
Aykut Erdem // Koç University // Fall 2024

COMP201
Computer
Systems &
Programming

Lecture #16 – x86-64 Condition Codes & Control Flow

photo by unsplash user @carrier_lost

• No lab this week!

2

Image: Professor Farnsworth (Futurama)

Good news, everyone!

2

Recap
• The lea Instruction
• Logical and Arithmetic Operations

3

Recap: lea
The lea instruction copies an “effective address” from one place to
another.

lea src,dst

Unlike mov, which copies data at the address src to the destination, lea
copies the value of src itself to the destination.

The syntax for the destinations is the same as
mov. The difference is how it handles the src.

4

Recap: Unary Instructions
The following instructions operate on a single operand (register or memory):

Examples: incq 16(%rax)
 dec %rdx
 not %rcx

Instruction Effect Description
inc D D ← D + 1 Increment
dec D D ← D - 1 Decrement
neg D D ← -D Negate
not D D ← ~D Complement

5

Recap: Binary Instructions
The following instructions operate on two operands (both can be register or
memory, source can also be immediate). Both cannot be memory locations!
Read it as, e.g., “Subtract S from D”:

Examples: addq %rcx,(%rax)
 xorq $16,(%rax, %rdx, 8)
 subq %rdx,8(%rax)

Instruction Effect Description
add S, D D ← D + S Add
sub S, D D ← D - S Subtract
imul S, D D ← D * S Multiply
xor S, D D ← D ^ S Exclusive-or
or S, D D ← D | S Or
and S, D D ← D & S And

6

Recap: Large Multiplication
• Multiplying 64-bit numbers can produce a 128-bit result. How does

x86-64 support this with only 64-bit registers?
• If you specify two operands to imul, it multiplies them together and

truncates until it fits in a 64-bit register.

imul S, D D ← D * S
• If you specify one operand, it multiplies that by %rax, and splits the

product across 2 registers. It puts the high-order 64 bits in %rdx and
the low-order 64 bits in %rax.

Instruction Effect Description
imulq S R[%rdx]:R[%rax] ← S x R[%rax] Signed full multiply
mulq S R[%rdx]:R[%rax] ← S x R[%rax] Unsigned full multiply

7

Recap: Division and Remainder

• Terminology: dividend / divisor = quotient + remainder
• x86-64 supports dividing up to a 128-bit value by a 64-bit value.
• The high-order 64 bits of the dividend are in %rdx, and the low-order

64 bits are in %rax. The divisor is the operand to the instruction.
• The quotient is stored in %rax, and the remainder in %rdx.

Instruction Effect Description
idivq S R[%rdx] ← R[%rdx]:R[%rax] mod S;

R[%rax] ← R[%rdx]:R[%rax] ➗ S
Signed divide

divq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Unsigned divide

8

Recap: Division and Remainder

• Terminology: dividend / divisor = quotient + remainder
• The high-order 64 bits of the dividend are in %rdx, and the low-order

64 bits are in %rax. The divisor is the operand to the instruction.
• Most division uses only 64-bit dividends. The cqto instruction

sign-extends the 64-bit value in %rax into %rdx to fill both registers
with the dividend, as the division instruction expects.

Instruction Effect Description
idivq S R[%rdx] ← R[%rdx]:R[%rax] mod S;

R[%rax] ← R[%rdx]:R[%rax] ➗ S
Signed divide

divq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Unsigned divide

cqto R[%rdx]:R[%rax] ← SignExtend(R[%rax]) Convert to oct word

9

Recap: Shift Instructions
The following instructions have two operands: the shift amount k and the
destination to shift, D. k can be either an immediate value, or the byte
register %cl (and only that register!)

Examples: shll $3,(%rax)
 shrl %cl,(%rax,%rdx,8)
 sarl $4,8(%rax)

Instruction Effect Description
sal k, D D ← D << k Left shift

shl k, D D ← D << k Left shift (same as sal)
sar k, D D ← D >>A k Arithmetic right shift

shr k, D D ← D >>L k Logical right shift

10

Recap: Shift Amount

• When using %cl, the width of what you are shifting determines what
portion of %cl is used.

