
photo: Intel CPU Wafers

Aykut Erdem // Koç University // Fall 2024

COMP201
Computer
Systems &
Programming

Lecture #14 – Introduction to x86-64 Assembly

Recap
1. Bits and Bytes - How can a computer represent numbers?
2. Chars and C-Strings - How can a computer represent and manipulate more

complex data like text?
3. Pointers, Stack and Heap – How can we effectively manage all types of memory

in our programs?
4. Generics - How can we use our knowledge of memory and data representation to

write code that works with any data type?
5. Working with Multiple Files – What really happens in GCC? How to write your

own Makefiles?
6. Assembly - How does a computer interpret and execute C programs?
7. Heap Allocators - How do core memory-allocation operations

like malloc and free work?
8. The Memory Hierarchy – How to improve the performance of application

programs by improving their temporal and spatial locality?
9. Code Optimization – How write C code so that a compiler can then generate

efficient machine code?
10. Linking – How static and dynamic linking work? 2

Course Overview
1. Bits and Bytes - How can a computer represent numbers?
2. Chars and C-Strings - How can a computer represent and manipulate more

complex data like text?
3. Pointers, Stack and Heap – How can we effectively manage all types of memory

in our programs?
4. Generics - How can we use our knowledge of memory and data representation to

write code that works with any data type?
5. Working with Multiple Files – What really happens in GCC? How to write your

own Makefiles?
6. Assembly - How does a computer interpret and execute C programs?
7. The Memory Hierarchy – How to improve the performance of application programs

by improving their temporal and spatial locality?
8. Code Optimization – How write C code so that a compiler can then generate

efficient machine code?
9. Linking – How static and dynamic linking work?
10. Heap Allocators - How do core memory-allocation operations like malloc and

free work? 3

COMP201 Topic 6: How does
a computer interpret and

execute C programs?

Learning Assembly

Moving data
around

Arithmetic
and logical
operations

Control flow Function calls

Lecture 14 Lecture 15 Lecture 16-17 Lecture 18

9

Learning Goals
• Learn what assembly language is and why it is important
• Become familiar with the format of human-readable assembly and x86
• Learn the mov instruction and how data moves around at the assembly

level

10

Plan for Today
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov instruction

Disclaimer: Slides for this lecture were borrowed from
—Nick Troccoli's Stanford CS107 class

11

Lecture Plan
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov instruction

12

Bits all the way down
Data representation so far
• Integer (unsigned int, 2’s complement signed int)
• Floating Points (IEEE single (float) and double (double) precision
• char (ASCII)
• Address (unsigned long)
• Aggregates (arrays, structs)

The code itself is binary too!
• Instructions (machine encoding)

13

GCC
• GCC is the compiler that converts your human-readable code into

machine-readable instructions.
• C, and other languages, are high-level abstractions we use to write code

efficiently. But computers don’t really understand things like data
structures, variable types, etc. Compilers are the translator!
• Pure machine code is 1s and 0s – everything is bits, even your programs!

But we can read it in a human-readable form called assembly.
(Engineers used to write code in assembly before C).
• There may be multiple assembly instructions needed to encode a single

C instruction.
• We’re going to go behind the curtain to see what the assembly code for

our programs looks like.
14

Lecture Plan
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov instruction

15

Demo: Looking at an
Executable (objdump -d)

Our First Assembly
int sum_array(int arr[], int nelems) {
 int sum = 0;
 for (int i = 0; i < nelems; i++) {
 sum += arr[i];
 }
 return sum;
}

What does this look like in assembly?

17

Our First Assembly
int sum_array(int arr[], int nelems) {
 int sum = 0;
 for (int i = 0; i < nelems; i++) {
 sum += arr[i];
 }
 return sum;
}

00000000004005b6 <sum_array>:
 4005b6: ba 00 00 00 00 mov $0x0,%edx
 4005bb: b8 00 00 00 00 mov $0x0,%eax
 4005c0: eb 09 jmp 4005cb <sum_array+0x15>
 4005c2: 48 63 ca movslq %edx,%rcx
 4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
 4005c8: 83 c2 01 add $0x1,%edx
 4005cb: 39 f2 cmp %esi,%edx
 4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
 4005cf: f3 c3 repz retq

make
objdump -d sum

18

Our First Assembly
00000000004005b6 <sum_array>:
 4005b6: ba 00 00 00 00 mov $0x0,%edx
 4005bb: b8 00 00 00 00 mov $0x0,%eax
 4005c0: eb 09 jmp 4005cb <sum_array+0x15>
 4005c2: 48 63 ca movslq %edx,%rcx
 4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
 4005c8: 83 c2 01 add $0x1,%edx
 4005cb: 39 f2 cmp %esi,%edx
 4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
 4005cf: f3 c3 repz retq

