
photo by unsplash user @swimstaralex

Aykut Erdem // Koç University // Fall 2024

COMP201 
Computer 
Systems &
Programming

Lecture #04 –Floating Point



Recap: Bitwise Operators
• You’re already familiar with many operators in C:

– Arithmetic operators: +, -, *, /, %
– Comparison operators: ==, !=, <, >, <=, >=
– Logical Operators: &&, ||, !

• Bitwise operators:
– Logical operators:  &, |, ~, ^, 
– Bit shift  operators: <<, >>
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Plan For Today
• Representing real numbers
• Fixed Point
• Floating Point
• Example and Properties
• Floating Point Arithmetic
• Floating Point in C

Disclaimer: Slides for this lecture were borrowed from 
—Nick Troccoli's Stanford CS107 class
—Randal E. Bryant and David R. O’Hallaron's CMU 15-213 class
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COMP201 Topic 2: How can a 
computer represent real numbers 
in addition to integer numbers?



Learning Goals
Understand the design and compromises of the floating point 
representation, including:
• Fixed point vs. floating point
• How a floating point number is represented in binary
• Issues with floating point imprecision
• Other potential pitfalls using floating point numbers in programs
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Plan For Today
• Representing real numbers
• Fixed Point
• Floating Point
• Example and Properties
• Floating Point Arithmetic
• Floating Point in C
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Real Numbers
• We previously discussed representing integer numbers using two’s 

complement.
• However, this system does not represent real numbers such as 

3/5 or 0.25.
• How can we design a representation for real numbers?
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Real Numbers
Problem: unlike with the integer number line, where there are a finite 
number of values between two numbers, there are an infinite number of 
real number values between two numbers!

Integers between 0 and 2: 1
Real Numbers Between 0 and 2: 0.1, 0.01, 0.001, 0.0001, 0.00001,…

We need a fixed-width representation for real numbers.  Therefore, by 
definition, we will not be able to represent all numbers.
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Real Numbers
Problem: every number base has un-representable real numbers.

Base 10: 1/610 = 0.16666666…..10
Base 2: 1/1010 = 0.000110011001100110011…2

Therefore, by representing in base 2, we will not be able to represent all 
numbers, even those we can exactly represent in base 10.
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• Floating Point in C

13



Fixed Point
• Idea: Like in base 10, let’s add binary decimal places to our existing 

number representation.

1 0 1 1 . 0 1 1
23 22 21 20 2-1 2-2 2-3

5 9 3 4 . 2 1 6
103 102 101 100 10-1 10-2 10-3
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Fixed Point
• Idea: Like in base 10, let’s add binary decimal places to our existing 

number representation.

• Pros: arithmetic is easy!  And we know exactly how much precision we 
have.

1 0 1 1 . 0 1 1
8s 4s 2s 1s 1/2s 1/4s 1/8s
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Fixed Point
• Problem: we have to fix where the decimal point is in our representation.  

What should we pick?  This also fixes us to 1 place per bit.

. 0 1 1 0 0 1 1
1/2s 1/4s 1/8s …

1 0 1 1 0 . 1 1
16s 8s 4s 2s 1s 1/2s 1/4s
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Fixed Point
• Problem: we have to fix where the decimal point is in our representation.  

What should we pick?  This also fixes us to 1 place per bit.

10.....0.1
100 zeros

5.07E30 =
Base 10 Base 2

0.0.....01
100 zeros

9.86E-32 =

To be able to store 
both these numbers 
using the same fixed 
point representation, 
the bitwidth of the 
type would need to 
be at least 207 bits 
wide!
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Let’s Get Real
What would be nice to have in a real number representation?
• Represent widest range of numbers possible
• Flexible “floating” decimal point
• Represent scientific notation numbers, e.g. 1.2 x 106

• Still be able to compare quickly
• Have more predictable over/under-flow behavior
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Lecture Plan
• Representing real numbers
• Fixed Point
• Floating Point
• Example and Properties
• Floating Point Arithmetic
• Floating Point in C
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IEEE Floating Point
Let’s aim to represent numbers of the following scientific-notation-like 
format:

𝑥	 ∗ 2!
With this format, 32-bit floats represent numbers in the range ~1.2 x10-38 
to ~3.4 x1038!  Is every number between those representable?  No.
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IEEE Single Precision Floating Point

𝑥	 ∗ 2!Sign bit 
(0 = positive)

31 30 23 22 0

s exponent (8 bits) fraction (23 bits)
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s exponent (8 bits) fraction (23 bits)

Exponent

Exponent (Binary) Exponent (Base 10)
11111111 ?
11111110 ?
11111101 ?
11111100 ?

