
Photo: Dennis Ritchie and Ken Thompson

Aykut Erdem // Koç University // Fall 2024

COMP201
Computer
Systems &
Programming

Lecture #02 – Bits and Bytes, Representing and
Operating on Integers

Recap
• Course Introduction
• COMP201 Course Policies
• Unix and the Command Line
• Getting Started With C

2

Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Overflow
• Casting and Combining Types

Disclaimer: Slides for this lecture were borrowed from
—Nick Troccoli's Stanford CS107 class
—Randal E. Bryant and David R. O’Hallaron’s CMU 15-213 class

3

COMP201 Topic 1: How can a
computer represent integer

numbers?

5

6

Demo: Unexpected Behavior

7
airline.c

Lecture Plan
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Overflow
• Casting and Combining Types

10

0
11

1
12

Bits
• Computers are built around the idea of two states: “on” and “off”.

Transistors represent this in hardware, and bits represent this in
software!

13

One Bit At A Time
• We can combine bits, like with base-10 numbers, to represent more

data. 8 bits = 1 byte.
• Computer memory is just a large array of bytes! It is byte-addressable;

you can’t address (store location of) a bit; only a byte.
• Computers still fundamentally operate on bits; we have just gotten more

creative about how to represent different data as bits!
– Images
– Audio
– Video
– Text
– And more…

14

Base 10

5 9 3 4
Digits 0-9 (0 to base-1)

15

Base 10

5 9 3 4
onestens

hundreds

thousands

= 5*1000 + 9*100 + 3*10 + 4*1

16

Base 10

5 9 3 4
100101102103

17

Base 10

5 9 3 4
012310X:

18

Base 2

1 0 1 1
01232X:

Digits 0-1 (0 to base-1)

19

Base 2

1 0 1 1
20212223

20

Base 2

1 0 1 1
onestwosfourseights

= 1*8 + 0*4 + 1*2 + 1*1 = 1110

Most significant bit (MSB) Least significant bit (LSB)

21

Base 10 to Base 2
Question: What is 6 in base 2?
• Strategy:

– What is the largest power of 2 ≤ 6?

22

Base 10 to Base 2
Question: What is 6 in base 2?
• Strategy:

– What is the largest power of 2 ≤ 6? 22=4

_ _ _ _
20212223

10
23

Base 10 to Base 2
Question: What is 6 in base 2?
• Strategy:

– What is the largest power of 2 ≤ 6? 22=4
– Now, what is the largest power of 2 ≤ 6 – 22?

_ _ _ _
20212223

10
24

Base 10 to Base 2
Question: What is 6 in base 2?
• Strategy:

– What is the largest power of 2 ≤ 6? 22=4
– Now, what is the largest power of 2 ≤ 6 – 22? 21=2

_ _ _ _
20212223

10 1
25

Base 10 to Base 2
Question: What is 6 in base 2?
• Strategy:

– What is the largest power of 2 ≤ 6? 22=4
– Now, what is the largest power of 2 ≤ 6 – 22? 21=2
– 6 – 22 – 21 = 0!

_ _ _ _
20212223

10 1
26

Base 10 to Base 2
Question: What is 6 in base 2?
• Strategy:

– What is the largest power of 2 ≤ 6? 22=4
– Now, what is the largest power of 2 ≤ 6 – 22? 21=2
– 6 – 22 – 21 = 0!

_ _ _ _
20212223

10 1 0
27

Base 10 to Base 2
Question: What is 6 in base 2?
• Strategy:

– What is the largest power of 2 ≤ 6? 22=4
– Now, what is the largest power of 2 ≤ 6 – 22? 21=2
– 6 – 22 – 21 = 0!

_ _ _ _
20212223

10 1 0
= 0*8 + 1*4 + 1*2 + 0*1 = 6

28

Practice: Base 2 to Base 10
What is the base-2 value 1010 in base-10?
a) 20
b) 101
c) 10
d) 5
e) Other

29

Practice: Base 10 to Base 2
What is the base-10 value 14 in base 2?
a) 1111
b) 1110
c) 1010
d) Other

30

Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits)

can store?

