photo: Intel CPU Wafers

l

Ndem [/ Koc; Un|ver3|ty // Fall 2024

XU UNIVERSITY

e

Recap

1.
2.

3.

Bits and Bytes - How can a computer represent numbers?

Chars and C-Strings - How can a computer represent and manipulate more
complex data like text?

Pointers, Stack and Heap - How can we effectively manage all types of memory
In our programs?

Generics - How can we use our knowledge of memory and data representation to
write code that works with any data type?

Working with Multiple Files - What really happens in GCC? How to write your
own Makefiles?

Course Overview

o

Assembly - How does a computer interpret and execute C programs?

The Memory Hierarchy - How to improve the performance of application programs
by improving their temporal and spatial locality?

8. Code Optimization - How write C code so that a compiler can then generate
efficient machine code?

9. Linking - How static and dynamic linking work?

10. Heap Allocators - How do core memory-allocation operations like malloc and
free work?

N

COMP201 Topic 6: How does
a computer interpret and
execute C programs:

Learning Assembly

- Arithmetic
vovng caia W and logical [Control flow [~ 3 Function calls
operations

Lecture 14 Lecture 15 Lecture 16-17/ Lecture 18

Learning Goals

 Learn what assembly language Is and why it Is important
« Become familiar with the format of human-readable assembly and x86

* Learn the mov instruction and how data moves around at the assembly
level

10

Plan for Today

* Overview: GCC and Assembly

* Demo: Looking at an executable

 Registers and The Assembly Level of Abstraction
* The mov Instruction

Disclaimer: Slides for this lecture were borrowed from
—Nick Troccoli's Stanford CS107 class

11

[.ecture Plan

* Overview: GCC and Assembly

12

Bits all the way down

Data representation so far

* Integer (unsigned int, 2's complement signed int)

 Floating Points (IEEE single (float) and double (double) precision
* char (ASCII)

« Address (unsigned long)

» Aggregates (arrays, structs)

The code itself is binary too!
* Instructions (machine encoding)

13

GCC

« GCC is the compller that converts your human-readable code into
machine-readable instructions.

 C, and other languages, are high-level abstractions we use to write code
efficiently. But computers don't really understand things like data
structures, variable types, etc. Compilers are the translator!

* Pure machine code Is 1s and 0s - everything Is bits, even your programs!
But we can read it in a human-readable form called assembly.
(Engineers used to write code in assembly before C).

* There may be multiple assembly instructions needed to encode a single
C instruction.

« We're going to go behind the curtain to see what the assembly code for
our programs looks like.

14

[.ecture Plan

* Demo: Looking at an executable

15

Demo: Looking at an
Executable (objdump -d)

Our First Assembly

int sum_array(int arr[], int nelems) {
int sum = ©;
for (int 1 = @; 1 < nelems; i++) {
sum += arr[i];
}

return sum;

What does this look like in assembly?

17

Our First Assembly

int sum_array(int arr[], int nelems) {
int sum = ©;
for (int 1 = @; 1 < nelems; i++) {
sum += arr[i];

}
return sum;
} make
objdump -d sum
00000000004005b6 <sum_array>:
4005b6: ba 00 00 00 00 mov $0x0, %edx
4005bb: b8 00 00 00 00 mov $0x0, %eax
4005cO: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5 . 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1, %edx
4005cb: 39 f2 cmp %esi,kedx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>

4005ct: 3 ¢3 repz retq

Our First Assembly

00000000004005b6 <sum_array>:
4005b6:
4005bb:
4005cO:
4005c2:
4005c5:
4005C8::
4005cb:
4005cd:
4005cf:

ba
b8
eb
48
03
83
39
/C
f3

00 00 00 00
00 00 00 00
09

63 ca

04 8f

c2 01

f2

f3

c3

mov $0x0, %edx

mov $0x0, %eax

jmp 4005cb <sum_array+0x15>
movslq %edx,%rcx

add (%rdi,%rcx,4),%eax

add $0x1, %edx

cmp %esi,nedx

jl 4005c2 <sum_array+exc>
repz retq

19

Our First Assembly
‘00690@09904065b6 <sum_array>i

This is the name of the function (same
as C) and the memory address where
the code for this function starts.