… ?
00000011 ?
00000010 ?
00000001 ?
00000000 ?
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Exponent

Exponent (Binary) Exponent (Base 10)
11111111 RESERVED
11111110 ?
11111101 ?
11111100 ?

… ?
00000011 ?
00000010 ?
00000001 ?
00000000 RESERVED

s exponent (8 bits) fraction (23 bits)
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Exponent

Exponent (Binary) Exponent (Base 10)
11111111 RESERVED
11111110 127
11111101 126
11111100 125

… …
00000011 -124
00000010 -125
00000001 -126
00000000 RESERVED

s exponent (8 bits) fraction (23 bits)
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Exponent

• The exponent is not represented in two’s complement.
• Instead, exponents are sequentially represented starting from 000…1 (most 

negative) to 111…10 (most positive).  This makes bit-level comparison fast.
• Actual value = binary value – 127 (“bias”)

11111110 254 – 127 = 127
11111101 253 – 127 = 126

… …
00000010 2 – 127 = -125
00000001 1 – 127 = -126

s exponent (8 bits) fraction (23 bits)
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Fraction

𝑥	 ∗ 2!
• We could just encode whatever x is in the fraction field.  But there’s a trick 

we can use to make the most out of the bits we have.

s exponent (8 bits) fraction (23 bits)
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An Interesting Observation
In Base 10:
42.4 x 105 = 4.24 x 106

324.5 x 105 = 3.245 x 107

0.624 x 105 = 6.24 x 104

In Base 2:
10.1 x 25 = 1.01 x 26

1011.1 x 25 = 1.0111 x 28

0.110 x 25 = 1.10 x 24

We tend to adjust the exponent 
until we get down to one place 
to the left of the decimal point.

Observation: in base 2, this 
means there is always a 1 to the 
left of the decimal point!
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Fraction

𝑥	 ∗ 2!
• We can adjust this value to fit the format described previously.  Then, x will 

always be in the format 1.XXXXXXXXX…
• Therefore, in the fraction portion, we can encode just what is to the right of 

the decimal point!  This means we get one more digit for precision.

Value encoded = 1._[FRACTION BINARY DIGITS]_

s exponent (8 bits) fraction (23 bits)
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Practice
Sign Exponent Fraction

0 0 … 0 0 0 1 0 1 0 …

Is this number:
A) Greater than 0?
B) Less than 0?
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Practice
Sign Exponent Fraction

0 0 … 0 0 0 1 0 1 0 …

Is this number:
A) Greater than 0?
B) Less than 0?

Is this number:
A) Less than -1?
B) Between -1 and 1?
C) Greater than 1?
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Skipping Numbers
• We said that it’s not possible to represent all real numbers using a fixed-

width representation.  What does this look like?

Float Converter
• https://www.h-schmidt.net/FloatConverter/IEEE754.html

Floats and Graphics
• https://www.shadertoy.com/view/4tVyDK
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Let’s Get Real
What would be nice to have in a real number representation?
• Represent widest range of numbers possible ✔
• Flexible “floating” decimal point ✔
• Represent scientific notation numbers, e.g. 1.2 x 106 ❓

• Still be able to compare quickly ✔
• Have more predictable over/under-flow behavior ❓
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Representing Zero
The float representation of zero is all zeros (with any value for the sign bit)

• This means there are two representations for zero! L

Sign Exponent Fraction

any All zeros All zeros
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Representing Small Numbers
If the exponent is all zeros, we switch into “denormalized” mode.

• We now treat the exponent as -126, and the fraction as without the 
leading 1.
• This allows us to represent the smallest numbers as precisely as 

possible.

Sign Exponent Fraction

any All zeros Any
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Representing Exceptional Values
If the exponent is all ones, and the fraction is all zeros, we have +- infinity.

• The sign bit indicates whether it is positive or negative infinity.
• Floats have built-in handling of over/underflow!

– Infinity + anything = infinity
– Negative infinity + negative anything = negative infinity
– Etc.

Sign Exponent Fraction

any All ones All zeros
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Representing Exceptional Values
If the exponent is all ones, and the fraction is nonzero, we have 
Not a Number (NaN)

• NaN results from computations that produce an invalid mathematical 
result.
– Sqrt(negative)
– Infinity / infinity
– Infinity + -infinity
– Etc.