19

Our First Assembly
00000000004005b6 <sum_array>:
 4005b6: ba 00 00 00 00 mov $0x0,%edx
 4005bb: b8 00 00 00 00 mov $0x0,%eax
 4005c0: eb 09 jmp 4005cb <sum_array+0x15>
 4005c2: 48 63 ca movslq %edx,%rcx
 4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
 4005c8: 83 c2 01 add $0x1,%edx
 4005cb: 39 f2 cmp %esi,%edx
 4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
 4005cf: f3 c3 repz retq

This is the name of the function (same
as C) and the memory address where
the code for this function starts.

20

Our First Assembly
00000000004005b6 <sum_array>:
 4005b6: ba 00 00 00 00 mov $0x0,%edx
 4005bb: b8 00 00 00 00 mov $0x0,%eax
 4005c0: eb 09 jmp 4005cb <sum_array+0x15>
 4005c2: 48 63 ca movslq %edx,%rcx
 4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
 4005c8: 83 c2 01 add $0x1,%edx
 4005cb: 39 f2 cmp %esi,%edx
 4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
 4005cf: f3 c3 repz retq

These are the memory addresses where
each of the instructions live. Sequential
instructions are sequential in memory.

21

Our First Assembly
00000000004005b6 <sum_array>:
 4005b6: ba 00 00 00 00 mov $0x0,%edx
 4005bb: b8 00 00 00 00 mov $0x0,%eax
 4005c0: eb 09 jmp 4005cb <sum_array+0x15>
 4005c2: 48 63 ca movslq %edx,%rcx
 4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
 4005c8: 83 c2 01 add $0x1,%edx
 4005cb: 39 f2 cmp %esi,%edx
 4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
 4005cf: f3 c3 repz retq

This is the assembly code:
“human-readable” versions of
each machine code instruction.

22

Our First Assembly
00000000004005b6 <sum_array>:
 4005b6: ba 00 00 00 00 mov $0x0,%edx
 4005bb: b8 00 00 00 00 mov $0x0,%eax
 4005c0: eb 09 jmp 4005cb <sum_array+0x15>
 4005c2: 48 63 ca movslq %edx,%rcx
 4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
 4005c8: 83 c2 01 add $0x1,%edx
 4005cb: 39 f2 cmp %esi,%edx
 4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
 4005cf: f3 c3 repz retq

This is the machine code: raw
hexadecimal instructions,
representing binary as read by the
computer. Different instructions
may be different byte lengths.

23

Our First Assembly
00000000004005b6 <sum_array>:
 4005b6: ba 00 00 00 00 mov $0x0,%edx
 4005bb: b8 00 00 00 00 mov $0x0,%eax
 4005c0: eb 09 jmp 4005cb <sum_array+0x15>
 4005c2: 48 63 ca movslq %edx,%rcx
 4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
 4005c8: 83 c2 01 add $0x1,%edx
 4005cb: 39 f2 cmp %esi,%edx
 4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
 4005cf: f3 c3 repz retq

24

Our First Assembly
00000000004005b6 <sum_array>:
 4005b6: ba 00 00 00 00 mov $0x0,%edx
 4005bb: b8 00 00 00 00 mov $0x0,%eax
 4005c0: eb 09 jmp 4005cb <sum_array+0x15>
 4005c2: 48 63 ca movslq %edx,%rcx
 4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
 4005c8: 83 c2 01 add $0x1,%edx
 4005cb: 39 f2 cmp %esi,%edx
 4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
 4005cf: f3 c3 repz retq

Each instruction has an
operation name (“opcode”).

25

Our First Assembly
00000000004005b6 <sum_array>:
 4005b6: ba 00 00 00 00 mov $0x0,%edx
 4005bb: b8 00 00 00 00 mov $0x0,%eax
 4005c0: eb 09 jmp 4005cb <sum_array+0x15>
 4005c2: 48 63 ca movslq %edx,%rcx
 4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
 4005c8: 83 c2 01 add $0x1,%edx
 4005cb: 39 f2 cmp %esi,%edx
 4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
 4005cf: f3 c3 repz retqEach instruction can also

have arguments (“operands”).

