
photo by unsplash.com user @tobiastu

Aykut Erdem // Koç University // Fall 2024

COMP201
Computer
Systems &
Programming

Lecture #21 –Cache Memories

Recap
• Floating Point
• Memory Layout
• Buffer Overflow

2

Recap: Programming with SSE3
XMM Registers

n 16 total, each 16 bytes
n 16 single-byte integers

n 8 16-bit integers

n 4 32-bit integers

n 4 single-precision floats

n 2 double-precision floats

n 1 single-precision float

n 1 double-precision float

3

Recap: Scalar & SIMD Operations
• Scalar

Operations:
Single
Precision

• SIMD
Operations:
Single
Precision

• Scalar
Operations:
Double
Precision 4

+

%xmm0

%xmm1

addss %xmm0,%xmm1

+ + + +

%xmm0

%xmm1

addps %xmm0,%xmm1

+

%xmm0

%xmm1

addsd %xmm0,%xmm1

Recap: FP Memory Referencing
• Integer (and pointer) arguments passed in regular registers
• FP values passed in XMM registers
• Different mov instructions to move between XMM registers, and

between memory and XMM registers

5

double dincr(double *p, double v)
{

double x = *p;
*p = x + v;
return x;

}

p in %rdi, v in %xmm0
 movapd %xmm0, %xmm1 # Copy v
 movsd (%rdi), %xmm0 # x = *p
 addsd %xmm0, %xmm1 # t = x + v
 movsd %xmm1, (%rdi) # *p = t
 ret

Recap: x86-64 Linux Memory Layout
• Stack

– Runtime stack (8MB limit)
– E. g., local variables

• Heap
– Dynamically allocated as needed
– When call malloc(), calloc(), new()

• Data
– Statically allocated data
– E.g., global vars, static vars, string constants

• Text / Shared Libraries
– Executable machine instructions
– Read-only

6

Hex Address

00007FFFFFFFFFFF

000000

Stack

Text
Data

Heap

400000

8MB

not drawn to scale

Shared
Libraries

Recap: Memory Referencing Bug Example

7

typedef struct {
 int a[2];
 double d;
} struct_t;

Location accessed by
fun(i)

Explanation: Critical State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t

fun(0) → 3.14
fun(1) → 3.14

fun(2) → 3.1399998664856

fun(3) → 2.00000061035156
fun(4) → 3.14
fun(6) → Segmentation fault

Recap: Buffer Overflows
• Buffer overflow bugs can allow remote machines to execute

arbitrary code on victim machines
• Distressingly common in real programs

– Programmers keep making the same mistakes ☹
– Recent measures make these attacks much more difficult

• Examples across the decades
– Original “Internet worm” (1988)
– “IM wars” (1999)
– Twilight hack on Wii (2000s)
– … and many, many more

• You will learn some of the tricks in Assignment 5
– Hopefully to convince you to never leave such holes in your programs!!

8

Recap: Malicious Use of Buffer Overflow

• Input string contains byte representation of executable code
• Overwrite return address A with address of buffer B
• When bar() executes ret, will jump to exploit code

int bar() {
 char buf[64];
 gets(buf);
 ...
 return ...;
}

void foo(){
 bar();
A:...
}

return address A

Stack after call to gets()

A (return addr)

foo
stack frame

bar
stack frame

B

data written
by gets()

High Addresses

buf starts here

Low Addresses

A B

exploit code

pad

9

COMP201 Topic 7: How does the
memory system is organized as a

hierarchy of different storage
devices with unique capacities?

Plan for Today
• The memory abstraction
• Storage technologies and trends
• Locality of reference
• The memory hierarchy
• Cache basics
• Cache organization

Disclaimer: Slides for this lecture were borrowed from
—Randal E. Bryant and David R. O’Hallaroni’s CMU 15-213 class
—Porter Jones’ UW CSE 351 class

11

Lecture Plan
• The memory abstraction
• Storage technologies and trends
• Locality of reference
• The memory hierarchy
• Cache basics
• Cache organization

14

Writing & Reading Memory
• Write

– Transfer data from CPU to memory
movq %rax, 8(%rsp)

– “Store” operation

• Read
– Transfer data from memory to CPU
movq 8(%rsp), %rax

– “Load” operation

15

Traditional Bus Structure Connecting
CPU and Memory
• A bus is a collection of parallel wires that carry address, data, and

control signals.
• Buses are typically shared by multiple devices.

