate Professor

2010-2020

Universitá Ca’ Foscari di Venezia
Post-doctoral Researcher

2008-2010

Middle East Technical University
1997-2008

Ph.D., 2008
M.Sc., 2003
B.Sc., 2001

MIT
Fall 2007

Visiting Student

VirginiaTech
Visiting Research Scholar

Summer 2006

• I explore better ways to
understand, interpret
and manipulate visual
data.

• My research interests
span a diverse set of
topics, ranging from
image editing to visual
saliency estimation,
and to multimodal
learning for integrated
vision and language. https://aykuterdem.github.io

https://aykuterdem.github.io/

Plan For Today
• Course Introduction
• COMP201 Course Policies
• Unix and the Command Line
• Getting Started With C

Disclaimer: Slides for this lecture were borrowed from
—Nick Troccoli's Stanford CS107 class

3

Lecture Plan
• Course Introduction
• COMP201 Course Policies
• Unix and the Command Line
• Getting Started With C

4

What is COMP201?
• The third course in the line of COMP’s introductory programming

courses (COMP100, COMP132, and COMP201)
– COMP100 teaches you the notion of computational thinking and how to solve

problems as a programmer (using Python)
– COMP132 introduces you object-oriented programming paradigm (using Java)

• COMP201 takes you behind the scenes:
– Not quite down to hardware or physics/electromagnetism (that’s for later...)
– It’s how things work inside C++/Python/Java, and how your programs map

onto the components of computer systems
– Not only does it just feel good to know how these work, it can also inform

projects you work on in the future.
5

Role within COMP Curriculum

6

Data Reps.
Memory Model

COMP317
Embedded

Systems

COMP303
Computer

Architecture

COMP416
Computer
Networks

COMP301
Programming

Language
Concepts

COMP306
Database

Management
Systems

COMP304
Operating
Systems

COMP201
Computer Systems
and Programming

Programming
Languages

Network
Protocols

Execution Model
Memory System

COMP132
Advanced

Programming

COMP100
Intro. to CS &
Programming

Processes,
Memory

Management

What is COMP201?
Computer Systems and Programming
• How languages like C++ and Java represent data

under the hood
• How programming structures are encoded in bits and

bytes
• How to efficiently manipulate and manage memory
• How computers compile programs
• How cache memories work and how to exploit them

to improve the performance of your programs
• Uses the C programming language
• Programming style and software development

practices

7

COMP201 Learning Goals
The goals for COMP201 are for students
to gain mastery of
- writing C programs with complex use of memory and
pointers
- an accurate model of the address space and
compile/runtime behavior of C programs

to achieve competence in
- translating C to/from assembly
- writing programs that respect the limitations of computer
arithmetic
- finding bottlenecks and improving runtime performance
- working effectively in a Unix development environment

and have exposure to
- a working understanding of the basics of cache memories

8

COMP201 Learning Goals
(also learn to identify legitimate programmer scenes in Hollywood movies)

Jeff Goldblum’s character saving the
world by uploading a virus to

the alien mothership
Independence Day, 1996

(Directed by Roland Emmerich)

Elliot creating a malicious PDF file, which
contains some sort of shellcode that will

allow him to take over any Linux
computer that opens that file in Evince.

Mr. Robot, S3, Ep9 -
eps3.8_stage3.torrent (2017)

Source: https://www.geekwire.com/2017/mr-robot-rewind-pwning-dark-army-episode-9/

https://www.geekwire.com/2017/mr-robot-rewind-pwning-dark-army-episode-9/

Course Overview
1. Bits and Bytes - How can a computer represent integer numbers?
2. Chars and C-Strings - How can a computer represent and manipulate more

complex data like text?
3. Pointers, Stack and Heap – How can we effectively manage all types of

memory in our programs?
4. Generics - How can we use our knowledge of memory and data representation

to write code that works with any data type?
5. Assembly - How does a computer interpret and execute C programs?
6. The Memory Hierarchy - How does the memory system is organized as a

hierarchy of different storage devices with unique capacities
7. The Heap Allocators - How do core memory-allocation operations

like malloc and free work?
10

Teaching Team

11

Aykut Erdem

Doğa Kukul Hakan CapukYusuf BayındırMuhammed Burak
Kızıl

Enes Talha Gunay Farnaz AlinezhadCan Kadri EltepeEda Güven

Course Website

https://aykuterdem.github.io/classes/comp201.f24/

*lecture videos on Panopto – can be accesses through KUHub Learn or from the course webpage
12

https://aykuterdem.github.io/classes/comp201.f24/

Question Break!