26

Our First Assembly
00000000004005b6 <sum_array>:
 4005b6: ba 00 00 00 00 mov $0x0,%edx
 4005bb: b8 00 00 00 00 mov $0x0,%eax
 4005c0: eb 09 jmp 4005cb <sum_array+0x15>
 4005c2: 48 63 ca movslq %edx,%rcx
 4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
 4005c8: 83 c2 01 add $0x1,%edx
 4005cb: 39 f2 cmp %esi,%edx
 4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
 4005cf: f3 c3 repz retq

$[number] means a constant
value, or “immediate” (e.g. 1 here).

27

Our First Assembly
00000000004005b6 <sum_array>:
 4005b6: ba 00 00 00 00 mov $0x0,%edx
 4005bb: b8 00 00 00 00 mov $0x0,%eax
 4005c0: eb 09 jmp 4005cb <sum_array+0x15>
 4005c2: 48 63 ca movslq %edx,%rcx
 4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
 4005c8: 83 c2 01 add $0x1,%edx
 4005cb: 39 f2 cmp %esi,%edx
 4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
 4005cf: f3 c3 repz retq

%[name] means a register, a storage
location on the CPU (e.g. edx here).

28

Lecture Plan
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov instruction

29

Assembly Abstraction
• C abstracts away the low-level details of machine code. It lets us work

using variables, variable types, and other higher-level abstractions.

• C and other languages let us write code that works on most machines.

• Assembly code is just bytes! No variable types, no type checking, etc.

• Assembly/machine code is processor-specific.

• What is the level of abstraction for assembly code?

30

Registers

%rax

31

Registers

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

32

Registers

What is a register?
A register is a fast read/write

memory slot right on the CPU that
can hold variable values.

Registers are not located in memory.
33

Registers
• A register is a 64-bit space inside the processor.
• There are 16 registers available, each with a unique name.
• Registers are like “scratch paper” for the processor. Data being

calculated or manipulated is moved to registers first. Operations are
performed on registers.
• Registers also hold parameters and return values for functions.
• Registers are extremely fast memory!
• Processor instructions consist mostly of moving data into/out of

registers and performing arithmetic on them. This is the level of logic
your program must be in to execute!

34

Machine-Level Code
Assembly instructions manipulate these registers. For example:
• One instruction adds two numbers in registers
• One instruction transfers data from a register to memory
• One instruction transfers data from memory to a register

35

48 Chapter 1 A Tour of Computer Systems

Disk

CPU

Register file

PC ALU

Bus interface
I/O

bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

“hello, world\n”

hello code

hello executable
stored on disk

Figure 1.6 Loading the executable from disk into main memory.

CPU

Register file

PC ALU

Bus interface
I/O

bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

Disk“hello, world\n”

“hello, world\n”

hello code

hello executable
stored on disk

Figure 1.7 Writing the output string from memory to the display.

Computer architecture

memory needed
for program
execution
(stack, heap, etc.)
accessed by address

registers accessed
by name
ALU is main
workhorse of CPU

disk/server stores program
when not executing

36

GCC And Assembly
• GCC compiles your program – it lays out memory on the stack and

heap and generates assembly instructions to access and do
calculations on those memory locations.
• Here’s what the “assembly-level abstraction” of C code might look like:

C Assembly Abstraction

int sum = x + y; 1) Copy x into register 1
2) Copy y into register 2
3) Add register 2 to register 1
4) Write register 1 to memory for sum

37

Assembly
• We are going to learn the x86-64 instruction set architecture. This

instruction set is used by Intel and AMD processors.
• There are many other instruction sets: ARM, MIPS, etc.

38

Instruction set architecture (ISA)
A contract between program/compiler and hardware:
• Defines operations that the processor (CPU) can execute
• Data read/write/transfer operations
• Control mechanisms

Intel originally designed their instruction set back in 1978.
• Legacy support is a huge issue for x86-64
• Originally 16-bit processor, then 32 bit, now 64 bit.

These design choices dictated the register sizes
(and even register/instruction names).

Compiler

Application program

OS
ISA

CPU design

Circuit design
Chip layout

39

Lecture Plan
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov instruction

40

mov
The mov instruction copies bytes from one place to another;
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
• Immediate (constant value, like a number) (only src)

• Register

• Memory Location
(at most one of src, dst)

$0x104

%rbx
0x6005c0Direct address

41

Operand Forms: Immediate

mov $0x104,_____

Copy the value
0x104 into some

destination.

42

Operand Forms: Registers

mov %rbx,____

mov ____,%rbx

Copy the value in
register %rbx into
some destination.

Copy the value from
some source into

register %rbx.
43

Operand Forms: Absolute Addresses

mov 0x104,_____

mov _____,0x104

Copy the value at
address 0x104 into
some destination.

