
photo by unsplash user @swimstaralex

Aykut Erdem // Koç University // Fall 2024

COMP201
Computer
Systems &
Programming

Lecture #03 –Bits and Bitwise Operators

Recap

2

• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Overflow
• Casting and Combining Types

Recap: Min and Max Integer Values
Type Size (Bytes) Minimum Maximum

char 1 -128 127
unsigned char 1 0 255

short 2 -32768 32767

unsigned short 2 0 65535

int 4 -2147483648 2147483647
unsigned int 4 0 4294967295

long 8 -9223372036854775808 9223372036854775807

unsigned long 8 0 18446744073709551615

3

Recap: Unsigned and Signed Integers

4

0 1
2

8 79
10

15

13
14

11

12 4

5
6

3

Recap: Overflow in Unsigned Integers

000…000111…111

011…111100…000

000…001
000…010
000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

0≈+4billion

Discontinuity
means overflow

possible here

Increasing positive num
bers

M
or

e
in

cr
ea

si
ng

 p
os

iti
ve

 n
um

be
rs

5

Recap: Overflow in Signed Numbers

000…000111…111

011…111100…000

000…001
000…010
000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

0-1

Discontinuity
means overflow

possible here

Increasing positive num
bers

N
eg

at
iv

e
nu

m
be

rs
 b

ec
om

in
g

le
ss

 n
eg

at
iv

e
(i.

e.
 in

cr
ea

si
ng

)

≈+2billion
≈-2billion

+1

6

Recap: Casting
• What happens at the byte level when we cast between variable types?

The bytes remain the same! This means they may be interpreted
differently depending on the type.

 int v = -12345;
 unsigned int uv = v;
 printf("v = %d, uv = %u\n", v, uv);

This prints out: "v = -12345, uv = 4294954951".

• The bit representation for -12345 is
0b11111111111111111100111111000111.

 If we treat this binary representation as a positive number, it’s huge!
7

Bits and Bytes So Far
• All data is ultimately stored in memory in binary
• When we declare an integer variable, under the hood it is stored in binary

 int x = 5; // really 0b0…0101 in memory!

• Until now, we only manipulate our integer variables in base 10 (e.g.
increment, decrement, set, etc.)
• Today, we will learn about how to manipulate the underlying binary

representation!
• This is useful for: more efficient arithmetic, more efficient storing of data,

etc.

Plan For Today
• Casting and Combining Types (cont’d.)
• Byte Ordering
• Bitwise Operators
• Bitmasks
• Bit Shift Operators

Disclaimer: Slides for this lecture were borrowed from
—Nick Troccoli's Stanford CS107 class
—Randal E. Bryant and David R. O’Hallaron’s CMU 15-213 class

11

Lecture Plan
• Casting and Combining Types (cont’d.)
• Byte Ordering
• Bitwise Operators
• Bitmasks
• Bit Shift Operators

12

printf and Integers
• There are 3 placeholders for 32-bit integers that we can use:
• %d: signed 32-bit int
• %u: unsigned 32-bit int
• %x: hex 32-bit int

• The placeholder—not the expression filling in the placeholder—
dictates what gets printed!

13

Casting
• What happens at the byte level when we cast between variable types?

The bytes remain the same! This means they may be interpreted
differently depending on the type.

 int v = -12345;
 unsigned int uv = v;
 printf("v = %d, uv = %u\n", v, uv);

This prints out: "v = -12345, uv = 4294954951". Why?

14

Casting
• What happens at the byte level when we cast between variable types?

The bytes remain the same! This means they may be interpreted
differently depending on the type.

 int v = -12345;
 unsigned int uv = v;
 printf("v = %d, uv = %u\n", v, uv);

The bit representation for -12345 is
0b11111111111111111100111111000111.
If we treat this binary representation as a positive number, it’s huge!

15

Casting

16

Comparisons Between Different Types
• Be careful when comparing signed and unsigned integers. C will

implicitly cast the signed argument to unsigned, and then performs the
operation assuming both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned 1 yes
-1 < 0 Signed 1 yes
-1 < 0U Unsigned 0 No!
2147483647 >
-2147483647 - 1 Signed 1 yes

2147483647U >
-2147483647 - 1 Unsigned 0 No!

2147483647 >
(int)2147483648U Signed 1 No!

