
photo: Intel CPU Wafers

Aykut Erdem // Koç University // Fall 2024

COMP201
Computer
Systems &
Programming

Lecture #15 – Arithmetic and Logic Operations

• No lab this week!

2

Image: Professor Farnsworth (Futurama)

Good news, everyone!

2

COMP201 Topic 6: How does
a computer interpret and

execute C programs?

Learning Assembly

Moving data
around

Arithmetic
and logical
operations

Control flow Function calls

Lecture 14 This Lecture Lecture 16-17 Lecture 18

4

Learning Goals
• Learn how to perform arithmetic and logical operations in assembly
• Begin to learn how to read assembly and understand the C code that

generated it

Plan for Today
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Disclaimer: Slides for this lecture were borrowed from
—Nick Troccoli's Stanford CS107 class

6

Helpful Assembly Resources
• Course textbook

Reminder: see relevant readings for each lecture on the Schedule section:
https://aykuterdem.github.io/classes/comp201/index.html#div_schedule

• Other resources
See the guides on the resources section of the course website:
https://aykuterdem.github.io/classes/comp201/index.html#div_resources
– Stanford CS107 Assembly Reference Sheet
– Stanford CS107 Guide to x86-64
– CMU 15-213 x86-64 Machine-Level Programming

7

https://aykuterdem.github.io/classes/comp201/index.html
https://aykuterdem.github.io/classes/comp201/index.html

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

8

mov
The mov instruction copies bytes from one place to another;
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
• Immediate (constant value, like a number) (only src)

• Register

• Memory Location
(at most one of src, dst)

Memory Location Syntax
Syntax Meaning

0x104 Address 0x104 (no $)

(%rax) What’s in %rax

4(%rax) What’s in %rax, plus 4

(%rax, %rdx) Sum of what’s in %rax and %rdx

4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

(, %rcx, 4) What’s in %rcx, times 4 (multiplier can be 1, 2, 4, 8)

(%rax, %rcx, 2) What’s in %rax, plus 2 times what’s in %rcx

8(%rax, %rcx, 2) What’s in %rax, plus 2 times what’s in %rcx, plus 8

Operand Forms
Type Form Operand Value Name
Immediate $Imm Imm Immediate

Register r! R[r!] Register

Memory Imm M[Imm] Absolute

Memory (r!) M[R r!] Indirect

Memory Imm(r") M[Imm + 	R r"] Base + displacement
Memory (r", r#) M[R r" + R r#] Indexed

Memory Imm(r", r#) M[Imm + R r" + R r#] Indexed

Memory (, r#, s) M[R r# 	 / s] Scaled indexed
Memory Imm(, r#, s) M[Imm + R r# 	 / s] Scaled indexed

Memory (r", r#, s) M[R r" + R r# 	 / s] Scaled indexed

Memory Imm(r", r#, s) M[Imm + R r" + 	R r# 	 / s] Scaled indexed
Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values, or
values from memory. The scaling factor s must be either. 1, 2, 4, or 8.” 11

Recap: Our First Assembly
int sum_array(int arr[], int nelems) {
 int sum = 0;
 for (int i = 0; i < nelems; i++) {
 sum += arr[i];
 }
 return sum;
}

00000000004005b6 <sum_array>:
 4005b6: ba 00 00 00 00 mov $0x0,%edx
 4005bb: b8 00 00 00 00 mov $0x0,%eax
 4005c0: eb 09 jmp 4005cb <sum_array+0x15>
 4005c2: 48 63 ca movslq %edx,%rcx
 4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
 4005c8: 83 c2 01 add $0x1,%edx
 4005cb: 39 f2 cmp %esi,%edx
 4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
 4005cf: f3 c3 repz retq

We’re 1/4th of the way to understanding assembly!
What looks understandable right now?
Some notes:
• Registers store addresses and values
• mov src, dst copies value into dst
• sizeof(int) is 4
• Instructions executed sequentially

🤔
12

Practice 1
Fill in the blank to complete the code that generated the assembly below.

long arr[5];
...
long num = ____???___;

// %rdi stores arr, %rcx stores 3, and %rax stores num
mov (%rdi, %rcx, 8),%rax

15

Practice 1
Fill in the blank to complete the code that generated the assembly below.