• For w bits of data, it looks at the low-order log2(w) bits of %cl to know
how much to shift.
• If %cl = 0xff (0b11111111), then: shlb shifts by 7 because it considers only the low-

order log2(8) = 3 bits, which represent 7. shlw shifts by 15 because it considers
only the low-order log2(16) = 4 bits, which represent 15.

Instruction Effect Description
sal k, D D ← D << k Left shift
shl k, D D ← D << k Left shift (same as sal)
sar k, D D ← D >>A k Arithmetic right shift
shr k, D D ← D >>L k Logical right shift

11

Recap: A Note About Operand Forms
• Many instructions share the same address operand forms that mov uses.

– Eg. 7(%rax, %rcx, 2).

• These forms work the same way for other instructions, e.g. sub:
– sub 8(%rax,%rdx),%rcx ➔ Go to 8 + %rax + %rdx, subtract what’s there from
%rcx

• The exception is lea:
– It interprets this form as just the calculation, not the dereferencing
– lea 8(%rax,%rdx),%rcx ➔ Calculate 8 + %rax + %rdx, put it in %rcx

12

Plan for Today
• Practice: Reverse Engineering
• Assembly Execution and %rip
• Control Flow Mechanics

Disclaimer: Slides for this lecture were borrowed from
—Nick Troccoli's Stanford CS107 class

13

Lecture Plan
• Practice: Reverse Engineering
• Assembly Execution and %rip
• Control Flow Mechanics

16

Reverse Engineeging
Practices

https://godbolt.org/z/QQj77g

https://godbolt.org/z/QQj77g

Reverse Engineering 1
int add_to(int x, int arr[], int i) {
 int sum = ___?___;
 sum += arr[___?___];
 return ___?___;
}

add_to:
 movslq %edx, %rdx
 movl %edi, %eax
 addl (%rsi,%rdx,4), %eax
 ret

18

Reverse Engineering 1
int add_to(int x, int arr[], int i) {
 int sum = ___?___;
 sum += arr[___?___];
 return ___?___;
}

// x in %edi, arr in %rsi, i in %edx
add_to:
 movslq %edx, %rdx // sign-extend i into full register
 movl %edi, %eax // copy x into %eax
 addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
 ret

19

Reverse Engineering 1
int add_to(int x, int arr[], int i) {
 int sum = x;
 sum += arr[i];
 return sum;
}

// x in %edi, arr in %rsi, i in %edx
add_to:
 movslq %edx, %rdx // sign-extend i into full register
 movl %edi, %eax // copy x into %eax
 addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
 ret

20

Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {
 int z = nums[___?___] * ___?___;
 z -= ___?___;
 z >>= ___?___;
 return ___?___;
}

elem_arithmetic:
 movl %esi, %eax
 imull (%rdi), %eax
 subl 4(%rdi), %eax
 sarl $2, %eax
 addl $2, %eax
 ret

21

Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {
 int z = nums[___?___] * ___?___;
 z -= ___?___;
 z >>= ___?___;
 return ___?___;
}

// nums in %rdi, y in %esi
elem_arithmetic:
 movl %esi, %eax // copy y into %eax
 imull (%rdi), %eax // multiply %eax by nums[0]
 subl 4(%rdi), %eax // subtract nums[1] from %eax
 sarl $2, %eax // shift %eax right by 2
 addl $2, %eax // add 2 to %eax
 ret

22

Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {
 int z = nums[0] * y;
 z -= nums[1];
 z >>= 2;
 return z + 2;
}

// nums in %rdi, y in %esi
elem_arithmetic:
 movl %esi, %eax // copy y into %eax
 imull (%rdi), %eax // multiply %eax by nums[0]
 subl 4(%rdi), %eax // subtract nums[1] from %eax
 sarl $2, %eax // shift %eax right by 2
 addl $2, %eax // add 2 to %eax
 ret