-1 > -2 Signed 1 yes
(unsigned)-1 > -2 Unsigned 1 yes

17

Type Size
(Bytes) Minimum Maximum

int 4 -2147483648 2147483647

unsigned
int 4 0 4294967295

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2 - true
u1 > u2 - true
s1 > u3 - true

18

Expanding Bit Representations
• Sometimes, we want to convert between two integers of different sizes

(e.g. short to int, or int to long).
• We might not be able to convert from a bigger data type to a smaller

data type, but we do want to always be able to convert from a smaller
data type to a bigger data type.
• For unsigned values, we can add leading zeros to the representation

(“zero extension”)
• For signed values, we can repeat the sign of the value for new digits

(“sign extension”)
• Note: when doing <, >, <=, >= comparison between different size

types, it will promote to the larger type.
19

Expanding Bit Representation
unsigned short s = 4;

// short is a 16-bit format, so s = 0000 0000 0000 0100b

unsigned int i = s;

// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

20

Expanding Bit Representation
short s = 4;

// short is a 16-bit format, so s = 0000 0000 0000 0100b

int i = s;

// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

— or —

short s = -4;

// short is a 16-bit format, so s = 1111 1111 1111 1100b

int i = s;

// conversion to 32-bit int, so i = 1111 1111 1111 1111 1111 1111 1111 1100b
21

Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit int), 53191:
0000 0000 0000 0000 1100 1111 1100 0111
When we cast x to a short, it only has 16-bits, and C truncates the number:
 1100 1111 1100 0111
This is -12345! And when we cast sx back an int, we sign-extend the number.
1111 1111 1111 1111 1100 1111 1100 0111 // still -12345

int x = 53191;
short sx = x;
int y = sx;

22

Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit int), -3:
1111 1111 1111 1111 1111 1111 1111 1101
When we cast x to a short, it only has 16-bits, and C truncates the number:
 1111 1111 1111 1101
This is -3! If the number does fit, it will convert fine. y looks like this:
1111 1111 1111 1111 1111 1111 1111 1101 // still -3

int x = -3;
short sx = x;
int y = sx;

23

Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit unsigned int), 128000:
0000 0000 0000 0001 1111 0100 0000 0000
When we cast x to a short, it only has 16-bits, and C truncates the number:
 1111 0100 0000 0000
This is 62464! Unsigned numbers can lose info too. Here is what y looks like:
0000 0000 0000 0000 1111 0100 0000 0000 // still 62464

unsigned int x = 128000;
unsigned short sx = x;
unsigned int y = sx;

24

The sizeof Operator
long sizeof(type);

 // Example
long int_size_bytes = sizeof(int); // 4
long short_size_bytes = sizeof(short); // 2
long char_size_bytes = sizeof(char); // 1

sizeof takes a variable type as a parameter and returns the size of that
type, in bytes.

25

Practice: Truncation
What are the values of cx for the passages of code below?

short x = 130; // 0b1000 0010
char cx = x;

short x = -132 // 0b1111 1111 0111 1100
char cx = x;

short x = 25; // 0b1 1001
char cx = x;

26

Practice: Truncation
What are the values of cx for the passages of code below?

short x = 130; // 0b0000 0000 1000 0010
char cx = x;

short x = -132 // 0b1111 1111 0111 1100
char cx = x;

short x = 25; // 0b0000 0000 0001 1001
char cx = x;

27

Practice: Truncation
What are the values of cx for the passages of code below?

short x = 130; // 0b0000 0000 1000 0010
char cx = x; // -126

short x = -132 // 0b1111 1111 0111 1100
char cx = x; // 124

short x = 25; // 0b0000 0000 0001 1001
char cx = x; // 25

28

Practice: Truncation
What are the values of cx for the passages of code below?

short x = 390; // 0b1 1000 0110
char cx = x;

short x = -15; // 0b1111 1111 1111 0001
char cx = x;

29

Practice: Truncation
What are the values of cx for the passages of code below?

short x = 390; // 0b0000 0001 1000 0110
char cx = x;

short x = -15; // 0b1111 1111 1111 0001
char cx = x;

30

Practice: Truncation
What are the values of cx for the passages of code below?

short x = 390; // 0b0000 0001 1000 0110
char cx = x; // -122

short x = -15; // 0b1111 1111 1111 0001
char cx = x; // -15

31

• Expanding (e.g., short int to int)
– Unsigned: zeros added
– Signed: sign extension
– Both yield expected result

• Truncating (e.g., unsigned to unsigned short)
– Unsigned/signed: bits are truncated
– Result reinterpreted
– Unsigned: mod operation
– Signed: similar to mod
– For small (in magnitude) numbers yields expected behavior

32Slide credit: R.E. Bryant and D.R. O’Hallaron

In Sum: Basic Rules of Expanding, Truncating

Lecture Plan
• Casting and Combining Types (cont’d.)
• Byte Ordering
• Bitwise Operators
• Bitmasks
• Bit Shift Operators

33

Number Representations
C Declaration Intel IA32 X86-64

int 4 4
double 8 8
float 4 4
char 1 1
char * 4 8
short 2 2
long 4 8

34

Byte Ordering
• So, how are the bytes within a multi-byte word ordered in memory?