20

Our First Assembly

00000000004005b6 <sum_array>:

4005b6:
4005bb:
4005cO:
4005c2:
4005c5:
4005C8::
4005cb:
4005cd:
4005cf:

These are the memory addresses where
each of the instructions live. Sequential
Instructions are sequential in memory.

21

Our First Assembly

00000000004005b6 <sum_array>:

This Is the assembly code:
"human-readable” versions of
each machine code instruction.

mov $0x0, %edx

mov $0x0, %eax

jmp 4005cb <sum_array+0x15>
movslq %edx,%rcx

add (%rdi,%rcx,4),%eax

add $0x1, %edx

cmp %esi,nedx
jl 4005c2 <sum_array+exc>

repz retq

22

Our First Assembly

00000000004005b6 <sum_arra
ba 00 00 00 00

Zﬁ gg 00 09 99 This Is the machine code: raw

48 63 ca hexadecimal instructions,

03 04 8f representing binary as read by the
83 c2 01 computer. Different instructions
39 iz may be different byte lengths.

/c T3

3 ¢3

Our First Assembly

00000000004005b6 <sum_array>:
4005b6:
4005bb:
4005cO:
4005c2:
4005c5:
4005C8::
4005cb:
4005cd:
4005cf:

ba
b8
eb
48
03
83
39
/C
f3

00 00 00 00
00 00 00 00
09

63 ca

04 8f

c2 01

f2

f3

c3

mov $0x0, %edx

mov $0x0, %eax

jmp 4005cb <sum_array+0x15>
movslq %edx,%rcx

add (%rdi,%rcx,4),%eax

add $0x1, %edx

cmp %esi,nedx

jl 4005c2 <sum_array+exc>
repz retq

24

Our First Assembly

00000000004005b6 <sum_array>:

4005c8:

83 c2 01 add $0x1, %edx

Each instruction has an
operation name (“opcode”).

25

Our First Assembly

00000000004005b6 <sum_array>:

4005c8: 83 c2 01 add $0x1, %edx

Each instruction can also
have arguments (“operands”).

Our First Assembly

00000000004005b6 <sum_array>:

4005c8: 83 c2 01 add $0x1, %edx

$[number] means a constant
value, or “immediate” (e.g. 1 here).

Our First Assembly

00000000004005b6 <sum_array>:

4005c8:

83 c2 01

add $0x1, %edx

%[name] means a register, a storage
location on the CPU (e.g. edx here).

28

[.ecture Plan

 Registers and The Assembly Level of Abstraction

29

Assembly Abstraction

 C abstracts away the low-level details of machine code. It lets us work
using variables, variable types, and other higher-level abstractions.

» C and other languages let us write code that works on most machines.
» Assembly code Is just bytes! No variable types, no type checking, etc.
* Assembly/machine code Is processor-specific.

* What is the level of abstraction for assembly code?

30

Registers

%rax

31

Registers

|
|
|
|

%rax

|
|
|
|

%rbx

|
|
|
|

hrcx

|
|
|
|

%Brdx

%hrsi

»rdi

%rbp

%rsp

%r8

%r9

%rlo

%rll

%rl2

%rl3

%rla

%rl5

32

Registers

What 1s a register:

A register is a fast read/write
memory slot right on the CPU that
can hold variable values.

Registers are not located in memory.

Registers

* A register is a 64-bit space inside the processor.
* There are 16 registers available, each with a unigue name.

» Registers are like “scratch paper” for the processor. Data being
calculated or manipulated is moved to registers first, Operations are
performed on registers.

 Registers also hold parameters and return values for functions.
* Registers are extremely fast memory'!

* Processor instructions consist mostly of moving data into/out of
registers and performing arithmetic on them. This is the level of logic
your program must be in to execute!