Main
memory

I/O
bridgeBus interface

ALU

Register file

CPU chip

System bus Memory bus

16

Memory Read Transaction (1)
• CPU places address A on the memory bus.

17

ALU

Register file

Bus interface

A
0

Ax

Main memory
I/O bridge

%rax

Load operation: movq A, %rax

Memory Read Transaction (2)
• Main memory reads A from the memory bus, retrieves word x, and

places it on the bus.

18

ALU

Register file

Bus interface

x
0

Ax

Main memory
I/O bridge

%rax

Load operation: movq A, %rax

Memory Read Transaction (3)
• CPU read word x from the bus and copies it into register %rax.

19

ALU

Register file

Bus interface

0

Ax

Main memory
I/O bridge

%rax

Load operation: movq A, %rax

x

Memory Write Transaction (1)
• CPU places address A on bus. Main memory reads it and waits for the

corresponding data word to arrive.

20

ALU

Register file

Bus interface

A
0

A

Main memory
I/O bridge

%rax

Store operation: movq %rax, A

y

Memory Write Transaction (2)
• CPU places data word y on the bus.

21

ALU

Register file

Bus interface

y
0

A

Main memory
I/O bridge

%rax

Store operation: movq %rax, A

y

Memory Write Transaction (3)
• Main memory reads data word y from the bus and stores it at address A.

22

ALU

Register file

Bus interface

0

Ay

Main memory
I/O bridge

%rax

Store operation: movq %rax, A

y

Lecture Plan
• The memory abstraction
• Storage technologies and trends
• Locality of reference
• The memory hierarchy
• Cache basics
• Cache organization

23

Random-Access Memory (RAM)
• Key features

– RAM is traditionally packaged as a chip.
– Basic storage unit is normally a cell (one bit per cell).
– Multiple RAM chips form a memory.

• RAM comes in two varieties:
– SRAM (Static RAM)
– DRAM (Dynamic RAM)

24

DRAM SRAM

SRAM vs DRAM

Trends
• SRAM scales with semiconductor technology

– Reaching its limits
• DRAM scaling limited by need for minimum capacitance

– Aspect ratio limits how deep can make capacitor
– Also reaching its limits

25

Trans.
per bit

Access
time

Needs
refresh?

Need
EDC?

Cost Applications

SRAM 4 or 6 1X No Maybe 100X Cache memories

DRAM 1 10X Yes Yes 1X Main memories,
frame buffers

EDC: Error detection and correction

Enhanced DRAMs
• Operation of DRAM cell has not changed since its invention

– Commercialized by Intel in 1970.

• DRAM cores with better interface logic and faster I/O:
– Synchronous DRAM (SDRAM)

• Uses a conventional clock signal instead of asynchronous control

– Double data-rate synchronous DRAM (DDR SDRAM)
• Double edge clocking sends two bits per cycle per pin
• Different types distinguished by size of small prefetch buffer:

– DDR (2 bits), DDR2 (4 bits), DDR3 (8 bits), DDR4 (16 bits)
• By 2010, standard for most server and desktop systems
• Intel Core i7 supports DDR3 and DDR4 SDRAM

26

I/O Bus

Main
memory

I/O
bridgeBus interface

ALU

Register file

CPU chip

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor
Disk

I/O bus Expansion slots for
other devices such
as network adapters.

27

Storage Technologies
• Magnetic Disks

• Store on magnetic medium
• Electromechanical access

• Nonvolatile (Flash) Memory

• Store as persistent charge
• Implemented with 3-D structure

– 100+ levels of cells
– 3 bits data per cell

Storage Technologies
• Magnetic Disks

• Store on magnetic medium
• Electromechanical access

• Nonvolatile (Flash) Memory

• Store as persistent charge
• Implemented with 3-D structure

– 100+ levels of cells
– 3 bits data per cell

Nonvolatile Memories
• DRAM and SRAM are volatile memories

– Lose information if powered off.