35

Byte Ordering
• So, how are the bytes within a multi-byte word ordered in memory?

• Conventions
– Big Endian: Sun (Oracle SPARC), PPC Mac, Internet
• Least significant byte has highest address

– Little Endian: x86, ARM processors running Android, iOS, and Linux
• Least significant byte has lowest address

36

Byte Ordering Example
• Big Endian: Sun (Oracle SPARC), PPC Mac, Internet

– Least significant byte has highest address

• Little Endian: x86, ARM processors running Android, iOS, and Linux
– Least significant byte has lowest address

• Example:
– Variable x has 4-byte value of 0x01234567
– Address given by &x is 0x100

37

0x100 0x101 0x102 0x103

0x100 0x101 0x102 0x103

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Which bit should travel first? The bitfrom the big end or the bit from the
little end? Can a war between Big Endians and

Little Endians be avoided?

On HolyWars and

SIB

AA.Ai, i&\ f\R WD9.O e

a Plea for Peace
Danny Cohen
Information Sciences Institute

This article was written in an attempt to stop a war. I
hope it is not too late for peace to prevail again. Many
believe that the central question of this war is, What is the
proper byte order in messages? More specifically, the
question is, Which bit should travel first-the bit from the
little end of the word or the bit from the big end of the
word?

Followers of the former approach are called Little En-
dians, or Lilliputians; followers of the latter are called Big
Endians, or Blefuscuians. I employ these Swiftian terms
because this modern conflict is so reminiscent of the holy
war described in Gulliver's Travels.

Approaches to serialization

The above question arises as a result of the serialization
process performed on messages to allow them to be sent
through communication media. If the unit of communi-
cation is a message, this question has no meaning. If the
units are computer words, one must determine their size
and the order in which they are sent.

Since they are sent virtually at once, there is no need to
determine the order of the elements of these words.

If the unit of transmission is an eight-bit byte, questions
about bytes are meaningful but questions about the order
of the elementary particles that constitute these bytes are
not.

If the units of communication are bits, the atoms
(quarks?) of computation, the only meaningful question
concerns the order in which the bits are sent. Most
modern communication is based on a single stream of in-
formation, the bit-stream. Hence, bits, rather than bytes
or words, are the units of information that are actually
transmitted over channels such as wires and satellites. <'

Facing page: "Audience with the Emperor of Lilliput," Gavarni,
1850's. Courtesy Library of Congress. 0018-9162/81/100040048S00.75 © 1981 IEEE 49 38

The origin of “endian”
“Gulliver finds out that there is a law, proclaimed
by the grandfather of the present ruler, requiring
all citizens of Lilliput to break their eggs only at
the little ends. Of course, all those citizens who
broke their eggs at the big ends were angered by
the proclamation. Civil war broke out between
the Little-Endians and the Big-Endians, resulting
in the Big-Endians taking refuge on a nearby
island, the kingdom of Blefuscu.”
– Danny Cohen, On Holy Wars and A Plea For Peace

(1980)

39

Illustration by Chris Beatrice

Representing Integers

40

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D
3B
00
00

IA32, x86-64

3B
6D

00
00

Sun

int A = 15213;

93
C4
FF
FF

IA32, x86-64

C4
93

FF
FF

Sun

Two’s complement
representation

int B = -15213; long int C = 15213;

00
00
00
00

6D
3B
00
00

x86-64

3B
6D

00
00

Sun

6D
3B
00
00

IA32

In
cr

ea
si

ng
 a

dd
re

ss
es

Aside: ASCII
• ASCII is an encoding from common characters (letters, symbols, etc.)

to bit representations (chars).
– E.g. 'A’ is 0x41

• Neat property: all uppercase letters, and all lowercase letters, are
sequentially represented!
– E.g. 'B’ is 0x42

More on this next week!

41

Lecture Plan
• Casting and Combining Types (cont’d.)
• Byte Ordering
• Bitwise Operators
• Bitmasks
• Bit Shift Operators

42

Now that we understand
binary representations, how

can we manipulate them
at the bit level?