Sign Exponent Fraction

any 1 … … … … 1 Any nonzero

36



Number Ranges
• 32-bit integer (type int):

› -2,147,483,648 to 2147483647
› Every integer in that range can be represented 

• 64-bit integer (type long):
› −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 

• 32-bit floating point (type float):
– ~1.2 x10-38 to ~3.4 x1038

– Not all numbers in the range can be represented (not even all integers in the range can be 
represented!)

– Gaps can get quite large! (larger the exponent, larger the gap between successive fraction 
values)

• 64-bit floating point (type double): 
– ~2.2 x10-308 to ~1.8 x10308 
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Precision options
• Single precision: 32 bits

• Double precision: 64 bits

• Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 63 or 64-bits
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Carnegie Mellon

+¥−¥

-0

+Denorm +Normalized−Denorm−Normalized

+0
NaN NaN

Visualization: Floating Point Encodings
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Lecture Plan
• Representing real numbers
• Fixed Point
• Floating Point
• Example and Properties
• Floating Point Arithmetic
• Floating Point in C
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Tiny Floating Point Example

• 8-bit Floating Point Representation
– the sign bit is in the most significant bit
– the next four bits are the exponent, with a bias of 7 (= 2(4-1)-1)
– the last three bits are the frac

• Same general form as IEEE Format
– normalized, denormalized
– representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits
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Dynamic Range (Positive Only)

closest to zero

largest denorm

smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

s exp  frac E Value 

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512

…
0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001  -6 9/8*1/64 = 9/512
…

0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1    = 1
0 0111 001 0 9/8*1    = 9/8

0 0111 010 0 10/8*1   = 10/8
…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

v = (–1)s M 2E

n: E = Exp – Bias
d: E = 1 – Bias

Bias = 2(4-1)-1 = 7
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-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Distribution of Values
• 6-bit IEEE-like format

– e = 3 exponent bits
– f = 2 fraction bits
– Bias is 23-1-1 = 3

• Notice how the distribution gets denser toward zero. 

8 values

s exp frac

1 3-bits 2-bits
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Distribution of Values (close-up view)
• 6-bit IEEE-like format

– e = 3 exponent bits
– f = 2 fraction bits
– Bias is 3

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity
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1 3-bits 2-bits



Special Properties of the IEEE Encoding
• FP Zero Same as Integer Zero

– All bits = 0

• Can (Almost) Use Unsigned Integer Comparison
– Must first compare sign bits
– Must consider −0 = 0
– NaNs problematic
• Will be greater than any other values
• What should comparison yield?

–  Otherwise OK
• Denorm vs. normalized
• Normalized vs. infinity
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Lecture Plan
• Representing real numbers
• Fixed Point
• Floating Point
• Example and Properties
• Floating Point Arithmetic
• Floating Point in C
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Demo: Float Arithmetic

float_arithmetic.c



Floating Point Arithmetic
Is this just overflowing?  It turns out it’s more subtle.

float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14

Let’s look at the binary representations for 3.14 and 1e20:

31 30 23 22 0

0 10000000 10010001111010111000011
31 30 23 22 0

0 11000001 01011010111100011101100

3.14:

1e20:
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Floating Point Arithmetic

To add real numbers, we must align their binary points:

                       3.14
+  100000000000000000000.00
   100000000000000000003.14

31 30 23 22 0

0 10000000 10010001111010111000011
31 30 23 22 0

0 11000001 01011010111100011101100

3.14:

1e20:

What does this number look 
like in 32-bit IEEE format?
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Floating Point Arithmetic

Step 1: convert from base 10 to binary

What is 100000000000000000003.14 in binary?  Let’s find out!
http://web.stanford.edu/class/archive/cs/cs107/cs107.1184/float/convert.html

1010110101111000111010111100010110101100011000100000000000000000011.0010001111010111000010100011…
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Floating Point Arithmetic

Step 2: find most significant 1 and take the 
next 23 digits for the fractional component, 
rounding if needed.

1 01011010111100011101100

1010110101111000111010111100010110101100011000100000000000000000011.0010001111010111000010100011…
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Floating Point Arithmetic

Step 3: find how many places we need to shift 
left to put the number in 1.xxx format.  This fills 
in the exponent component.

66 shifts -> 66 + 127 = 193

1010110101111000111010111100010110101100011000100000000000000000011.0010001111010111000010100011…
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Floating Point Arithmetic

Step 4: if the sign is positive, the sign bit is 0.  
Otherwise, it’s 1.

Sign bit is 0.

1010110101111000111010111100010110101100011000100000000000000000011.0010001111010111000010100011…
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Floating Point Arithmetic
The binary representation for 1e20 + 3.14 thus equals the following:

This is the same as the binary representation for 1e20 that we had 
before!