• Nonvolatile memories retain value even if powered off
– Read-only memory (ROM): programmed during production
– Electrically eraseable PROM (EEPROM): electronic erase capability
– Flash memory: EEPROMs with partial (block-level) erase capability

• Wears out after about 100,000 erasings
– 3D XPoint (Intel Optane) & emerging NVMs

• New materials

• Uses for Nonvolatile Memories
– Firmware programs stored in a ROM (BIOS, controllers for disks, network cards,

graphics accelerators, security subsystems,…)
– Solid state disks (replace rotating disks in thumb drives, smart phones, mp3 players,

tablets, laptops,…)
– Disk caches

30

Storage Technologies
• Magnetic Disks

• Store on magnetic medium
• Electromechanical access

• Nonvolatile (Flash) Memory

• Store as persistent charge
• Implemented with 3-D structure

– 100+ levels of cells
– 3 bits data per cell

What’s Inside A Magnetic Disk Drive?
SpindleArm

Actuator

Platters

Electronics
(including a

processor
and memory!)SCSI

connector

Image courtesy of Seagate Technology 32

Disk Access Time
• Given:

– Rotational rate = 7,200 RPM
– Average seek time = 9 ms.
– Avg # sectors/track = 400.

• Derived:
– Tavg rotation = 1/2 × (60 secs/7200 RPM) × 1000 ms/sec = 4 ms.
– Tavg transfer = 60/7200 RPM × 1/400 secs/track × 1000 ms/sec = 0.02 ms
– Taccess = 9 ms + 4 ms + 0.02 ms

• Important points:
– Access time dominated by seek time and rotational latency.
– First bit in a sector is the most expensive, the rest are free.
– SRAM access time is about 4 ns/doubleword, DRAM about 60 ns

• Disk is about 40,000 times slower than SRAM,
• 2,500 times slower than DRAM.

33

Solid State Disks (SSDs)

• Pages: 512KB to 4KB, Blocks: 32 to 128 pages
• Data read/written in units of pages.
• Page can be written only after its block has been erased
• A block wears out after about 100,000 repeated writes.

Flash
translation layer

I/O bus

Page 0 Page 1 Page P-1…
Block 0

… Page 0 Page 1 Page P-1…
Block B-1

Flash memory

Solid State Disk (SSD)

Requests to read and
write logical disk blocks

34

SSD Tradeoffs vs Rotating Disks
• Advantages

– No moving parts à faster, less power, more rugged

• Disadvantages
– Have the potential to wear out

• Mitigated by “wear leveling logic” in flash translation layer
• E.g. Samsung 940 EVO Plus guarantees 600 writes/byte of writes before they wear out
• Controller migrates data to minimize wear level

– In 2019, about 4 times more expensive per byte
– And, relative cost will keep dropping

• Applications
– MP3 players, smart phones, laptops
– Beginning to appear in desktops and servers

35

The CPU-Memory Gap
• The gap widens between DRAM, disk, and CPU speeds.

36

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

DRAM

CPU

SSD

Disk

SRAM

Locality to the Rescue!
• The key to bridging this CPU-Memory gap is a fundamental property of

computer programs known as locality

37

Lecture Plan
• The memory abstraction
• Storage technologies and trends
• Locality of reference
• The memory hierarchy
• Cache basics
• Cache organization

38

Locality
• Principle of Locality: Programs tend to use data and instructions with

addresses near or equal to those they have used recently

• Temporal locality:
– Recently referenced items are likely

to be referenced again in the near future

• Spatial locality:
– Items with nearby addresses tend

to be referenced close together in time

39

Locality Example

• Data references
– Reference array elements in succession

(stride-1 reference pattern).
– Reference variable sum each iteration.

• Instruction references
– Reference instructions in sequence.
– Cycle through loop repeatedly.

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Spatial locality

Temporal locality

Spatial locality
Temporal locality

40

Lecture Plan
• The memory abstraction
• Storage technologies and trends
• Locality of reference
• The memory hierarchy
• Cache basics
• Cache organization

41

Memory Hierarchies
• Some fundamental and enduring properties of hardware and software:

– Fast storage technologies cost more per byte, have less capacity, and require
more power (heat!).

– The gap between CPU and main memory speed is widening.
– True for: registers ↔ cache, cache ↔ DRAM, DRAM ↔ disk, etc.

– Well-written programs tend to exhibit good locality.

• These fundamental properties complement each other beautifully.

• They suggest an approach for organizing memory and storage systems
known as a memory hierarchy.
– For each level k, the faster, smaller device at level k serves as a cache for the

larger, slower device at level k+1
42

Example
Memory
Hierarchy

Regs
L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds
disk blocks retrieved
from local disks.