Bitwise Operators
• You’re already familiar with many operators in C:

– Arithmetic operators: +, -, *, /, %
– Comparison operators: ==, !=, <, >, <=, >=
– Logical Operators: &&, ||, !

• Today, we’re introducing a new category of operators: bitwise operators:
– &, |, ~, ^, <<, >>

44

And (&)
AND is a binary operator. The AND of 2 bits is 1 if both bits are 1, and 0
otherwise.

a b output
0 0 0
0 1 0
1 0 0
1 1 1

output = a & b;

& with 1 to let a bit through, & with 0 to zero out a bit

45

Or (|)
OR is a binary operator. The OR of 2 bits is 1 if either (or both) bits is 1.

a b output
0 0 0
0 1 1
1 0 1
1 1 1

output = a | b;

| with 1 to turn on a bit, | with 0 to let a bit go through

46

Not (~)
NOT is a unary operator. The NOT of a bit is 1 if the bit is 0, or 1 otherwise.

a output

0 1

1 0

output = ~a;

47

Exclusive Or (^)
Exclusive Or (XOR) is a binary operator. The XOR of 2 bits is 1 if exactly
one of the bits is 1, or 0 otherwise.

a b output
0 0 0
0 1 1
1 0 1
1 1 0

output = a ^ b;

^ with 1 to flip a bit, ^ with 0 to let a bit go through
48

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator

is applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
| 1100

1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

Note: these are different from the logical
operators AND (&&), OR (||) and NOT (!).

49

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator

is applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
| 1100

1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

This is different from logical AND (&&). The logical
AND returns true if both are nonzero, or false
otherwise. With &&, this would be 6 && 12, which
would evaluate to true (1).

50

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator

is applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
| 1100

1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

This is different from logical OR (||). The logical
OR returns true if either are nonzero, or false
otherwise. With ||, this would be 6 || 12, which
would evaluate to true (1).

51

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator

is applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
| 1100

1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

This is different from logical NOT (!). The logical NOT
returns true if this is zero, and false otherwise. With !,
this would be !12, which would evaluate to false (0).

52

Lecture Plan
• Casting and Combining Types (cont’d.)
• Byte Ordering
• Bitwise Operators
• Bitmasks
• Bit Shift Operators

53

Bit Vectors and Sets
• We can use bit vectors (ordered collections of bits) to represent finite sets,

and perform functions such as union, intersection, and complement.
• Example: we can represent current courses taken using a char.

0 0 1 0 0 0 1 1

CO
MP
30
2

CO
MP
30
1

CO
MP
29
1

CO
MP
20
2

CO
MP
20
1

CO
MP
13
2

CO
MP
10
6

CO
MP
10
0

54

Bit Vectors and Sets

• How do we find the union of two sets of courses taken? Use OR:

00100011
01100001
01100011

0 0 1 0 0 0 1 1

55

CO
MP
30
2

CO
MP
30
1

CO
MP
29
1

CO
MP
20
2

CO
MP
20
1

CO
MP
13
2

CO
MP
10
6

CO
MP
10
0

Bit Vectors and Sets

• How do we find the intersection of two sets of courses taken? Use AND:

00100011
& 01100001

00100001

0 0 1 0 0 0 1 1

56

CO
MP
30
2

CO
MP
30
1

CO
MP
29
1

CO
MP
20
2

CO
MP
20
1

CO
MP
13
2

CO
MP
10
6

CO
MP
10
0

Bit Masking
• We will frequently want to manipulate or isolate out specific bits in a

larger collection of bits. A bitmask is a constructed bit pattern that we
can use, along with bit operators, to do this.
• Example: how do we update our bit vector to indicate we’ve taken

COMP202?

00100011
00001000
00101011

0 0 1 0 0 0 1 1

57

CO
MP
30
2

CO
MP
30
1

CO
MP
29
1

CO
MP
20
2

CO
MP
20
1

CO
MP
13
2

CO
MP
10
6

CO
MP
10
0

Bit Masking
#define COMP100 0x1 /* 0000 0001 */
#define COMP106 0x2 /* 0000 0010 */
#define COMP132 0x4 /* 0000 0100 */
#define COMP201 0x8 /* 0000 1000 */
#define COMP202 0x10 /* 0001 0000 */
#define COMP291 0x20 /* 0010 0000 */
#define COMP301 0x40 /* 0100 0000 */
#define COMP302 0x80 /* 1000 0000 */

char myClasses = ...;
myClasses = myClasses | COMP201; // Add COMP201

58

Bit Masking
#define COMP100 0x1 /* 0000 0001 */
#define COMP106 0x2 /* 0000 0010 */
#define COMP132 0x4 /* 0000 0100 */
#define COMP201 0x8 /* 0000 1000 */
#define COMP202 0x10 /* 0001 0000 */
#define COMP291 0x20 /* 0010 0000 */
#define COMP301 0x40 /* 0100 0000 */
#define COMP302 0x80 /* 1000 0000 */

char myClasses = ...;
myClasses |= COMP201; // Add COMP201

59

Bit Masking
• Example: how do we update our bit vector to indicate we’ve not taken