23

Reverse Engineering 3
long func(long x, long *ptr) {
 *ptr = ___?___ + 1;
 long result = x % ___?___;
 return ___?___;
}

func:
 leaq 1(%rdi), %rcx
 movq %rcx, (%rsi)
 movq %rdi, %rax
 cqto
 idivq %rcx
 movq %rdx, %rax
 ret

24

Reverse Engineering 3
long func(long x, long *ptr) {
 *ptr = ___?___ + 1;
 long result = x % ___?___;
 return ___?___;
}

// x in %rdi, ptr in %rsi
func:
 leaq 1(%rdi), %rcx // put x + 1 into %rcx
 movq %rcx, (%rsi) // copy %rcx into *ptr
 movq %rdi, %rax // copy x into %rax
 cqto // sign-extend x into %rdx
 idivq %rcx // calculate x / (x + 1)
 movq %rdx, %rax // copy the remainder into %rax
 ret

25

Reverse Engineering 3
long func(long x, long *ptr) {
 *ptr = x + 1;
 long result = x % *ptr; // or x + 1
 return result;
}

// x in %rdi, ptr in %rsi
func:
 leaq 1(%rdi), %rcx // put x + 1 into %rcx
 movq %rcx, (%rsi) // copy %rcx into *ptr
 movq %rdi, %rax // copy x into %rax
 cqto // sign-extend x into %rdx
 idivq %rcx // calculate x / (x + 1)
 movq %rdx, %rax // copy the remainder into %rax
 ret

26

Lecture Plan
• More practice: Reverse Engineering
• Assembly Execution and %rip
• Control Flow Mechanics

27

Learning Assembly

Moving data
around

Arithmetic
and logical
operations

Control flow Function calls

Lecture 14 Lecture 15 Today &
Next Lecture

Lecture 18

28

Learning Goals
• Learn about how assembly stores comparison and operation results in

condition codes
• Understand how assembly implements loops and control flow

29

Executing Instructions

What does it mean for a program
to execute?

30

Executing Instructions
So far:
• Program values can be stored in memory or registers.
• Assembly instructions read/write values back and forth

between registers (on the CPU) and memory.
• Assembly instructions are also stored in memory.

Today:
• Who controls the instructions?

How do we know what to do now or next?
Answer:
• The program counter (PC), %rip.

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55
31

Register Responsibilities
Some registers take on special responsibilities during program execution.
• %rax stores the return value
• %rdi stores the first parameter to a function
• %rsi stores the second parameter to a function
• %rdx stores the third parameter to a function
• %rip stores the address of the next instruction to execute
• %rsp stores the address of the current top of the stack

See the x86-64 Guide and Reference Sheet on the Resources webpage
for more!

32

Register Responsibilities
Some registers take on special responsibilities during program execution.
• %rax stores the return value
• %rdi stores the first parameter to a function
• %rsi stores the second parameter to a function
• %rdx stores the third parameter to a function
• %rip stores the address of the next instruction to execute
• %rsp stores the address of the current top of the stack

See the x86-64 Guide and Reference Sheet on the Resources webpage
for more!

33

Instructions Are Just Bytes!

34

48 Chapter 1 A Tour of Computer Systems

Disk

CPU

Register file

PC ALU

Bus interface
I/O

bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

“hello, world\n”

hello code

hello executable
stored on disk

Figure 1.6 Loading the executable from disk into main memory.

CPU

Register file

PC ALU

Bus interface
I/O

bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

Disk“hello, world\n”

“hello, world\n”

hello code

hello executable
stored on disk

Figure 1.7 Writing the output string from memory to the display.

35

48 Chapter 1 A Tour of Computer Systems

Disk

CPU

Register file

PC ALU

Bus interface
I/O

bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

“hello, world\n”

hello code

hello executable
stored on disk

Figure 1.6 Loading the executable from disk into main memory.