34

Machine-Level Code

Assembly instructions manipulate these registers. For example:
* One Instruction adds two numbers In registers

* One Iinstruction transfers data from a register to memory

* One Iinstruction transfers data from memory to a register

35

Computer architecture

registers accessed
by name

ALU is main
workhorse of CPU

CPU
[Register file)
PC ALU
\ 4 System bus

e

Memory bus

memory needed

l

| for program
Main hello, world\n execution

MEMOTYl he110 code (stack, heap, etc.)

i1
: 1/0
Bus interface bridge
1/0O bus
USB Graphics
controller adapter
Mouse Keyboard Display

Disk
1
controller

A

!

accessed by address
1

Expansion slots for
other devices such
as network adapters

stored on disk \when not executing

hello executable disk/server stores program
IS

36

GCC And Assembly

* GCC compiles your program - it lays out memory on the stack and
heap and generates assembly instructions to access and do

calculations on those memory locations.
* Here's what the "assembly-level abstraction” of C code might look like:

C Assembly Abstraction

. _ . 1) Copy x into register 1
1nt sum = X + yJ 2) Copy y Into register 2

3) Add register 2 to register 1
4) Write register 1to memory for sum

37

Assembly

* We are going to learn the x86-64 instruction set architecture. This
instruction set is used by Intel and AMD processors.

* There are many other instruction sets: ARM, MIPS, etc.

38

Instruction set architecture (ISA)

A contract between program/compiler and hardware: Application program
 Defines operations that the processor (CPU) can execute Compiler 0S

» Data read/write/transfer operations
« Control mechanisms

CPU design

Circuit design

Intel originally designed their instruction set back in 1978. Chip layout

 Legacy support is a huge issue for x86-64

 Originally 16-bit processor, then 32 bit, now 64 bit.
These design choices dictated the register sizes
(and even register/instruction names).

39

[.ecture Plan

 The mov Instruction

40

mov

The mov Instruction copies bytes from one place to another;
it I1s similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:

» Immediate (constant value, like a number) (only src) $0x104
* Register %rbx
« Memory Location Direct address @X6005CO

(at most one of src, dst)

41

Operand Forms: Immediate

mov

$0x104,

|

Copy the value

©x104 into some
destination.

42

Operand Forms: Registers

Copy the value in

register Zrbx into
some destination.

mov %rbx,
mov , 6rbX

\Co,oy the value from
some source into

reqgister %rbx.

43

Operand Forms: Absolute Addresses

Copy the value at

address ©x104 into
some destination.

mov 0x1604,

mov ,0x1604

Copy the value from
some source into the
memory at address
©x104.

Practice #1: Operand Forms

What are the results of the following move instructions (executed

separately)? For this problem, assume the value 5 is stored at address 0x42,
and the value 8 Is stored in %rbx.

1. mov $0x42,%rax Move 0x42 into %rax
2. mov Ox42,%rax Move 5 Into %rax

3. mov %rbx,0x55 Move 8 to address ©x55

45

Operand Forms: Indirect

Copy the value at the address

stored in register Zrbx into
some destination.,

mov (%rbx),

mov , (%rbx)

Copy the value from some source into
the memory at the address stored in
reqgister Zrbx.

46

Operand Forms: Base + Displacement

Copy the value at the address
(6x10 plus what is stored In
register %rax) into some

mov Ox10 (%r‘ ax) S destination.
mov —_) Oxle(%rax)

Copy the value from some source into
the memory at the address (0x10 plus
what is stored in register Zrax),

47

Operand Forms: Indexed

Copy the value at the address which is (the
sum of the values in registers %rax and
Zrdx) into some destination.

mov (%rax,srdx),

mov , (%rax,%rdx)

Copy the value from some source into the
memory at the address which is (the sum of the
values in registers %rax and %rdx).

48

Operand Forms: Indexed

Copy the value at the address which is (the
sum of @x180 plus the values in registers
%rax and %rdx) into some destination.

mov Ox10(%rax,%rdx),
mov ,0x10(%rax,%rdx)

Copy the value from some source into the memory at
the address which is (the sum of @x10 plus the
values in registers %rax and %rdx).

49

Practice #2: Operand Forms

What are the results of the following move instructions (executed
separately)? For this problem, assume

the value @x11 Is stored at address 0x10C,

the value OxAB Is stored at address 0x104,

©x100 Is stored In register %rax and 0x3 Is stored In %rdx.