31 30 23 22 0

0 11000001 01011010111100011101100

We didn’t have enough bits to differentiate 
between 1e20 and 1e20 + 3.14.
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Floating Point Arithmetic
Is this just overflowing?  It turns out it’s more subtle.

float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14

Floating point arithmetic is not associative.  The order of operations 
matters!
• The first line loses precision when first adding 3.14 and 1e20, as we have 

seen.
• The second line first evaluates 1e20 – 1e20 = 0, and then adds 3.14
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Demo: Float Equality

float_equality.c



Floating Point Arithmetic
Float arithmetic is an issue with most languages, not just C!
• http://geocar.sdf1.org/numbers.html
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Let’s Get Real
What would be nice to have in a real number representation?
• Represent widest range of numbers possible ✔
• Flexible “floating” decimal point ✔
• Represent scientific notation numbers, e.g. 1.2 x 106 ✔

• Still be able to compare quickly ✔
• Have more predictable over/under-flow behavior ✔
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Floating Point in C
• C Guarantees Two Levels

– float single precision
– double double precision

• Conversions/Casting
– Casting between int, float, and double changes bit representation
–  double/float → int
• Truncates fractional part
• Like rounding toward zero
• Not defined when out of range or NaN: Generally sets to TMin

–  int → double
• Exact conversion, as long as int has ≤ 53 bit word size

–  int → float
• Will round according to rounding mode
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Ariane 5: A Bug and A Crash
• On June 4, 1996, Ariane 5 rocket self 

destructed just after 37 seconds after 
liftoff
• Cost: $500 million
• Cause: An overflow in the conversion 

from a 64 bit floating point number to a 
16 bit signed integer
• A design flaw:

– 5 times faster than Ariane 4
– Reused same software 

specifications from Ariane 4
– Ariane 4 assumes horizontal 

velocity would never overflow a 
16-bit number

© Fourmy/REA/SABA/Corbis

Section 2.4 Floating Point 117

would never overflow a 16-bit number. Unfortunately, they simply reused this part of the software in
the Ariane 5 without checking the assumptions on which it had been based.

© Fourmy/REA/SABA/Corbis

Practice Problem 2.54
Assume variables x, f, and d are of type int, float, and double, respectively.
Their values are arbitrary, except that neither f nor d equals +∞, −∞, or NaN .
For each of the following C expressions, either argue that it will always be true
(i.e., evaluate to 1) or give a value for the variables such that it is not true (i.e.,
evaluates to 0).

A. x == (int)(double) x

B. x == (int)(float) x

C. d == (double)(float) d

D. f == (float)(double) f

E. f == -(-f)

F. 1.0/2 == 1/2.0

G. d*d >= 0.0

H. (f+d)-f == d
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0x5F3759DF or The Fast Inverse Square Root

62

The fast inverse square root implementation 
from Quake III Arena, including the exact 
original comment text

◼

https://en.wikipedia.org/wiki/Quake_III_Arena


Floating Point Puzzles
• For each of the following C expressions, either:

– Argue that it is true for all argument values
– Explain why not true

• x == (int)(float) x
• x == (int)(double) x
• f == (float)(double) f
• d == (float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0 ⇒ ((d*2) < 0.0)
• d > f ⇒ -f > -d
• d * d >= 0.0
• (d+f)-d == f

int x = …;
float f = …;
double d = …;

Assume neither
d nor f is NaN

False
True
True
False
True
False
True (OF?)
True
True (OF?)
False
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Floats Summary
• IEEE Floating Point is a carefully-thought-out standard.  It’s complicated, 

but engineered for their goals.
• Floats have an extremely wide range, but cannot represent every number 

in that range.
• Some approximation and rounding may occur!  This means you definitely 

don’t want to use floats e.g. for currency.
• Associativity does not hold for numbers far apart in the range
• Equality comparison operations are often unwise.
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Additional 
Video

65
https://www.youtube.com/watch?v=dQhj5RGtag0 

Thanks Turan Berke Yakarer 
for the suggestion J

https://www.youtube.com/watch?v=dQhj5RGtag0


Additional Reading

66

What Every Computer Scientist Should Know About Floating-Point Arithmetic, 
David Goldberg, ACM Computing Surveys, 23(1), 1991

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html


Recap
• Representing real numbers
• Fixed Point
• Floating Point
• Example and Properties
• Floating Point Arithmetic
• Floating Point in C

Next time: How can a computer represent and manipulate more complex 
data like text?
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