CPU

Register file

PC ALU

Bus interface
I/O

bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

Disk“hello, world\n”

“hello, world\n”

hello code

hello executable
stored on disk

Figure 1.7 Writing the output string from memory to the display.

Instructions Are Just Bytes!

0x0

Heap

Stack

Data

Text (code)
Machine code

instructions

Main Memory

36

%rip
00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

Heap

Stack

Data

Text (code)

Main Memory

37

%rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004ed

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

38

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004ee

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

39

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004f1

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

40

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004f8

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

41

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

42

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

Special hardware sets the program
counter to the next instruction:
%rip += size of bytes of current
instruction

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

43

Going In Circles
• How can we use this representation of execution to represent e.g. a loop?
• Key Idea: we can ”interfere” with %rip and set it back to an earlier

instruction!

44

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand).

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

45

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand).

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

46

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand).

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

47

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand).

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

48

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

This assembly represents an
infinite loop in C!

while (true) {…}

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

49

jmp
The jmp instruction jumps to another instruction in the assembly code
(“Unconditional Jump”).

jmp Label (Direct Jump)
jmp *Operand (Indirect Jump)

The destination can be hardcoded into the instruction (direct jump):
 jmp 404f8 <loop+0xb> # jump to instruction at 0x404f8

The destination can also be one of the usual operand forms (indirect jump):
 jmp *%rax # jump to instruction at address in %rax

50

“Interfering” with %rip

1. How do we repeat instructions in a loop?
jmp [target]
• A 1-step unconditional jump (always

jump when we execute this instruction)

What if we want a conditional jump?

51

Lecture Plan
• More practice: Reverse Engineering
• Assembly Execution and %rip
• Control Flow Mechanics

– Condition Codes
– Assembly Instructions

52

Control
• In C, we have control flow statements like if, else, while, for, etc. to

write programs that are more expressive than just one instruction
following another.

• This is conditional execution of statements: executing statements if one
condition is true, executing other statements if one condition is false,
etc.

• How is this represented in assembly?

53

Control

if (x > y) {
 // a
} else {
 // b
}

In Assembly:
1. Calculate the condition result
2. Based on the result, go to a or b

54

Control
• In assembly, it takes more than one instruction to do these two steps.
• Most often: 1 instruction to calculate the condition, 1 to conditionally jump

Common Pattern:
1. cmp S1, S2 // compare two values
2. je [target] or jne [target] or jl [target] or ... // conditionally

 // jump

“jump if
equal”

“jump if
not equal”

“jump if
less than”

55

Conditional Jumps
There are also variants of jmp that jump only if certain conditions are true
(“Conditional Jump”). The jump location for these must be hardcoded into
the instruction.

Instruction Synonym Set Condition

je Label jz Equal / zero

jne Label jnz Not equal / not zero

js Label Negative

jns Label Nonnegative

jg Label jnle Greater (signed >)

jge Label jnl Greater or equal (signed >=)

jl Label jnge Less (signed <)

jle Label jng Less or equal (signed <=)

ja Label jnbe Above (unsigned >)

jae Label jnb Above or equal (unsigned >=)

jb Label jnae Below (unsigned <)

jbe Label jna Below or equal (unsigned <=) 56

Control
Read cmp S1,S2 as “compare S2 to S1”:

// Jump if %edi > 2
cmp $2, %edi
jg [target]

// Jump if %edi != 3
cmp $3, %edi
jne [target]

// Jump if %edi == 4
cmp $4, %edi
je [target]

// Jump if %edi <= 1
cmp $1, %edi
jle [target]

57

Control
Read cmp S1,S2 as “compare S2 to S1”:

// Jump if %edi > 2
cmp $2, %edi
jg [target]

// Jump if %edi != 3
cmp $3, %edi
jne [target]

// Jump if %edi == 4
cmp $4, %edi
je [target]

// Jump if %edi <= 1
cmp $1, %edi
jle [target]

Wait a minute – how does the
jump instruction know anything
about the compared values in
the earlier instruction?