13

Lecture Plan
• Introduction
• COMP201 Course Policies
• Unix and the Command Line
• Getting Started With C

14

Textbooks
• Computer Systems: A Programmer’s

Perspective by Bryant & O’Hallaron,
3rd Edition
– 3rd edition matters – important updates

to course materials

• A C programming reference of your
choice
– The C Programming Language by

Kernighan and Ritchie
– Other C programming books, websites,

or reference sheets

15

Course Structure
• Lectures: understand concepts, see demos
• Labs: learn tools, study code, discuss with peers
• Assignments: build programming skills, synthesize lecture/lab content

• assg0: out next week, due Oct 23
• C bootcamp: this week (details will be announced soon)

• Lecture recordings will be released roughly 2 weeks after the lecture date.

Tuesday Thursday Friday
Lecture Lecture Lab-A-B

16

Grading
18% 5 Programming assignments
28% 9 Labs
27% Midterm exam
22% Final exam
5% Class participation

17

Grading
18% 5 Programming assignments
28% 9 Labs
27% Midterm exam
22% Final exam
5% Class participation

18

Assignments
• 5 programming assignments completed

individually using Unix command line tools
– Free software, pre-installed on linuxpool cluster

dedicated to COMP students
– GitHub Classroom
– We will give out starter projects for each

assignment

• Graded on functionality (behavior) and style
(elegance)
– Functionality graded using automated tools, given

as point score
– Style graded via automated tests and TA code

review,
– Grades returned via KUHub Learn

19

Late Policy
• Start out with 7 grace days: each late day allows you to submit an

assignment without penalty if you have free grace days left.
• Hard deadline: No submissions will be accepted 48 hours after the

original due date of an assignment (regardless of grace days used!)
• Penalty per day after grace days are exhausted

– 1 day: 20% off
–2 days: 40% off

• Submissions made on KuHub Learn at 00:01am after the deadline counts as late
and are considered as using 1 grace day

20

Grading
18% 5 Programming assignments
28% 9 Labs
27% Midterm exam
22% Final exam
5% Class participation

21

Lab Sections
• Weekly 100-minute labs led by a TA, starting next Friday.

• Hands-on practice with lecture material and course topics.
 + linuxpool.ku.edu.tr

• Graded on attendance + participation (verified by submitting lab work)
– Two graded part:

– In-class practice problem (40%)
– After-class problem (60%)

– Your lowest 2 scores will be dropped, hence there will be no make-up

22

Grading
18% 5 Programming assignments
28% 9 Labs
27% Midterm exam
22% Final exam
5% Class participation

23

Midterm and Final Exams
• Face-to-face exams

– Midterm: Date and time will be announced later
– Final: Date and time will be announced later

• You can only take a make-up for either the midterm or the final exam,
but not both!

• The exams will be released in multiple sessions, in which each student
is required to complete each session in a limited time.

24

Grading
18% 5 Programming assignments
28% 9 Labs
27% Midterm exam
22% Final exam
5% Class participation

25

Class participation
• 2.5% Attendance
• 2.5% Actively participating in-class discussions

26

Question Break!

28

Getting Help
• Post on the Discussion Forum at KUHub Learn

– Online discussion forum for students; post questions, answer other students’
questions

– Best for general assignment questions (DON’T POST ASSIGNMENT CODE!)

• Visit Office Hours
– More info to come soon!

• Email the Course Staff
– Best for private matters (e.g. grading questions).

29

Koç University Honor Code
• For assignments students should be required to digitally add and approve a

version of the agreement below.

I hereby declare that I have completed this examination individually, without support
from anyone else.
I hereby accept that only the below-listed sources are approved to be used during this
open-source examination:
(i) Coursebook,
(ii) All material that is made available to students via KUHub Learn for this course,
(iii) Notes taken by me during lectures.
I have not used, accessed or taken any unpermitted information from any other
source. Hence, all effort belongs to me.