COMP132?

00100011
& 11011111

00000011

0 0 1 0 0 0 1 1

CO
MP
30
2

CO
MP
30
1

CO
MP
29
1

CO
MP
20
2

CO
MP
20
1

CO
MP
13
2

CO
MP
10
6

CO
MP
10
0

char myClasses = ...;
myClasses = myClasses & ~COMP132; // Remove COMP132

60

Bit Masking
• Example: how do we update our bit vector to indicate we’ve not taken

COMP132?

char myClasses = ...;
myClasses &= ~COMP132; // Remove COMP132

61

00100011
& 11011111

00000011

0 0 1 0 0 0 1 1

CO
MP
30
2

CO
MP
30
1

CO
MP
29
1

CO
MP
20
2

CO
MP
20
1

CO
MP
13
2

CO
MP
10
6

CO
MP
10
0

Bit Masking
• Example: how do we check if we’ve taken COMP301?

00100011
& 00000010

00000010

char myClasses = ...;
if (myClasses & COMP301) {...
 // taken COMP301!

62

0 0 1 0 0 0 1 1

CO
MP
30
2

CO
MP
30
1

CO
MP
29
1

CO
MP
20
2

CO
MP
20
1

CO
MP
13
2

CO
MP
10
6

CO
MP
10
0

Bit Masking
• Example: how do we check if we’ve not taken COMP201?

char myClasses = ...;
if (!(myClasses & COMP201)) {...
 // not taken COMP201!

00100011
& 00010000

00000000

63

0 0 1 0 0 0 1 1

CO
MP
30
2

CO
MP
30
1

CO
MP
29
1

CO
MP
20
2

CO
MP
20
1

CO
MP
13
2

CO
MP
10
6

CO
MP
10
0

Bit Masking
• Example: how do we check if we’ve not taken COMP201?

0 0 1 0 0 0 1 1

char myClasses = ...;
if ((myClasses & COMP201) ^ COMP201) {...
 // not taken COMP201!

00100011
& 00010000

00000000

00000000
^ 00010000

00010000

64

CO
MP
30
2

CO
MP
30
1

CO
MP
29
1

CO
MP
20
2

CO
MP
20
1

CO
MP
13
2

CO
MP
10
6

CO
MP
10
0

Practice: Bitwise Operations
How can we use bitmasks + bitwise operators to…

1. …turn on a particular
set of bits?

0b00001101

0b00001111 0b00001001

2. …turn off a particular
set of bits?

3. …flip a particular
set of bits?

0b00001011

0b00001101 0b00001101 0b00001101

OR AND XOR

0b00000010 0b11111011 0b00000110

Bitwise Operator Tricks
• | with 1 is useful for turning select bits on
• & with 0 is useful for turning select bits off
• | is useful for taking the union of bits
• & is useful for taking the intersection of bits
• ^ is useful for flipping select bits
• ~ is useful for flipping all bits

66

Bit Masking
• Bit masking is also useful for integer representations as well. For

instance, we might want to check the value of the most-significant bit,
or just one of the middle bytes.

• Example: If I have a 32-bit integer j, what operation should I perform
if I want to get just the lowest byte in j?

 int j = ...;
 int k = j & 0xff; // mask to get just lowest byte

67

Practice: Bit Masking
• Practice 1: write an expression that, given a 32-bit integer j, sets its

least-significant byte to all 1s, but preserves all other bytes.

68

69

Write an expression that, given a 32-bit integer j, sets its
least-significant byte to all 1s, but preserves all other
bytes.

Please download and install the Slido
app on all computers you use

ⓘ Start presenting to display the poll results on this slide.

Practice: Bit Masking
• Practice 1: write an expression that, given a 32-bit integer j, sets its

least-significant byte to all 1s, but preserves all other bytes.
 j | 0xff

• Practice 2: write an expression that, given a 32-bit integer j, flips
(“complements”) all but the least-significant byte, and preserves all
other bytes.