43

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Smaller,
faster,
and
costlier
(per byte)
storage
devices

Example
Memory
Hierarchy

Regs
L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Remote secondary storage
(e.g., Web servers)

L2 cache
(SRAM)

L3 cache
(SRAM)

44

explicitly program-controlled
(e.g. refer to exactly %rax, %rbx)

program sees “memory”;
hardware manages caching

transparently

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Smaller,
faster,
and
costlier
(per byte)
storage
devices

Example
Memory
Hierarchy

Regs
L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

L2 cache
(SRAM)

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

45

5-10 s

1-2 min

15-30 min

31 days

66 months = 5.5 years

1 - 15 years

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

Caches
• Cache: A smaller, faster storage device that acts as a staging area for a

subset of the data in a larger, slower device.
• Fundamental idea of a memory hierarchy:

– For each k, the faster, smaller device at level k serves as a cache for the larger,
slower device at level k+1.

• Why do memory hierarchies work?
– Because of locality, programs tend to access the data at level k more often than

they access the data at level k+1.
– Thus, the storage at level k+1 can be slower, and thus larger and cheaper per bit.

46

Big Idea: The memory hierarchy
creates a large pool of storage that
costs as much as the cheap storage
near the bottom, but that serves
data to programs at the rate of the
fast storage near the top.

47

Intel Core i7 Cache Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
 256 KB, 8-way,
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for all caches.
48

Examples of Caching in the Mem. Hierarchy

Hardware MMU0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer cache

Buffer cache

Virtual Memory

L2 cache
L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB pages

64-byte blocks
64-byte blocks

4-8 bytes words

What is Cached?

Web proxy server1,000,000,000Remote server disks

OS100Main memory

Hardware4On-Chip L1
Hardware10On-Chip L2

NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware

49

How does execution time grow with SIZE?
int array[SIZE];
int sum = 0;

for (int i = 0; i < 200000; i++) {
 for (int j = 0; j < SIZE; j++) {
 sum += array[j];
 }
}

SIZE

Ex
ec

ut
io

n
Ti

m
e

Plot:

50

expect
linear

← execute SIZE×200,000 timesrepeat

200,000

times

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000

SIZE

Ti
m

e

51

Actual Data

data set < cache size

data se
t >

 cache siz
e

Processor-Memory Gap

Processor-Memory
Performance Gap
(grows 50%/year)

1989 first Intel CPU with cache on chip
1998 Pentium III has two cache levels on chip

“Moore’s Law”
µProc

55%/year
(2X/1.5yr)

DRAM
7%/year

(2X/10yrs)
52

Problem: Processor-Memory Bottleneck

Main
Memory

CPU Reg

Processor performance
doubled about every 18
months

Bus latency / bandwidth
evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Problem: lots of waiting
on memorycycle: single machine step (fixed-time)

53

Problem: Processor-Memory Bottleneck

Main
Memory

CPU Reg

Bus latency / bandwidth
evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Solution: caches

Cache

cycle: single machine step (fixed-time)

54

Processor performance
doubled about every 18
months

55
https://www.tiktok.com/@samir.tech/video/7263166449529720107?_r=1&_t=8fFcKCsA3ID

Suggested by Sinemis Toktaş

https://www.tiktok.com/@samir.tech/video/7263166449529720107?_r=1&_t=8fFcKCsA3ID

Lecture Plan
• The memory abstraction
• Storage technologies and trends
• Locality of reference
• The memory hierarchy
• Cache basics
• Cache organization

56

Cache Memories
• Cache memories are small, fast SRAM-based memories managed

automatically in hardware
– Hold frequently accessed blocks of main memory

• CPU looks first for data in cache
• Typical system structure:

Main
memory

I/O
bridgeBus interface

ALU

Register file
CPU chip

System bus Memory bus

Cache
memory

57

General Cache Concepts

58

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive memory
caches a subset of the blocks

4

4

4

10

10

10

General Cache Concepts: Hit

59

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14 Block b is in cache: Hit!

General Cache Concepts: Miss

60

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache: Miss!

Block b is fetched from memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy: determines

where b goes
• Replacement policy: determines

which block gets evicted (victim)

Types of Cache Misses
• Cold (compulsory) miss

– Cold misses occur because the cache is empty.