Copy the value from
some source into the
memory at address

0x104. 44

Practice #1: Operand Forms
What are the results of the following move instructions (executed
separately)? For this problem, assume the value 5 is stored at address 0x42,
and the value 8 is stored in %rbx.

1. mov $0x42,%rax

2. mov 0x42,%rax

3. mov %rbx,0x55

45

Move 0x42 into %rax

Move 5 into %rax

Move 8 to address 0x55

Operand Forms: Indirect

mov (%rbx),_____

mov _____,(%rbx)

Copy the value at the address
stored in register %rbx into

some destination.

Copy the value from some source into
the memory at the address stored in

register %rbx.
46

Operand Forms: Base + Displacement

mov 0x10(%rax),_________

mov __________,0x10(%rax)

Copy the value at the address
(0x10 plus what is stored in

register %rax) into some
destination.

Copy the value from some source into
the memory at the address (0x10 plus

what is stored in register %rax).
47

Operand Forms: Indexed

mov (%rax,%rdx),__________

mov ___________,(%rax,%rdx)

Copy the value at the address which is (the
sum of the values in registers %rax and

%rdx) into some destination.

Copy the value from some source into the
memory at the address which is (the sum of the

values in registers %rax and %rdx).
48

Operand Forms: Indexed

mov 0x10(%rax,%rdx),______

mov _______,0x10(%rax,%rdx)

Copy the value at the address which is (the
sum of 0x10 plus the values in registers
%rax and %rdx) into some destination.

Copy the value from some source into the memory at
the address which is (the sum of 0x10 plus the

values in registers %rax and %rdx).
49

Practice #2: Operand Forms
What are the results of the following move instructions (executed
separately)? For this problem, assume
 the value 0x11 is stored at address 0x10C,
 the value 0xAB is stored at address 0x104,
 0x100 is stored in register %rax and 0x3 is stored in %rdx.

1. mov $0x42,(%rax)
2. mov 4(%rax),%rcx
3. mov 9(%rax,%rdx),%rcx

Imm(rb, ri) is equivalent to address Imm + R[rb] + R[ri]

Displacement: positive or
negative constant (if missing, = 0)

Base: register
(if missing, = 0)

Index: register
(if missing, = 0)

50

Move 0x42 to memory address 0x100
Move 0xAB into %rcx
Move 0x11 into %rcx

Operand Forms: Scaled Indexed

mov (,%rdx,4),______

mov _______,(,%rdx,4)

Copy the value at the address which is
(4 times the value in register %rdx)

into some destination.

Copy the value from some source into the
memory at the address which is (4 times

the value in register %rdx).

The scaling factor
(e.g. 4 here) must
be hardcoded to
be either 1, 2, 4
or 8.

51

Operand Forms: Scaled Indexed

mov 0x4(,%rdx,4),______

mov _______,0x4(,%rdx,4)

Copy the value at the address which is
(4 times the value in register %rdx, plus

0x4), into some destination.

Copy the value from some source into the
memory at the address which is (4 times the

value in register %rdx, plus 0x4).
52

Operand Forms: Scaled Indexed

mov (%rax,%rdx,2),________

mov _________,(%rax,%rdx,2)

Copy the value at the address which is (the value
in register %rax plus 2 times the value in register

%rdx) into some destination.

Copy the value from some source into the memory at the
address which is (the value in register %rax plus 2

times the value in register %rdx).
53

Operand Forms: Scaled Indexed

mov 0x4(%rax,%rdx,2),_____

mov ______,0x4(%rax,%rdx,2)

Copy the value at the address which is (0x4 plus the
value in register %rax plus 2 times the value in register

%rdx) into some destination.

Copy the value from some source into the memory at the
address which is (0x4 plus the value in register %rax

plus 2 times the value in register %rdx).
54

Most General Operand Form

Imm(rb,ri,s)

is equivalent to…

Imm + R[rb] + R[ri]*s
55

Most General Operand Form

Imm(rb, ri, s) is equivalent to
address Imm + R[rb] + R[ri]*s

Displacement:
pos/neg constant
(if missing, = 0)

Index: register
(if missing, = 0)

Scale must be
1,2,4, or 8
(if missing, = 1)

Base: register
(if missing, = 0)

56

Memory Location Syntax
Syntax Meaning

0x104 Address 0x104 (no $)

(%rax) What’s in %rax

4(%rax) What’s in %rax, plus 4

(%rax, %rdx) Sum of what’s in %rax and %rdx

4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

(, %rcx, 4)
What’s in %rcx, times 4

(multiplier can be 1, 2, 4, 8)