1. mov $0x42, (%rax) Move 0x42 to memory address 9x100
2. mov 4(%rax),%srcx Move 0xAB Into %rcx
3. mov 9(%rax,%rdx),%rcx Move 0x11 into %rcx

Imm(r,, r;)isequivalenttoaddress Imm + R[r,] + R[r;]

Displacement: positive or Base: register Index: register

negative constant (if missing, = 0) (if missing, = 0) (if missing, = 0) .

Operand Forms: Scaled Indexed

Copy the value at the address which is

4 times the value in register %rdx)
iInto some destination.

mov (9 °/or‘dX, 4) 9 The scaling factor

(e.g. 4 here) must
be hardcoded to
be either 1, 2, 4

mov 9 (,%de,4) or 8.

Copy the value from Some source into the
memory at the address which is (4 times
the value in register %rdx).

51

Operand Forms: Scaled Indexed

Copy the value at the address which is
(4 times the value In register %rdx, plus
@x4), into some destination.

mov ox4(,%rdx,4),

mov ,0x4(,%rdx,4)

Copy the value from Some source into the
memory at the address which is (4 times the
value in register %rdx, plus 6x4).

52

Operand Forms: Scaled Indexed

Copy the value at the address which is (the value
In register Zrax plus 2 times the value in register
Zrdx) into some destination.

mov (%rax,%rdx,2),
mov , (%rax,%rdx,2)

Copy the value from some source into the memory at the
address which is (the value in register Zrax plus 2
times the value in reqgister %rdx).

53

Operand Forms: Scaled Indexed

Copy the value at the address which is (x4 plus the

alue in register Zrax plus 2 times the value in register
/ Zrdx) into some destination.

mov Ox4(%rax,srdx,2),
mov ,0x4(%rax,%srdx,2)

Copy the value from some source into the memory at the
address which is (6x4 plus the value in register %rax
plus 2 times the value in register %rdx).

54

Most General Operand Form

Imm(ry,,r;,s)
IS equivalent to...

Imm + R[r,] + R[r;]*s

Most General Operand Form

Imm(r,, r;, s)Isequivalentto
address Imm + R[r,] + R[r;]*s
_— / 7

. = [
Displacement: Index: register
pos/neg constant (if missing, = 0)
(if missing, = 0) Base: register
J *ASE: T2 B Scale must be
(If missing, = 0)

1,2,4, or 8
(If missing, = 1)

Memory Location Syntax

Syntax Meaning

0x104 Address 0x104 (no $)
(%rax) What's iIn %rax
4(%rax) What's in %rax, plus 4

(%rax, %rdx)

Sum of what's in %rax and %rdx

4(%rax, %rdx)

Sum of values in %rax and %rdx, plus 4

(, %»rcx, 4)

What's In %rcx, times 4
(multiplier can be 1, 2, 4, 8)

(%rax, %rcx, 2)

What's In %rax, plus 2 times what's in %rcx

8(%rax, »nrcx, 2)

What's iIn %rax, plus 2 times what's in %rcx,
plus 8

57

Operand Forms

Type Form Operand Value Name
Immediate $Imm Imm Immediate
Register r, R[r,] Register
Memory Imm M[Imm] Absolute
Memory (ry) M[R[r,]] Indirect
Memory Imm(ry,) M[Imm + R[ry]] Base + displacement
Memory (rp, 1y) M[R[ry] + R[r;]] Indexed
Memory Imm(ry, 1;) M[Imm + R[rp] + R[r;]] Indexed
Memory (1, S) M[R][r;] - s] Scaled indexed
Memory Imm(rj, s) M[Imm + R]rj] - s] Scaled indexed
Memory (rp, 1, S) M[R[rp] + R[r;] - s] Scaled indexed
Memory Imm(ry, rj, S) M[Imm + R[r,] + R[r;] -s] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values, or
values from memory. The scaling factor s must be either. 1, 2, 4, or 8."