long arr[5];
...
long num = arr[3];

// %rdi stores arr, %rcx stores 3, and %rax stores num
mov (%rdi, %rcx, 8),%rax

16

Practice 2
Fill in the blank to complete the code that generated the assembly below.

int x = ...
int *ptr = malloc(…);
___???___ = x;

// %ecx stores x, %rax stores ptr
mov %ecx,(%rax)

17

Practice 2
Fill in the blank to complete the code that generated the assembly below.

int x = ...
int *ptr = malloc(…);
*ptr = x;

// %ecx stores x, %rax stores ptr
mov %ecx,(%rax)

18

Practice 3
Fill in the blank to complete the code that generated the assembly below.

char str[5];
...
___???___ = 'c';

// %rcx stores str, %rdx stores 2
mov $0x63,(%rcx,%rdx,1)

19

Practice 3
Fill in the blank to complete the code that generated the assembly below.

char str[5];
...
str[2] = 'c';

// %rcx stores str, %rdx stores 2
mov $0x63,(%rcx,%rdx,1)

20

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

21

Data Sizes
Data sizes in assembly have slightly different terminology to get used to:
• A byte is 1 byte.
• A word is 2 bytes.
• A double word is 4 bytes.
• A quad word is 8 bytes.

Assembly instructions can have suffixes to refer to these sizes:
• b means byte
• w means word
• l means double word
• q means quad word

22

Data Sizes
Data sizes in assembly have
slightly different terminology
to get used to:
• A byte is 1 byte.
• A word is 2 bytes.
• A double word is 4 bytes.
• A quad word is 8 bytes.

23

C Type Suffix Byte Intel Data Type

char b 1 Byte

short w 2 Word

int l 4 Double word

long q 8 Quad word

char * q 8 Quad word

float s 4 Single precision

double l 8 Double precision

Register Sizes
63Bit: 071531

%rax %eax %ax %al

%rbx %ebx %bx %bl

%rcx %ecx %cx %cl

%rdx %edx %dx %dl

%rsi %esi %si %sil

%rdi %edi %di %dil

24

Register Sizes

%rbp %ebp %bp %bpl

63Bit: 071531

%rsp %esp %sp %spl

%r8 %r8d %r8w %r8b

%r9 %r9d %r9w %r9b

%r10 %r10d %r10w %r10b

%r11 %r11d %r11w %r11b

25

Register Sizes

%r12 %r12d %r12w %r12b

63Bit: 071531

%r13 %r13d %r13w %r13b

%r14 %r14d %r14w %r14b

%r15 %r15d %r15w %r15b

26

Some registers take on special responsibilities during program execution.
• %rax stores the return value
• %rdi stores the first parameter to a function
• %rsi stores the second parameter to a function
• %rdx stores the third parameter to a function
• %rip stores the address of the next instruction to execute
• %rsp stores the address of the current top of the stack

Register Responsibilities

See Stanford CS107 x86-64 Reference Sheet on Resources page of the course website!
https://aykuterdem.github.io/classes/comp201/index.html#div_resources

27

https://aykuterdem.github.io/classes/comp201/index.html

mov Variants
• mov can take an optional suffix (b,w,l,q) that specifies the size of data to

move: movb, movw, movl, movq
• mov only updates the specific register bytes or memory locations

indicated.
– Exception: movl writing to a register will also set high order 4 bytes to 0.

28

Practice #1: mov And Data Sizes
For each of the following mov instructions, determine the appropriate
suffix based on the operands (e.g. movb, movw, movl or movq).

1. mov__ %eax, (%rsp)
2. mov__ (%rax), %dx
3. mov__ $0xff, %bl
4. mov__ (%rsp,%rdx,4),%dl
5. mov__ (%rdx), %rax
6. mov__ %dx, (%rax)

29

movl %eax, (%rsp)
movw (%rax), %dx
movb $0xff, %bl
movb (%rsp,%rdx,4),%dl
movq (%rdx), %rax
movw %dx, (%rax)

mov
• The movabsq instruction is used to write a 64-bit Immediate (constant)

value.
• The regular movq instruction can only take 32-bit immediates.
• 64-bit immediate as source, only register as destination.

movabsq $0x0011223344556677, %rax

30

Practice #2: mov And Data Sizes

31

For each of the following mov instructions, determine how data
movement instructions modify the upper bytes of a destination register.