• Conflict miss
– Most caches limit blocks at level k+1 to a small subset (sometimes a singleton)

of the block positions at level k.
• E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

– Conflict misses occur when the level k cache is large enough, but multiple data
objects all map to the same level k block.
• E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

• Capacity miss
– Occurs when the set of active cache blocks (working set) is larger than the

cache.
61

Why Caches Work
• Principle of Locality: Programs tend to use data and instructions with

addresses near or equal to those they have used recently

• Temporal locality:
– Recently referenced items are likely

to be referenced again in the near future

• Spatial locality:
– Items with nearby addresses tend to

be referenced close together in time

62

Qualitative Estimates of Locality
• Claim: Being able to look at code and get a qualitative sense of its

locality is a key skill for a professional programmer.

• Question: Does this function have good locality with respect to array a?

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum;
}

63

Locality Example 1
• Does this function have good locality with respect to array a?

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum;
}

64

Locality Example 1
• Does this function have good locality with respect to array a?

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum;
}

65

Access Pattern:
stride = 1

M = 3,
N = 4

Note: 76 is just one
possible starting
address of array a 76 92 108

Layout in Memory

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a
[0]
[0]

a
[0]
[1]

a
[0]
[2]

a
[0]
[3]

a
[1]
[0]

a
[1]
[1]

a
[1]
[2]

a
[1]
[3]

a
[2]
[0]

a
[2]
[1]

a
[2]
[2]

a
[2]
[3]

1) a[0][0]
2) a[0][1]
3) a[0][2]
4) a[0][3]
5) a[1][0]
6) a[1][1]
7) a[1][2]
8) a[1][3]
9) a[2][0]
10) a[2][1]
11) a[2][2]
12) a[2][3]

Locality Example 2
• Does this function have good locality with respect to array a?

int sum_array_cols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];
 return sum;
}

66

Note: 76 is just one
possible starting
address of array a 76 92 108

Layout in Memory

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a
[0]
[0]

a
[0]
[1]

a
[0]
[2]

a
[0]
[3]

a
[1]
[0]

a
[1]
[1]

a
[1]
[2]

a
[1]
[3]

a
[2]
[0]

a
[2]
[1]

a
[2]
[2]

a
[2]
[3]

M = 3,
N = 4

Locality Example 2
• Does this function have good locality with respect to array a?

int sum_array_cols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];
 return sum;
}

67

Access Pattern:
stride = 4

M = 3,
N = 4

Note: 76 is just one
possible starting
address of array a 76 92 108

Layout in Memory

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a
[0]
[0]

a
[0]
[1]

a
[0]
[2]

a
[0]
[3]

a
[1]
[0]

a
[1]
[1]

a
[1]
[2]

a
[1]
[3]

a
[2]
[0]

a
[2]
[1]

a
[2]
[2]

a
[2]
[3]

1) a[0][0]
2) a[1][0]
3) a[2][0]
4) a[0][1]
5) a[1][1]
6) a[2][1]
7) a[0][2]
8) a[1][2]
9) a[2][2]
10) a[0][3]
11) a[1][3]
12) a[2][3]

Locality Example 3
int sum_array_3d(int a[M][N][L])
{
 int i, j, k, sum = 0;

 for (i = 0; i < N; i++)
 for (j = 0; j < L; j++)
 for (k = 0; k < M; k++)
 sum += a[k][i][j];
 return sum;
}

68

• What is wrong with this code?

• How can it be fixed?

a[2][0][0
]

a[2][0][1
]

a[2][0][2
]

a[2][0][3
]

a[2][1][0
]

a[2][1][1
]

a[2][1][2
]

a[2][1][3
]

a[2][2][0
]

a[2][2][1
]

a[2][2][2
]

a[2][2][3
]

a[1][0][0
]

a[1][0][1
]

a[1][0][2
]

a[1][0][3
]

a[1][1][0
]

a[1][1][1
]

a[1][1][2
]

a[1][1][3
]

a[1][2][0
]

a[1][2][1
]

a[1][2][2
]

a[1][2][3
]

a[0][0][0
]

a[0][0][1
]

a[0][0][2
]

a[0][0][3
]

a[0][1][0
]

a[0][1][1
]

a[0][1][2
]

a[0][1][3
]

a[0][2][0
]