Practice

What are the resu

separately)?

t
t
t
t

For t
ne va
ne va
ne va

Ne vVa

3: Operand Forms

ts of the following move instructions (executed
Nis problem, assume

ue Ox1 Is stored In register %rcx,

ue ©x100 Is stored In register %rax,

ue 0x3 Is stored In register %rdx, and

ue 0x11 is stored at address 9x10C.

1. mov $0x42,0xfc(,%rcx,4) |Imm(r,, r;, Ss)Iisequivalentto
Move 0x42 to memory address ©x100 |address Imm + R[r,] + R[r;]*s

2. mov (%rax,%rdx,4),%rbx

Move 0x11 into %rbx

59

Goals of indirect addressing: C

Why are there so many
forms of indirect addressing?

We see these indirect addressing
paradigms in C as well!

Our First Assembly

int sum_array(int arr[], int nelems) {|We're 1/4™ of the way to understanding assembly!
int sum = 0; What looks understandable right now?
for (int i = @; i < nelems; i++) { | Some notes:
sum += arr[i]; * Registers store addresses and values
} * mov src, dstcopies value into dst
return sum; « sizeof(int) is 4
} * Instructions executed sequentially

00000000004005b6 <sum_array>:

4005b6 : ba 00 00 00 00 mov $0x0, %edx

4005bb : b8 00 00 00 00 mov $0x0, %eax

4005¢O: eb 09 jmp 4005cb <sum_array+0x15>

4005c2: 48 63 ca movslq %edx,%rcx

4005c5 . 03 04 8f add (%rdi,%rcx,4),%eax

ADNALC ~O . 02 ~1 N1 add $@X1,%edx 2
We'll come back to this cmp %esi,%edx \?/
example In future lectures! Jl 4005C2 <sum_array+oxc>

....... — repz retq

61

Additional Reading

® @& > () Licr) o L)) = & arstechnica.com

dl'S TECHNICA

TECH —

An Introduction to 64-bit Computing and
x86-64

When I first heard that AMD had plans to extend the x86 ISA to 64 bits, I....

JON STOKES - 3/12/2002, 1:36 AM

When | first heard that AMD had plans to extend the x86 ISA to 64 bits, | thought it was a terrible
idea. Though x86 is the world's most successful ISA, it's also the world's most widely disparaged.
Programmers, analysts, architecture buffs, and enthusiasts often see x86 as a leaden albatross
around the neck of the entire computing industry, and like the Mariner's albatross we were all
hoping it would just fall off at some point and slip quietly into the deep. But in spite of such
hopes, | really knew better. In fact, I've argued elsewhere that x86 isn't going away anytime soon,
and it no longer makes any real sense to gripe about its quirks from a performance perspective. |
won't recap that argument here, but | can sum it up briefly.

Most of us would probably assent to the following statement: "there's a huge global market for
mainstream business and consumer software, and the overwhelming majority of that software
just so happens to use the x86 ISA." This statement is true, as far as it goes, but framing x86's role
in the software industry this way misses an important point. In my article "The Future of x86 and
the Concept of the ISA," | argue that a statement like the following would provide a more relevant
assessment of the true state of the software industry: "There's a huge global market for
mainstream business and consumer x86 software, and several smaller markets for software
written to other ISAs."” All discussions of the desktop prospects of widely ported operating
systems (i.e. Linux) or of the possible effects of greater open source market penetration aside,
this statement should still ring true to anyone who's acquainted with the present realities of the
installed base of IT and consumer software.

If we think realistically about most of the world's commercial software not as "software" in the
abstract but as x86 binary code, then it becomes apparent that improvements to the x86 ISA

ARS VIDEO

30 People Play Mario Kart 8 From
Newbies to Pros

https://arstechnica.com/gadgets/2002/03/an-introduction-to-64-bit-computing-and-x86-64/

62

https://arstechnica.com/gadgets/2002/03/an-introduction-to-64-bit-computing-and-x86-64/

Additional Reading

eoe [< ® U B8 Not Secure — pbm.com (& © M + O

The story of Mel

Source: usenet: utastro!nather, May 21, 1983.
A recent article devoted to the *macho* side of programming made the bald and unvarnished statement:

Real Programmers write in Fortran.