1. movabs $0x0011223344556677, %rax
2. movb $-1, %al
3. movw $-1, %ax
4. movl $-1, %eax
5. movq $-1, %rax

%rax = 0011223344556677
%rax = 00112233445566FF
%rax = 001122334455FFFF
%rax = 00000000FFFFFFFF
%rax = FFFFFFFFFFFFFFFF

movz and movs
• There are two mov instructions that can be used to copy a smaller

source to a larger destination: movz and movs.
• movz fills the remaining bytes with zeros
• movs fills the remaining bytes by sign-extending the most significant bit

in the source.
• The source must be from memory or a register, and the destination is a

register.

32

movz and movs

Instruction Description
movzbw Move zero-extended byte to word
movzbl Move zero-extended byte to double word
movzwl Move zero-extended word to double word
movzbq Move zero-extended byte to quad word
movzwq Move zero-extended word to quad word

MOVZ S,R R ← ZeroExtend(S)

33

movz and movs

Instruction Description
movsbw Move sign-extended byte to word
movsbl Move sign-extended byte to double word
movswl Move sign-extended word to double word
movsbq Move sign-extended byte to quad word
movswq Move sign-extended word to quad word
movslq Move sign-extended double word to quad word
cltq Sign-extend %eax to %rax

%rax ← SignExtend(%eax)

MOVS S,R R ← SignExtend(S)

34

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

35

lea
The lea instruction copies an “effective address” from one place to
another.

lea src,dst

Unlike mov, which copies data at the address src to the destination, lea
copies the value of src itself to the destination.

The syntax for the destinations is the same as
mov. The difference is how it handles the src.

36

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into
%rdx.

37

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into
%rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in
%rcx) into %rdx.

38

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into
%rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in
%rcx) into %rdx.

(%rax, %rcx, 4), %rdx Go to the address (%rax + 4 * %rcx) and
copy data there into %rdx.

Copy (%rax + 4 * %rcx) into
%rdx.

39

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into
%rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in
%rcx) into %rdx.

(%rax, %rcx, 4), %rdx Go to the address (%rax + 4 * %rcx) and
copy data there into %rdx.

Copy (%rax + 4 * %rcx) into
%rdx.

7(%rax, %rax, 8), %rdx Go to the address (7 + %rax + 8 * %rax)
and copy data there into %rdx.

Copy (7 + %rax + 8 * %rax) into
%rdx.

Unlike mov, which copies data at the address
src to the destination, lea copies the value of
src itself to the destination.

40

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

41

Unary Instructions
The following instructions operate on a single operand (register or memory):

Examples: incq 16(%rax)
 dec %rdx
 not %rcx

Instruction Effect Description
inc D D ← D + 1 Increment
dec D D ← D - 1 Decrement
neg D D ← -D Negate
not D D ← ~D Complement

42

Binary Instructions
The following instructions operate on two operands (both can be register or
memory, source can also be immediate). Both cannot be memory locations.
Read it as, e.g. “Subtract S from D”:

Examples: addq %rcx,(%rax)
 xorq $16,(%rax, %rdx, 8)
 subq %rdx,8(%rax)

Instruction Effect Description
add S, D D ← D + S Add
sub S, D D ← D - S Subtract
imul S, D D ← D * S Multiply
xor S, D D ← D ^ S Exclusive-or
or S, D D ← D | S Or
and S, D D ← D & S And

43

Large Multiplication
• Multiplying 64-bit numbers can produce a 128-bit result. How does

x86-64 support this with only 64-bit registers?
• If you specify two operands to imul, it multiplies them together and

truncates until it fits in a 64-bit register.

imul S, D D ← D * S
• If you specify one operand, it multiplies that by %rax, and splits the

product across 2 registers. It puts the high-order 64 bits in %rdx and
the low-order 64 bits in %rax.