31

Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits)

can store? minimum = 0 maximum = ?

32

Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits)

can store? minimum = 0 maximum = ?

11111111
2x: 7 6 5 4 3 2 1 0

33

Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits)

can store? minimum = 0 maximum = ?

• Strategy 1: 1*27 + 1*26 + 1*25 + 1*24 + 1*23+ 1*22 + 1*21 + 1*20 = 255

11111111
2x: 7 6 5 4 3 2 1 0

34

Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits)

can store? minimum = 0 maximum = 255

• Strategy 1: 1*27 + 1*26 + 1*25 + 1*24 + 1*23+ 1*22 + 1*21 + 1*20 = 255
• Strategy 2: 28 – 1 = 255

11111111
2x: 7 6 5 4 3 2 1 0

35

Multiplying by Base

1450 x 10 = 14500
11002 x 2 = 11000
Key Idea: inserting 0 at the end multiplies by the base!

36

Dividing by Base

1450 / 10 = 145
11002 / 2 = 110
Key Idea: removing 0 at the end divides by the base!

37

Lecture Plan
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Overflow
• Casting and Combining Types

38

Hexadecimal
• When working with bits, oftentimes we have large numbers with 32 or

64 bits.
• Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0110 1010 0011
0-150-150-15

39

Hexadecimal
• When working with bits, oftentimes we have large numbers with 32 or

64 bits.
• Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0-150-150-15

Each is a base-16 digit!

40

Hexadecimal
• Hexadecimal is base-16, so we need digits for 1-15. How do we do this?

0 1 2 3 4 5 6 7 8 9 a b c d e f
10 11 12 13 14 15

41

Hexadecimal

Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 7
Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111

42

Hexadecimal
• We distinguish hexadecimal numbers by prefixing them with 0x, and

binary numbers with 0b.
• E.g. 0xf5 is 0b11110101

0x f 5
1111 0101

43

Practice: Hexadecimal to Binary
What is 0x173A in binary?

Hexadecimal 1 7 3 A
Binary 0001 0111 0011 1010

44

Practice: Hexadecimal to Binary
What is 0b1111001010 in hexadecimal? (Hint: start from the right)

Binary 11 1100 1010
Hexadecimal 3 C A

45

Question Break!

46

Lecture Plan
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Overflow
• Casting and Combining Types

47

Number Representations
• Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, … 99999…
• Signed Integers: negative, positive and 0 integers. (e.g. …-2, -1, 0, 1,…

9999…)

• Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x1012)

48

Number Representations
• Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, … 99999…
• Signed Integers: negative, positive and 0 integers. (e.g. …-2, -1, 0, 1,…

9999…)

• Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x1012)
More on this next week!

49

Number Representations
C Declaration Size (Bytes)

int 4
double 8
float 4
char 1
char * 8
short 2
long 8

50

In The Days Of Yore…
C Declaration Size (Bytes)

int 4
double 8
float 4
char 1
char * 4
short 2
long 4

51

Transitioning To Larger Datatypes

• Early 2000s: most computers were 32-bit. This means that pointers were 4
bytes (32 bits).

• 32-bit pointers store a memory address from 0 to 232-1, equaling 232 bytes of
addressable memory. This equals 4 Gigabytes, meaning that 32-bit
computers could have at most 4GB of memory (RAM)!

• Because of this, computers transitioned to 64-bit. This means that datatypes
were enlarged; pointers in programs were now 64 bits.

• 64-bit pointers store a memory address from 0 to 264-1, equaling 264 bytes of
addressable memory. This equals 16 Exabytes, meaning that 64-bit
computers could have at most 1024*1024*1024 GB of memory (RAM)!

52

Lecture Plan
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Overflow
• Casting and Combining Types

53

Unsigned Integers
• An unsigned integer is 0 or a positive integer (no negatives).
• We have already discussed converting between decimal and binary,

which is a nice 1:1 relationship. Examples:
 0b0001 = 1

 0b0101 = 5
 0b1011 = 11
 0b1111 = 15
• The range of an unsigned number is 0 → 2w - 1, where w is the number

of bits. E.g. a 32-bit integer can represent 0 to 232 – 1 (4,294,967,295).