a[0][2][1
]

a[0][2][2
]

a[0][2][3
]

m=0
m=1

m=2

Layout in Memory (M = 2, N = 3, L = 4)
a
[0]
[0]
[0]

a
[0]
[0]
[1]

a
[0]
[0]
[2]

a
[0]
[0]
[3]

a
[0]
[1]
[0]

a
[0]
[1]
[1]

a
[0]
[1]
[2]

a
[0]
[1]
[3]

a
[0]
[2]
[0]

a
[0]
[2]
[1]

a
[0]
[2]
[2]

a
[0]
[2]
[3]

a
[1]
[0]
[0]

a
[1]
[0]
[1]

a
[1]
[0]
[2]

a
[1]
[0]
[3]

a
[1]
[1]
[0]

a
[1]
[1]
[1]

a
[1]
[1]
[2]

a
[1]
[1]
[3]

a
[1]
[2]
[0]

a
[1]
[2]
[1]

a
[1]
[2]
[2]

a
[1]
[2]
[3]

76 92 108 124 140 156 172

Access Pattern: stride-N×L

Inner loop: i → stride-1
 j → stride-1
 k → stride-N×L

Cache Performance Metrics
• Huge difference between a cache hit and a cache miss

– Could be 100x speed difference between accessing cache and main memory
(measured in clock cycles)

• Miss Rate (MR)
– Fraction of memory references not found in cache (misses / accesses)

= 1 - Hit Rate

• Hit Time (HT)
– Time to deliver a block in the cache to the processor

• Includes time to determine whether the block is in the cache

• Miss Penalty (MP)
– Additional time required because of a miss

70

Can we have more than one cache?
• Why would we want to do that?

– Avoid going to memory!

• Typical performance numbers:
– Miss Rate

• L1 MR = 3-10%
• L2 MR = Quite small (e.g. < 1%), depending on parameters, etc.

– Hit Time
• L1 HT = 4 clock cycles
• L2 HT = 10 clock cycles

– Miss Penalty
• P = 50-200 cycles for missing in L2 & going to main memory
• Trend: increasing!

72

(1) Optimize L1 for high HT
(2) Optimize L2 for low MR

Lecture Plan
• The memory abstraction
• Storage technologies and trends
• Locality of reference
• The memory hierarchy
• Cache basics
• Cache organization

73

Cache Organization
• Block Size (B): unit of transfer between cache and main memory

– Given in bytes and always a power of 2 (e.g. 64 bytes)
– Blocks consist of adjacent bytes (differ in address by 1)

• Spatial locality!

74

Cache Organization
• Block Size (B): unit of transfer between cache and main memory

– Given in bytes and always a power of 2 (e.g. 64 bytes)
– Blocks consist of adjacent bytes (differ in address by 1)

• Spatial locality!

• Offset field
– Low-order log2(B) = b bits of address tell you which byte within a block

• (address) mod 2n = n lowest bits of address

– (address) modulo (# of bytes in a block)

Block Number Block Offsetm-bit address:
(refers to byte in memory)

b bitsm - b bits

75

Question
• If we have 6-bit addresses and block size B = 4 bytes,

which block and byte does 0x15 refer to?

 Block Num Block Offset

A. 1 1
B. 1 5
C. 5 1
D. 5 5
E. We’re lost…

76

77

If we have 6-bit addresses and block size B = 4 bytes,
which block and byte does 0x15 refer to?

Please download and install the Slido
app on all computers you use

ⓘ Start presenting to display the poll results on this slide.

Question
• If we have 6-bit addresses and block size B = 4 bytes,

which block and byte does 0x15 refer to?

 Block Num Block Offset

A. 1 1
B. 1 5
C. 5 1
D. 5 5
E. We’re lost…

78

0x 1 5
Address: 0b 0 1 0 1 0 1

Offset width = log2(B) = log2(4) = 2 bits

Cache Organization
• Cache Size (C): amount of data the cache can store

– Cache can only hold so much data (subset of next level)
– Given in bytes (C) or number of blocks (C/B)
– Example: C = 32 KiB = 512 blocks if using 64-byte blocks

• Where should data go in the cache?
– We need a mapping from memory addresses to specific locations in the cache

to make checking the cache for an address fast

• What is a data structure that provides fast lookup?
– Hash table!