Instruction Effect Description
imulq S R[%rdx]:R[%rax] ← S x R[%rax] Signed full multiply
mulq S R[%rdx]:R[%rax] ← S x R[%rax] Unsigned full multiply

44

Division and Remainder

• Terminology: dividend / divisor = quotient + remainder
• x86-64 supports dividing up to a 128-bit value by a 64-bit value.
• The high-order 64 bits of the dividend are in %rdx, and the low-order

64 bits are in %rax. The divisor is the operand to the instruction.
• The quotient is stored in %rax, and the remainder in %rdx.

Instruction Effect Description
idivq S R[%rdx] ← R[%rdx]:R[%rax] mod S;

R[%rax] ← R[%rdx]:R[%rax] ➗ S
Signed divide

divq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Unsigned divide

45

Division and Remainder

• Terminology: dividend / divisor = quotient + remainder
• The high-order 64 bits of the dividend are in %rdx, and the low-order

64 bits are in %rax. The divisor is the operand to the instruction.
• Most division uses only 64-bit dividends. The cqto instruction

sign-extends the 64-bit value in %rax into %rdx to fill both registers
with the dividend, as the division instruction expects.

Instruction Effect Description
idivq S R[%rdx] ← R[%rdx]:R[%rax] mod S;

R[%rax] ← R[%rdx]:R[%rax] ➗ S
Signed divide

divq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Unsigned divide

cqto R[%rdx]:R[%rax] ← SignExtend(R[%rax]) Convert to oct word

46

Shift Instructions
The following instructions have two operands: the shift amount k and the
destination to shift, D. k can be either an immediate value, or the byte
register %cl (and only that register!)

Examples: shll $3,(%rax)
 shrl %cl,(%rax,%rdx,8)
 sarl $4,8(%rax)

Instruction Effect Description
sal k, D D ← D << k Left shift

shl k, D D ← D << k Left shift (same as sal)
sar k, D D ← D >>A k Arithmetic right shift

shr k, D D ← D >>L k Logical right shift

47

Shift Amount

• When using %cl, the width of what you are shifting determines what
portion of %cl is used.

• For w bits of data, it looks at the low-order log2(w) bits of %cl to know
how much to shift.
• If %cl = 0xff (0b11111111), then: shlb shifts by 7 because it considers only the low-

order log2(8) = 3 bits, which represent 7. shlw shifts by 15 because it considers
only the low-order log2(16) = 4 bits, which represent 15.

Instruction Effect Description
sal k, D D ← D << k Left shift
shl k, D D ← D << k Left shift (same as sal)
sar k, D D ← D >>A k Arithmetic right shift
shr k, D D ← D >>L k Logical right shift

48

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

49

Assembly Exploration
• Let’s pull these commands together and see how some C code might

be translated to assembly.
• Compiler Explorer is a handy website that lets you quickly write C code

and see its assembly translation. Let’s check it out!
• https://godbolt.org/z/NLYhVf

50

https://godbolt.org/z/NLYhVf

Code Reference: add_to_first
// Returns the sum of x and the first
// element in arr
int add_to_first(int x, int arr[]) {
 int sum = x;
 sum += arr[0];
 return sum;
}

add_to_first:
 movl %edi, %eax
 addl (%rsi), %eax
 ret

51

Code Reference: full_divide
// Returns x/y, stores remainder in location stored in remainder_ptr
long full_divide(long x, long y, long *remainder_ptr) {
 long quotient = x / y;
 long remainder = x % y;
 *remainder_ptr = remainder;
 return quotient;
}

full_divide:
 movq %rdx, %rcx
 movq %rdi, %rax
 cqto
 idivq %rsi
 movq %rdx, (%rcx)
 ret

52

Assembly Exercise 1
00000000004005ac <sum_example1>:
 4005bd: 8b 45 e8 mov %esi,%eax
 4005c3: 01 d0 add %edi,%eax
 4005cc: c3 retq

Which of the following is most likely to have generated the above assembly?
// A)
void sum_example1() {
 int x;
 int y;
 int sum = x + y;
}

// B)
int sum_example1(int x, int y) {
 return x + y;
}

// C)
void sum_example1(int x, int y) {
 int sum = x + y;
}

53

54

Which of the following is most likely
to have generated the above
assembly?

Please download and install the Slido
app on all computers you use

ⓘ Start presenting to display the poll results on this slide.