54

Unsigned Integers

55

Lecture Plan
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Overflow
• Casting and Combining Types

56

Signed Integers
• A signed integer is a negative integer, 0, or a positive integer.
• Problem: How can we represent negative and positive numbers in

binary?

57

Signed Integers
• A signed integer is a negative integer, 0, or a positive integer.
• Problem: How can we represent negative and positive numbers in

binary?

Idea: let’s reserve the most
significant bit to store the sign.

58

Sign Magnitude Representation

0110
positive 6

1011
negative 3

59

Sign Magnitude Representation

0000
positive 0

1000
negative 0

🤯

60

Sign Magnitude Representation

• We’ve only represented 15 of our 16 available numbers!

1 000 = -0
1 001 = -1
1 010 = -2
1 011 = -3
1 100 = -4
1 101 = -5
1 110 = -6
1 111 = -7

0 000 = 0
0 001 = 1
0 010 = 2
0 011 = 3
0 100 = 4
0 101 = 5
0 110 = 6
0 111 = 7

61

Sign Magnitude Representation
• Pro: easy to represent, and easy to convert to/from decimal.
• Con: +-0 is not intuitive
• Con: we lose a bit that could be used to store more numbers
• Con: arithmetic is tricky: we need to find the sign, then maybe subtract

(borrow and carry, etc.), then maybe change the sign. This complicates
the hardware support for something as fundamental as addition.

Can we do better?

62

A Better Idea
• Ideally, binary addition would just work regardless of whether the number

is positive or negative.

0101
????
0000
+

63

A Better Idea
• Ideally, binary addition would just work regardless of whether the number

is positive or negative.

0101
1011
0000
+

64

A Better Idea
• Ideally, binary addition would just work regardless of whether the number

is positive or negative.

0011
????
0000
+

65

A Better Idea
• Ideally, binary addition would just work regardless of whether the number

is positive or negative.

0011
1101
0000
+

66

A Better Idea
• Ideally, binary addition would just work regardless of whether the number

is positive or negative.

0000
????
0000
+

67

A Better Idea
• Ideally, binary addition would just work regardless of whether the number

is positive or negative.

0000
0000
0000
+

68

A Better Idea
Decimal Positive Negative

0 0000 0000

1 0001 1111

2 0010 1110

3 0011 1101

4 0100 1100

5 0101 1011

6 0110 1010

7 0111 1001

Decimal Positive Negative

8 1000 1000

9 1001 (same as -7!) NA

10 1010 (same as -6!) NA

11 1011 (same as -5!) NA

12 1100 (same as -4!) NA

13 1101 (same as -3!) NA

14 1110 (same as -2!) NA

15 1111 (same as -1!) NA
69

There Seems Like a Pattern Here…

• The negative number is the positive number inverted, plus one!

0101
1011
0000
+

0011
1101
0000
+

0000
0000
0000
+

70

There Seems Like a Pattern Here…

A binary number plus its inverse is all 1s. Add 1 to this to carry over all 1s and get 0!

0101
1010
1111
+

1111
0001
0000
+

71

Another Trick
• To find the negative equivalent of a number, work right-to-left and write

down all digits through when you reach a 1. Then, invert the rest of the
digits.

100100
??????
000000
+

72

Another Trick
• To find the negative equivalent of a number, work right-to-left and write

down all digits through when you reach a 1. Then, invert the rest of the
digits.

100100
???100
000000
+

73

Another Trick
• To find the negative equivalent of a number, work right-to-left and write

down all digits through when you reach a 1. Then, invert the rest of the
digits.

100100
011100
000000
+

74

Two’s Complement

75

Two’s Complement
• In two’s complement, we represent

a positive number as itself, and its
negative equivalent as the two’s
complement of itself.
• The two’s complement of a number

is the binary digits inverted, plus 1.
• This works to convert from positive

to negative, and back from negative
to positive!