(%rax, %rcx, 2) What’s in %rax, plus 2 times what’s in %rcx

8(%rax, %rcx, 2)
What’s in %rax, plus 2 times what’s in %rcx,

plus 8 57

Operand Forms
Type Form Operand Value Name
Immediate $Imm Imm Immediate

Register r! R[r!] Register

Memory Imm M[Imm] Absolute

Memory (r!) M[R r!] Indirect

Memory Imm(r") M[Imm + 	R r"] Base + displacement
Memory (r", r#) M[R r" + R r#] Indexed

Memory Imm(r", r#) M[Imm + R r" + R r#] Indexed

Memory (, r#, s) M[R r# 	 / s] Scaled indexed
Memory Imm(, r#, s) M[Imm + R r# 	 / s] Scaled indexed

Memory (r", r#, s) M[R r" + R r# 	 / s] Scaled indexed

Memory Imm(r", r#, s) M[Imm + R r" + 	R r# 	 / s] Scaled indexed
Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values, or
values from memory. The scaling factor s must be either. 1, 2, 4, or 8.” 58

Practice #3: Operand Forms
What are the results of the following move instructions (executed
separately)? For this problem, assume
 the value 0x1 is stored in register %rcx,
 the value 0x100 is stored in register %rax,
 the value 0x3 is stored in register %rdx, and
 the value 0x11 is stored at address 0x10C.

1. mov $0x42,0xfc(,%rcx,4)

2. mov (%rax,%rdx,4),%rbx

Imm(rb, ri, s) is equivalent to
address Imm + R[rb] + R[ri]*s

Displacement Base Index Scale
(1,2,4,8)

59

Move 0x42 to memory address 0x100

Move 0x11 into %rbx

Goals of indirect addressing: C

Why are there so many
forms of indirect addressing?

We see these indirect addressing
paradigms in C as well!

60

Our First Assembly
int sum_array(int arr[], int nelems) {
 int sum = 0;
 for (int i = 0; i < nelems; i++) {
 sum += arr[i];
 }
 return sum;
}

00000000004005b6 <sum_array>:
 4005b6: ba 00 00 00 00 mov $0x0,%edx
 4005bb: b8 00 00 00 00 mov $0x0,%eax
 4005c0: eb 09 jmp 4005cb <sum_array+0x15>
 4005c2: 48 63 ca movslq %edx,%rcx
 4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
 4005c8: 83 c2 01 add $0x1,%edx
 4005cb: 39 f2 cmp %esi,%edx
 4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
 4005cf: f3 c3 repz retq

We’re 1/4th of the way to understanding assembly!
What looks understandable right now?
Some notes:
• Registers store addresses and values
• mov src, dst copies value into dst
• sizeof(int) is 4
• Instructions executed sequentially

🤔We’ll come back to this
example in future lectures!

61

Additional Reading

62
https://arstechnica.com/gadgets/2002/03/an-introduction-to-64-bit-computing-and-x86-64/

https://arstechnica.com/gadgets/2002/03/an-introduction-to-64-bit-computing-and-x86-64/

Additional Reading

63

http://www.pbm.com/~lindahl/mel.html

http://www.pbm.com/~lindahl/mel.html

Extra Practice

Extra Practice
Fill in the blank to complete the code that generated the assembly below.

long arr[5];
...
long num = ____???___;

// %rdi stores arr, %rcx stores 3, and %rax stores num
mov (%rdi, %rcx, 8),%rax

65

Extra Practice
Fill in the blank to complete the code that generated the assembly below.

long arr[5];
...
long num = arr[3];

// %rdi stores arr, %rcx stores 3, and %rax stores num
mov (%rdi, %rcx, 8),%rax

66

Extra Practice
Fill in the blank to complete the code that generated the assembly below.

int x = ...
int *ptr = malloc(…);
___???___ = x;

// %ecx stores x, %rax stores ptr
mov %ecx,(%rax)

67

Extra Practice
Fill in the blank to complete the code that generated the assembly below.

int x = ...
int *ptr = malloc(…);
*ptr = x;

// %ecx stores x, %rax stores ptr
mov %ecx,(%rax)

68

Extra Practice
Fill in the blank to complete the code that generated the assembly below.

char str[5];
...
___???___ = 'c';

// %rcx stores str, %rdx stores 2
mov $0x63,(%rcx,%rdx,1)

69

Extra Practice
Fill in the blank to complete the code that generated the assembly below.

char str[5];
...
str[2] = 'c';

// %rcx stores str, %rdx stores 2
mov $0x63,(%rcx,%rdx,1)

70

Recap
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• The mov instruction

Next time: diving deeper into assembly
71