58

Control
• The CPU has special registers called condition codes that are like

“global variables”. They automatically keep track of information about
the most recent arithmetic or logical operation.

–cmp compares via calculation (subtraction) and info is stored in the
condition codes

– conditional jump instructions look at these condition codes to know
whether to jump

• What exactly are the condition codes? How do they store this
information?

59

Condition Codes
Alongside normal registers, the CPU also has single-bit condition code
registers. They store the results of the most recent arithmetic or logical
operation.

Most common condition codes:
• CF: Carry flag. The most recent operation generated a carry out of the

most significant bit. Used to detect overflow for unsigned operations.
• ZF: Zero flag. The most recent operation yielded zero.
• SF: Sign flag. The most recent operation yielded a negative value.
• OF: Overflow flag. The most recent operation caused a two’s-complement

overflow-either negative or positive.
60

Condition Codes
Alongside normal registers, the CPU also has single-bit condition code
registers. They store the results of the most recent arithmetic or logical
operation.

Example: if we calculate t = a + b, condition codes are set according to:
• CF: Carry flag (Unsigned Overflow). (unsigned) t < (unsigned) a
• ZF: Zero flag (Zero). (t == 0)
• SF: Sign flag (Negative). (t < 0)
• OF: Overflow flag (Signed Overflow). (a<0 == b<0) && (t<0 != a<0)

61

Setting Condition Codes
The cmp instruction is like the subtraction instruction, but it does not store
the result anywhere. It just sets condition codes. (Note the operand order!)

CMP S1, S2 S2 – S1

Instruction Description
cmpb Compare byte
cmpw Compare word
cmpl Compare double word
cmpq Compare quad word

62

Control

// Jump if %edi > 2
// calculates %edi – 2
cmp $2, %edi
jg [target]

// Jump if %edi != 3
// calculates %edi – 3
cmp $3, %edi
jne [target]

// Jump if %edi == 4
// calculates %edi – 4
cmp $4, %edi
je [target]

// Jump if %edi <= 1
// calculates %edi – 1
cmp $1, %edi
jle [target]

Read cmp S1,S2 as “compare S2 to S1”. It calculates S2 – S1 and updates
the condition codes with the result.

63

Conditional Jumps
Conditional jumps can look at subsets of the condition codes in order to
check their condition of interest.

Instruction Synonym Set Condition

je Label jz Equal / zero (ZF = 1)

jne Label jnz Not equal / not zero (ZF = 0)

js Label Negative (SF = 1)

jns Label Nonnegative (SF = 0)

jg Label jnle Greater (signed >) (ZF = 0 and SF = OF)

jge Label jnl Greater or equal (signed >=) (SF = OF)

jl Label jnge Less (signed <) (SF != OF)

jle Label jng Less or equal (signed <=) (ZF = 1 or SF! = OF)

ja Label jnbe Above (unsigned >) (CF = 0 and ZF = 0)

jae Label jnb Above or equal (unsigned >=) (CF = 0)

jb Label jnae Below (unsigned <) (CF = 1)

jbe Label jna Below or equal (unsigned <=) (CF = 1 or ZF = 1) 64

Setting Condition Codes
The test instruction is like cmp, but for AND. It does not store the & result
anywhere. It just sets condition codes.

TEST S1, S2 S2 & S1

Cool trick: if we pass the same value for both operands, we can check the
sign of that value using the Sign Flag and Zero Flag condition codes!

Instruction Description
testb Test byte
testw Test word
testl Test double word
testq Test quad word

65

Condition Codes
• Previously-discussed arithmetic and logical instructions update these

flags. lea does not (it was intended only for address computations).

• Logical operations (xor, etc.) set carry and overflow flags to zero.

• Shift operations set the carry flag to the last bit shifted out and set the
overflow flag to zero.

• For more complicated reasons, inc and dec set the overflow and zero
flags, but leave the carry flag unchanged.

66

Recap
• More practice: Reverse Engineering
• Assembly Execution and %rip
• Control Flow Mechanics

Next time: Conditional branches
67