76

Two’s Complement
• Con: more difficult to represent, and

difficult to convert to/from decimal
and between positive and negative.
• Pro: only 1 representation for 0!
• Pro: all bits are used to represent as

many numbers as possible
• Pro: the most significant bit still

indicates the sign of a number.
• Pro: addition works for any

combination of positive and
negative!

77

Two’s Complement
• Adding two numbers is just…adding! There is no special case needed

for negatives. E.g. what is 2 + -5?

0010
1011
1101
+

2

-5

-3

78

Two’s Complement
• Subtracting two numbers is just performing the two’s complement on

one of them and then adding. E.g. 4 – 5 = -1.

0100
0101-

4

5
0100
1011
1111
+

4

-5

-1

79

Practice: Two’s Complement
What are the negative or positive equivalents of the numbers below?
a) -4 (1100)
b) 7 (0111)
c) 3 (0011)
d) -8 (1000)

80

Lecture Plan
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Overflow
• Casting and Combining Types

81

Overflow
• If you exceed the maximum value of your bit representation, you wrap

around or overflow back to the smallest bit representation.

0b1111 + 0b1 = 0b0000

• If you go below the minimum value of your bit representation, you wrap
around or overflow back to the largest bit representation.

0b0000 - 0b1 = 0b1111

82

Overflow
• If you exceed the maximum value of your bit representation, you wrap

around or overflow back to the smallest bit representation.

0b1111 + 0b1 = 0b0000

• If you go below the minimum value of your bit representation, you wrap
around or overflow back to the largest bit representation.

0b0000 - 0b1 = 0b1111

83

https://xkcd.com/571 Can’t Sleep
Title text: If androids someday DO dream of electric sheep,
don't forget to declare sheepCount as a long int.

https://xkcd.com/571

Min and Max Integer Values
Type Size (Bytes) Minimum Maximum

char 1 -128 127
unsigned char 1 0 255

short 2 -32768 32767

unsigned short 2 0 65535

int 4 -2147483648 2147483647
unsigned int 4 0 4294967295

long 8 -9223372036854775808 9223372036854775807

unsigned long 8 0 18446744073709551615

84

Min and Max Integer Values
INT_MIN, INT_MAX, UINT_MAX, LONG_MIN, LONG_MAX, ULONG_MAX, …

85

Overflow

000…000111…111

011…111100…000

000…001
000…010
000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

+1

+1

+1

……

86

Practice: Overflow

At which points can overflow occur for
signed and unsigned int? (assume binary
values shown are all 32 bits)

A. Signed and unsigned can both
overflow at points X and Y

B. Signed can overflow only at X,
unsigned only at Y

C. Signed can overflow only at Y,
unsigned only at X

D. Signed can overflow at X and Y,
unsigned only at X

E. Other

X

Y

000…000111…111

011…111100…000

000…001
000…010
000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

87

Unsigned Integers

000…000111…111

011…111100…000

000…001
000…010
000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

0≈+4billion

Discontinuity
means overflow

possible here

Increasing positive num
bers

M
or

e
in

cr
ea

si
ng

 p
os

iti
ve

 n
um

be
rs

88

Signed Numbers

000…000111…111

011…111100…000

000…001
000…010
000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

0-1

Discontinuity
means overflow

possible here

Increasing positive num
bers

N
eg

at
iv

e
nu

m
be

rs
 b

ec
om

in
g

le
ss

 n
eg

at
iv

e
(i.

e.
 in

cr
ea

si
ng

)

≈+2billion
≈-2billion

+1

89

Overflow In Practice: PSY

YouTube: “We never thought a video would be watched in numbers
greater than a 32-bit integer (=2,147,483,647 views), but that was before
we met PSY. "Gangnam Style" has been viewed so many times we had
to upgrade to a 64-bit integer (9,223,372,036,854,775,808)!”