30

Honor Code and COMP201
• Please help us ensure academic integrity:

– Indicate any assistance received on HW (books, friends, etc.).
– Do not look at other people's solution code or answers
– Do not give your solutions to others or post them on the web or to the forum.
– Report any inappropriate activity you see performed by others.

• Assignments are checked regularly for similarity with help of automated
software tools.

• If you realize that you have made a mistake, you may retract your submission
to any assignment at any time, no questions asked. Come to use before we
come for you.

• If you need help, please contact us and we will help you.
– We do not want you to feel any pressure to violate the Honor Code in order to succeed

in this course.
31

Poll Time

32

Lecture Plan
• Introduction
• COMP201 Course Policies
• Unix and the Command Line
• Getting Started With C

33

What is Unix?
• Unix: a set of standards and tools commonly used in software development.

– macOS and Linux are operating systems built on top of Unix

• You can navigate a Unix system using the command line (“terminal”)

• Every Unix system works with the same tools and commands

34

What is the Command Line?
• The command-line is a text-based interface (i.e., terminal interface) to

navigate a computer, instead of a Graphical User Interface (GUI).

Graphical User Interface Text-based interface

35

Command Line vs. GUI
Just like a GUI file explorer interface, a terminal interface:
• shows you a specific place on your computer at any given time.
• lets you go into folders and out of folders.
• lets you create new files and edit files.
• lets you execute programs.

Graphical User Interface Command-line interface
36

Why Use Unix / the Command Line?
• You can navigate almost any device using the same tools and commands:

– Servers
– Laptops and desktops
– Embedded devices (Raspberry Pi, etc.)
– Mobile Devices (Android, etc.)

• Used frequently by software engineers:
– Web development: running servers and web tools on servers
– Machine learning: processing data on servers, running algorithms
– Systems: writing operating systems, networking code and embedded software
– Mobile Development: running tools, managing libraries
– And more…

• We’ll use Unix and the command line to implement and execute our programs.
37

Demo: Using Unix and the Command Line

38

Unix Commands Recap
• cd – change directories (..)
• ls – list directory contents
• mkdir – make directory
• emacs – open text editor
• vi – open text editor
• rm – remove file or folder
• man – view manual pages

See the Resources page of the course website for more commands, and
a complete reference.

39

Lab 1:
The Linux Shell
(next week)

Learning Unix and the Command Line
• Using Unix and the command line can be intimidating at first:

– It looks retro!
– How do I know what to type?

• It’s like learning a new language:
– At first, you may have to constantly look things up (Resources page on course

website!)
– It’s important to spend as much time as possible (during labs and assignments)

building muscle memory with the tools

40

Question Break!

41

Additional Reading 1

42
https://spectrum.ieee.org/tech-history/cyberspace/the-strange-birth-and-long-life-of-unix

https://spectrum.ieee.org/tech-history/cyberspace/the-strange-birth-and-long-life-of-unix

Lecture Plan
• Introduction
• COMP201 Course Policies
• Unix and the Command Line
• Getting Started With C

43

The C Language
C was created around 1970 to make writing Unix and Unix tools easier.
• Part of the C/C++/Java family of languages (C++ and Java were

created later)
• Design principles:

– Small, simple abstractions of hardware
– Minimalist aesthetic
– Prioritizes efficiency and minimalism over safety and high-level abstractions

44

C vs. C++ and Java
They all share:
• Syntax
• Basic data types
• Arithmetic, relational, and logical

operators

C doesn’t have:
• More advanced features like

operator overloading, default
arguments, pass by reference,
classes and objects, ADTs, etc.
• Extensive libraries (no graphics,

networking, etc.) – this means
not much to learn C!
• many compiler and runtime

checks (this may cause security
vulnerabilities!)

45

Programming Language Philosophies
• C is procedural: you write functions, rather than define new variable

types with classes and call methods on objects. C is small, fast and
efficient.

• C++ is procedural, with objects: you write functions, and define new
variable types with classes, and call methods on objects.

• Python is also procedural, but dynamically typed: you still write
functions and call methods on objects, but the development process is
very different.

• Java is object-oriented: virtually everything is an object, and everything
you write needs to conform to the object-oriented design pattern.