70

71

Write an expression that, given a 32-bit integer j, flips
(“complements”) all but the least-significant byte, and
preserves all other bytes.

Please download and install the Slido
app on all computers you use

ⓘ Start presenting to display the poll results on this slide.

Practice: Bit Masking
• Practice 1: write an expression that, given a 32-bit integer j, sets its

least-significant byte to all 1s, but preserves all other bytes.
 j | 0xff

• Practice 2: write an expression that, given a 32-bit integer j, flips
(“complements”) all but the least-significant byte, and preserves all
other bytes.

 j ^ ~0xff

72

Powers of 2

Without using loops, how can we detect if
a binary number is a power of 2? What is
special about its binary representation and
how can we leverage that?

73

Demo: Powers of 2

is_power_of_2

Any power of 2 minus 1 is all ones: (2 N - 1 = 111....b)

2 = 2^1 2-1 = 1 (1b)
4 = 2^2 4-1 = 3 (11b)
8 = 2^3 8-1 = 7 (111b)

Example: Take 8 1000 & 0111 = 0000

Lecture Plan
• Casting and Combining Types (cont’d.)
• Byte Ordering
• Bitwise Operators
• Bitmasks
• Bit Shift Operators

75

Left Shift (<<)
The LEFT SHIFT operator shifts a bit pattern a certain number of
positions to the left. New lower order bits are filled in with 0s, and bits
shifted off the end are lost.

 x << k; // evaluates to x shifted to the left by k bits
 x <<= k; // shifts x to the left by k bits

8-bit examples:
00110111 << 2 results in 11011100
01100011 << 4 results in 00110000
10010101 << 4 results in 01010000

76

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of
positions to the right. Bits shifted off the end are lost.
 x >> k; // evaluates to x shifted to the right by k bit
 x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with 0s.

short x = 2; // 0000 0000 0000 0010
x >>= 1; // 0000 0000 0000 0001
printf("%d\n", x); // 1

77

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of
positions to the right. Bits shifted off the end are lost.
 x >> k; // evaluates to x shifted to the right by k bit
 x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with 0s.

short x = -2; // 1111 1111 1111 1110
x >>= 1; // 0111 1111 1111 1111
printf("%d\n", x); // 32767!

78

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of
positions to the right. Bits shifted off the end are lost.

 x >> k; // evaluates to x shifted to the right by k bit
 x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Problem: always filling with zeros means we may change the sign bit.
Solution: let’s fill with the sign bit!

79

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of
positions to the right. Bits shifted off the end are lost.
 x >> k; // evaluates to x shifted to the right by k bit
 x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = 2; // 0000 0000 0000 0010
x >>= 1; // 0000 0000 0000 0001
printf("%d\n", x); // 1

80

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of
positions to the right. Bits shifted off the end are lost.
 x >> k; // evaluates to x shifted to the right by k bit
 x >>= k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = -2; // 1111 1111 1111 1110
x >>= 1; // 1111 1111 1111 1111
printf("%d\n", x); // -1!

81

Right Shift (>>)
There are two kinds of right shifts, depending on the value and type you
are shifting:
• Logical Right Shift: fill new high-order bits with 0s.
• Arithmetic Right Shift: fill new high-order bits with the most-significant

bit.

Unsigned numbers are right-shifted using Logical Right Shift.
Signed numbers are right-shifted using Arithmetic Right Shift.

This way, the sign of the number (if applicable) is preserved!
82

Shift Operation Pitfalls
1. Technically, the C standard does not precisely define whether a right

shift for signed integers is logical or arithmetic. However, almost all
compilers/machines use arithmetic, and you can most likely assume
this.

2. Operator precedence can be tricky! For example:

 1<<2 + 3<<4 means 1 << (2+3) << 4 because addition and
subtraction have higher precedence than shifts! Always use

 parentheses to be sure:

 (1<<2) + (3<<4)

83

Bit Operator Pitfalls
• The default type of a number literal in your code is an int.
• Let’s say you want a long with the index-32 bit as 1:

 long num = 1 << 32;

• This doesn’t work! 1 is by default an int, and you can’t shift an int by
32 because it only has 32 bits. You must specify that you want 1 to be a
long.

 long num = 1L << 32;

84

Recap
• Casting and Combining Types (cont’d.)
• Byte Ordering
• Bitwise Operators
• Bitmasks
• Bit Shift Operators

Next time: More on how can a computer represent floating point
numbers?

85