Assembly Exercise 1
00000000004005ac <sum_example1>:
 4005bd: 8b 45 e8 mov %esi,%eax
 4005c3: 01 d0 add %edi,%eax
 4005cc: c3 retq

Which of the following is most likely to have generated the above assembly?
// A)
void sum_example1() {
 int x;
 int y;
 int sum = x + y;
}

// B)
int sum_example1(int x, int y) {
 return x + y;
}

// C)
void sum_example1(int x, int y) {
 int sum = x + y;
}

55

Assembly Exercise 2
0000000000400578 <sum_example2>:
 400578: 8b 47 0c mov 0xc(%rdi),%eax
 40057b: 03 07 add (%rdi),%eax
 40057d: 2b 47 18 sub 0x18(%rdi),%eax
 400580: c3 retq

int sum_example2(int arr[]) {
 int sum = 0;
 sum += arr[0];
 sum += arr[3];
 sum -= arr[6];
 return sum;
}

What location or value in the assembly above represents
the C code’s sum variable?

56

57

What location or value in the assembly
above represents the C code’s sum
variable?

Please download and install the Slido
app on all computers you use

ⓘ Start presenting to display the poll results on this slide.

Assembly Exercise 2
0000000000400578 <sum_example2>:
 400578: 8b 47 0c mov 0xc(%rdi),%eax
 40057b: 03 07 add (%rdi),%eax
 40057d: 2b 47 18 sub 0x18(%rdi),%eax
 400580: c3 retq

int sum_example2(int arr[]) {
 int sum = 0;
 sum += arr[0];
 sum += arr[3];
 sum -= arr[6];
 return sum;
}

What location or value in the assembly above represents
the C code’s sum variable?

%eax
58

Assembly Exercise 3
0000000000400578 <sum_example2>:
 400578: 8b 47 0c mov 0xc(%rdi),%eax
 40057b: 03 07 add (%rdi),%eax
 40057d: 2b 47 18 sub 0x18(%rdi),%eax
 400580: c3 retq

int sum_example2(int arr[]) {
 int sum = 0;
 sum += arr[0];
 sum += arr[3];
 sum -= arr[6];
 return sum;
}

What location or value in the assembly code above
represents the C code’s 6 (as in arr[6])?

59

60

What location or value in the assembly code
above represents the C code’s 6 (as in arr[6])?

Please download and install the Slido
app on all computers you use

ⓘ Start presenting to display the poll results on this slide.

Assembly Exercise 3
0000000000400578 <sum_example2>:
 400578: 8b 47 0c mov 0xc(%rdi),%eax
 40057b: 03 07 add (%rdi),%eax
 40057d: 2b 47 18 sub 0x18(%rdi),%eax
 400580: c3 retq

int sum_example2(int arr[]) {
 int sum = 0;
 sum += arr[0];
 sum += arr[3];
 sum -= arr[6];
 return sum;
}

What location or value in the assembly code above
represents the C code’s 6 (as in arr[6])?

0x18
61

Our First Assembly
int sum_array(int arr[], int nelems) {
 int sum = 0;
 for (int i = 0; i < nelems; i++) {
 sum += arr[i];
 }
 return sum;
}

00000000004005b6 <sum_array>:
 4005b6: ba 00 00 00 00 mov $0x0,%edx
 4005bb: b8 00 00 00 00 mov $0x0,%eax
 4005c0: eb 09 jmp 4005cb <sum_array+0x15>
 4005c2: 48 63 ca movslq %edx,%rcx
 4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
 4005c8: 83 c2 01 add $0x1,%edx
 4005cb: 39 f2 cmp %esi,%edx
 4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
 4005cf: f3 c3 repz retq

We’re 1/2 of the way to understanding assembly!
What looks understandable right now?

🤔
62

A Note About Operand Forms
• Many instructions share the same address operand forms that mov uses.

– E.g. 7(%rax, %rcx, 2).

• These forms work the same way for other instructions, e.g. sub:
– sub 8(%rax,%rdx),%rcx -> Go to 8 + %rax + %rdx, subtract what’s there from
%rcx

• The exception is lea:
– It interprets this form as just the calculation, not the dereferencing
– lea 8(%rax,%rdx),%rcx -> Calculate 8 + %rax + %rdx, put it in %rcx

63

Recap
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

Next Time: control flow in assembly (while loops, if statements, and more)
64