46

Why C?
• Many tools (and even other languages, like Python!) are built with C.
• C is the language of choice for fast, highly efficient programs.
• C is popular for systems programming (operating systems, networking,

etc.)
• C lets you work at a lower level to manipulate and understand the

underlying system.

47

Programming Language Popularity

https://www.tiobe.com/tiobe-index/ 48

Guess which one is
the C language?

https://www.tiobe.com/tiobe-index/

Programming Language Popularity

https://www.tiobe.com/tiobe-index/ 49

https://www.tiobe.com/tiobe-index/

Programming Language Popularity

https://www.tiobe.com/tiobe-index/ 50

https://www.tiobe.com/tiobe-index/

Our First C Program
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}

51

Our First C Program
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}

Program comments
You can write block or inline comments.

52

Our First C Program
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
} Import statements

C libraries are written with angle brackets.
Local libraries have quotes:
#include "lib.h"

53

Our First C Program
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}

main function – entry point for the program
Should always return an integer (0 = success)

54

Our First C Program
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}

Main parameters – main takes two parameters,
both relating to the command line arguments
used to execute the program.

argc is the number of arguments in argv
argv is an array of arguments (char * is C string)

55

Our First C Program
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}

printf – prints output to the screen
56

Familiar Syntax
int x = 42 + 7 * -5; // variables, types
double pi = 3.14159;
char c = 'Q'; /* two comment styles */

for (int i = 0; i < 10; i++) { // for loops
 if (i % 2 == 0) { // if statements
 x += i;
 }
}

while (x > 0 && c == 'Q' || b) { // while loops, logic
 x = x / 2;
 if (x == 42) { return 0; }
}

binky(x, 17, c); // function call

57

Boolean Variables
To declare Booleans, (e.g. bool b = ____), you must include stdbool.h:

#include <stdio.h> // for printf
#include <stdbool.h> // for bool

int main(int argc, char *argv[]) {
 bool x = 5 > 2 && binky(argc) > 0;
 if (x) {
 printf("Hello, world!\n");
 } else {
 printf("Howdy, world!\n");
 }
 return 0;
}

58

Boolean Expressions
C treats a nonzero value as true, and a zero value as false:

#include <stdio.h>

int main(int argc, char *argv[]) {
 int x = 5;
 if (x) { // true
 printf("Hello, world!\n");
 } else {
 printf("Howdy, world!\n");
 }
 return 0;
} 59

Console Output: printf
printf(text, arg1, arg2, arg3);

 // Example
char *classPrefix = "COMP";
int classNumber = 201;
printf("You are in %s%d", classPrefix, classNumber); // You are in COMP201

printf makes it easy to print out the values of variables or expressions.
If you include placeholders in your printed text, printf will replace each
placeholder in order with the values of the parameters passed after the text.

%s (string) %d (integer) %f (double)

60

Additional Reading 2

61
https://arstechnica.com/features/2020/12/a-damn-stupid-thing-to-do-the-origins-of-c/

https://arstechnica.com/features/2020/12/a-damn-stupid-thing-to-do-the-origins-of-c/

Question Break!

62

Writing, Debugging and Compiling
We will use:
• the vi/emacs text editor to write our C programs
• the make tool to compile our C programs
• the gdb debugger to debug our programs
• the valgrind tools to debug memory errors and measure program

efficiency

63

Demo: Compiling And
Running A C Program

64

args.c

Working On C Programs Recap
• ssh – remotely log in to linuxpool computers (later)
• Vi/Emacs – text editor to write and edit C programs

– Use the mouse to position cursor, scroll, and highlight text
– :w / Ctl-x Ctl-s to save, :q / Ctl-x Ctl-c to quit

• make – compile program using provided Makefile
• ./myprogram – run executable program (optionally with arguments)
• make clean – remove executables and other compiler files
• Lecture codes are accessible at course webpage

65

Recap
• COMP201 is a programming class, which uses

C to teach you about what goes on under the
hood of programming languages and software.

• We’ll use Unix and command line tools to
write, debug and run our programs.

• Please regularly visit the course website,
https://aykuterdem.github.io/classes/comp201.f24
and follow the announcements on Blackboard.

• We’re looking forward to an exciting semester!

Next time: How a computer represents integer
numbers? What are the limitations?

66

https://aykuterdem.github.io/classes/comp201.s24