79

Review: Hash Tables for Fast Lookup

0
1
2
3
4
5
6
7
8
9

Insert:
5
27
34
102
119

Apply hash function to map
data to “buckets”

hash(27) % N (10) = 7

80

Review: Hash Tables for Fast Lookup

0
1
2
3
4
5
6
7
8
9

Insert:
5
27
34
102
119

Apply hash function to map
data to “buckets”

hash(27) % N (10) = 7

81

Place Data in Cache by Hashing Address

• Map to cache index from block number
– Use next log2(C/B) = s bits in the address

(after offset bits)
• C/B is the number of sets here

– (block number) mod (# blocks in cache)

Block Num Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Cache
Index Block Data
00
01
10
11

Here B = 4 bytes
and C/B = 4

82

Place Data in Cache by Hashing Address

• Map to cache index from block number
– Let’s adjacent blocks fit in cache

simultaneously!
• Consecutive blocks go in consecutive cache

indices

Block Num Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Cache
Index Block Data
00
01
10
11

Here B = 4 bytes
and C/B = 4

83

Practice Question
• 6-bit addresses, block size B = 4 bytes, and our cache holds S = 4 blocks.

• A request for address 0x2A results in a cache miss. Which set index does
this block get loaded into and which 3 other addresses are loaded along
with it?

84

Practice Question
• 6-bit addresses, block size B = 4 bytes, and our cache holds S = 4 blocks.

• A request for address 0x2A results in a cache miss. Which set index does
this block get loaded into and which 3 other addresses are loaded along
with it?

85

b = log2(4) = 2 bits s = log2(4) = 2 bitsC = S × B = 16 bytes

0x 2 A
Address: 0b 1 0 | 1 0 | 1 0

offsetindex

block number

addresses w/block number 1010
0b101000 = 0x28
0b101001 = 0x29
0b101010 = 0x2A
0b101011 = 0x2B

These are loaded
into cache!

Place Data in Cache by Hashing Address

• Collusion!
– This might confuse the cache later when we

access the data
– Solution?

Block Num Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Cache
Index Block Data
00
01
10
11

86

Here B = 4 bytes
and C/B = 4

Tags Differentiate Blocks in Same Index

• Tag = rest of address bits
– t bits = m – s – b
– Check this during a cache lookup

Block Num Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Cache
Index Tag Block Data
00 00
01
10 01
11 01

87

Here B = 4 bytes
and C/B = 4

Checking for a Requested Address
• CPU sends address request for chunk of data

– Address and requested data are not the same thing!
• Analogy: your friend ≠ their phone number

• TIO address breakdown:

– Index field tells you where to look in cache
– Tag field lets you check that data is the block you want
– Offset field selects specified start byte within block

• Note: t and s sizes will change based on hash function

Tag (t) Offset (b)m-bit address:

Block Number

Index (s)

88

Checking for a Requested Address Example
• Using 8-bit addresses.
• Cache Params: block size (B) = 4 bytes, cache size (C) = 32 bytes

(which means number of sets is C/B = 8 sets).
– Offset bits (b) = log2(B) = 2 bits
– Index bits (s) = log2(number of sets) = 3 bits
– Tag bits (t) = Rest of the bits in the address = 8 – 2 – 3 = 3 bits

• What are the fields for address 0xBA?
– Tag bits (unique id for block):
– Index bits (cache set block maps to):
– Offset bits (byte offset within block):

89

Tag (t) Offset (b)m-bit address:

Block Number

Index (s)

Checking for a Requested Address Example
• Using 8-bit addresses.
• Cache Params: block size (B) = 4 bytes, cache size (C) = 32 bytes

(which means number of sets is C/B = 8 sets).
– Offset bits (b) = log2(B) = 2 bits
– Index bits (s) = log2(number of sets) = 3 bits
– Tag bits (t) = Rest of the bits in the address = 8 – 2 – 3 = 3 bits

• What are the fields for address 0xBA?
– Tag bits (unique id for block): 0x5
– Index bits (cache set block maps to): 0x6
– Offset bits (byte offset within block): 0x2

90

Tag (t) Offset (b)m-bit address:

Block Number

Index (s)

101 110 10
5 6 2

Recap
• The memory abstraction
• Storage technologies and trends
• Locality of reference
• The memory hierarchy
• Cache basics
• Cache organization

Next: More on cache memories
91