90

Overflow In Practice: Gandhi
• In the game “Civilization”, each

civilization leader had an
“aggression” rating. Gandhi was
meant to be peaceful, and had a
score of 1.
• If you adopted “democracy”, all

players’ aggression reduced by 2.
Gandhi’s went from 1 to 255!
• Gandhi then became a big fan of

nuclear weapons.
https://kotaku.com/why-gandhi-is-such-an-asshole-in-civilization-1653818245

92

https://kotaku.com/why-gandhi-is-such-an-asshole-in-civilization-1653818245

Windows 95 can only run for 49.7 days
before crashing,

93

• Windows 95 was unable to run longer
than 49.7 days of runtime!
• There exists GetTickTime function –

part of the Windows API – which
returns the number of milliseconds
which has elapsed since the system
has started up as a 32-bit uint.
• And there's 86M ms in a day, i.e. 1000

* 60 * 60 * 24 = 86,400,000 and 32
bits is 4,294,967,296 so 4,294,967,296
/ 86,400,000 = 49.7102696 days!

94
https://youtu.be/tdrRoSdBM5M

Overflow in Practice:
• Pacman Level 256
• Make sure to reboot Boeing Dreamliners every 248 days
• Comair/Delta airline had to cancel thousands of flights days before

Christmas
• Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to

remotely execute code
• Donkey Kong Kill Screen

95

https://pacman.fandom.com/wiki/Map_256_Glitch
https://www.engadget.com/2015/05/01/boeing-787-dreamliner-software-bug/
https://arstechnica.com/uncategorized/2004/12/4490-2/
https://nvd.nist.gov/vuln/detail/CVE-2019-3857
http://www.donhodges.com/how_high_can_you_get.htm

Demo Revisited:
Unexpected Behavior

airline.c
96

Lecture Plan
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Overflow
• Casting and Combining Types

97

printf and Integers
• There are 3 placeholders for 32-bit integers that we can use:

• %d: signed 32-bit int
• %u: unsigned 32-bit int
• %x: hex 32-bit int

• The placeholder—not the expression filling in the placeholder—
dictates what gets printed!

98

Casting
• What happens at the byte level when we cast between variable types?

The bytes remain the same! This means they may be interpreted
differently depending on the type.

 int v = -12345;
 unsigned int uv = v;
 printf("v = %d, uv = %u\n", v, uv);

This prints out: "v = -12345, uv = 4294954951". Why?

99

Casting
• What happens at the byte level when we cast between variable types?

The bytes remain the same! This means they may be interpreted
differently depending on the type.

 int v = -12345;
 unsigned int uv = v;
 printf("v = %d, uv = %u\n", v, uv);

The bit representation for -12345 is
0b11111111111111111100111111000111.
If we treat this binary representation as a positive number, it’s huge!

100

Casting

101

Comparisons Between Different Types
• Be careful when comparing signed and unsigned integers. C will

implicitly cast the signed argument to unsigned, and then performs the
operation assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 < 0 Signed 1 yes
-1 < 0U Unsigned 0 No!
2147483647 >
-2147483647 - 1 Signed 1 yes

2147483647U >
-2147483647 - 1 Unsigned 0 No!

2147483647 >
(int)2147483648U Signed 1 No!

-1 > -2 Signed 1 yes
(unsigned)-1 > -2 Unsigned 1 yes

110

Type Size
(Bytes) Minimum Maximum

int 4 -2147483648 2147483647

unsigned
int 4 0 4294967295

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

s3 > u3
u2 > u4
s2 > s4
s1 > s2
u1 > u2
s1 > u3

111

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

s3 > u3 - true
u2 > u4
s2 > s4
s1 > s2
u1 > u2
s1 > u3

112

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

s3 > u3 - true
u2 > u4 - true
s2 > s4
s1 > s2
u1 > u2
s1 > u3

113

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2
u1 > u2
s1 > u3

114

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2 - true
u1 > u2
s1 > u3

115

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2 - true
u1 > u2 - true
s1 > u3

116

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2 - true
u1 > u2 - true
s1 > u3 - true

117

Recap
• Getting Started With C
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Overflow

Next time: How can we manipulate individual bits and bytes? How can
we represent floating point numbers?

118

0 1
2

8 79
10

15

13
14

11

12 4

5
6

3