Maybe they do now, in this decadent era of Lite beer, hand calculators and "user-friendly" software but back in the Good Old Days, when the term "software" sounded funny and
Real Computers were made out of drums and vacuum tubes, Real Programmers wrote in machine code. Not Fortran. Not RATFOR. Not, even, assembly language. Machine
Code. Raw, unadorned, inscrutable hexadecimal numbers. Directly.

Lest a whole new generation of programmers grow up in ignorance of this glorious past, I feel duty-bound to describe, as best I can through the generation gap, how a Real
Programmer wrote code. I'll call him Mel, because that was his name.

I first met Mel when I went to work for Royal McBee Computer Corp., a now-defunct subsidiary of the typewriter company. The firm manufactured the LGP-30, a small, cheap
(by the standards of the day) drum-memory computer, and had just started to manufacture the RPC-4000, a much-improved, bigger, better, faster -- drum-memory computer.
Cores cost too much, and weren't here to stay, anyway. (That's why you haven't heard of the company, or the computer.)

I had been hired to write a Fortran compiler for this new marvel and Mel was my guide to its wonders. Mel didn't approve of compilers.
"If a program can't rewrite its own code," he asked, "what good is it?"

Mel had written, in hexadecimal, the most popular computer program the company owned. It ran on the LGP-30 and played blackjack with potential customers at computer
shows. Its effect was always dramatic. The LGP-30 booth was packed at every show, and the IBM salesmen stood around talking to each other. Whether or not this actually sold
computers was a question we never discussed.

Mel's job was to re-write the blackjack program for the RPC-4000. (Port? What does that mean?) The new computer had a one-plus-one addressing scheme, in which each
machine instruction, in addition to the operation code and the address of the needed operand, had a second address that indicated where, on the revolving drum, the next
instruction was located. In modern parlance, every single instruction was followed by a GO TO! Put *that* in Pascal's pipe and smoke it.

Mel loved the RPC-4000 because he could optimize his code: that is, locate instructions on the drum so that just as one finished its job, the next would be just arriving at the
"read head" and available for immediate execution. There was a program to do that job, an "optimizing assembler", but Mel refused to use it.

"You never know where it's going to put things", he explained, "so you'd have to use separate constants".

It was a long time before I understood that remark. Since Mel knew the numerical value of every operation code, and assigned his own drum addresses, every instruction he
wrote could also be considered a numerical constant. He could pick up an earlier "add" instruction, say, and multiply by it, if it had the right numeric value. His code was not
easy for someone else to modify.

http://www.pbm.com/~lindahl/mel.html

63

http://www.pbm.com/~lindahl/mel.html

Extra Practice

Extra Practice

Fill in the blank to complete the code that generated the assembly below.
long arr[5];

long num = pP? ;

// %rdi stores arr, %»rcx stores 3, and %rax stores num

mov (%rdi, %rcx, 8),%rax

65

Extra Practice

Fill in the blank to complete the code that generated the assembly below.
long arr[5];

long num = arr[3];

// %rdi stores arr, %»rcx stores 3, and %rax stores num

mov (%rdi, %rcx, 8),%rax

66

Extra Practice

Fill in the blank to complete the code that generated the assembly below.

int x = ...
int *ptr = malloc(..);
PP = X;

// %ecx stores x, %rax stores ptr
mov %ecx, (%rax)

67

Extra Practice

Fill in the blank to complete the code that generated the assembly below.

int x = ...
int *ptr = malloc(..);

*ptr = X;

// %ecx stores x, %rax stores ptr

mov %ecx, (%rax)

68

Extra Practice

Fill in the blank to complete the code that generated the assembly below.

char str[5];

// %rcx stores str, %rdx stores 2
mov $0x63, (%rcx,%srdx,1)

69

Extra Practice

Fill in the blank to complete the code that generated the assembly below.
char str[5];

str[2] = 'c';

// %rcx stores str, %rdx stores 2
mov $0x63, (%rcx,%srdx,1)

70

Recap

* Overview: GCC and Assembly
* Demo: Looking at an executable

 Registers and The Assembly Level of Abstraction
* The mov Instruction

Next time: diving deeper into assembly

71

