
photo by unsplash user @swimstaralex

Aykut Erdem // Koç University // Fall 2024

COMP201
Computer
Systems &
Programming

Lecture #04 –Floating Point

Recap: Bitwise Operators
• You’re already familiar with many operators in C:

– Arithmetic operators: +, -, *, /, %
– Comparison operators: ==, !=, <, >, <=, >=
– Logical Operators: &&, ||, !

• Bitwise operators:
– Logical operators: &, |, ~, ^,
– Bit shift operators: <<, >>

3

Plan For Today
• Representing real numbers
• Fixed Point
• Floating Point
• Example and Properties
• Floating Point Arithmetic
• Floating Point in C

Disclaimer: Slides for this lecture were borrowed from
—Nick Troccoli's Stanford CS107 class
—Randal E. Bryant and David R. O’Hallaron's CMU 15-213 class

6

COMP201 Topic 2: How can a
computer represent real numbers
in addition to integer numbers?

Learning Goals
Understand the design and compromises of the floating point
representation, including:
• Fixed point vs. floating point
• How a floating point number is represented in binary
• Issues with floating point imprecision
• Other potential pitfalls using floating point numbers in programs

8

Plan For Today
• Representing real numbers
• Fixed Point
• Floating Point
• Example and Properties
• Floating Point Arithmetic
• Floating Point in C

9

Real Numbers
• We previously discussed representing integer numbers using two’s

complement.
• However, this system does not represent real numbers such as

3/5 or 0.25.
• How can we design a representation for real numbers?

10

Real Numbers
Problem: unlike with the integer number line, where there are a finite
number of values between two numbers, there are an infinite number of
real number values between two numbers!

Integers between 0 and 2: 1
Real Numbers Between 0 and 2: 0.1, 0.01, 0.001, 0.0001, 0.00001,…

We need a fixed-width representation for real numbers. Therefore, by
definition, we will not be able to represent all numbers.

11

Real Numbers
Problem: every number base has un-representable real numbers.

Base 10: 1/610 = 0.16666666…..10
Base 2: 1/1010 = 0.000110011001100110011…2

Therefore, by representing in base 2, we will not be able to represent all
numbers, even those we can exactly represent in base 10.

12

Plan For Today
• Representing real numbers
• Fixed Point
• Floating Point
• Example and Properties
• Floating Point Arithmetic
• Floating Point in C

13

Fixed Point
• Idea: Like in base 10, let’s add binary decimal places to our existing

number representation.

1 0 1 1 . 0 1 1
23 22 21 20 2-1 2-2 2-3

5 9 3 4 . 2 1 6
103 102 101 100 10-1 10-2 10-3

14

Fixed Point
• Idea: Like in base 10, let’s add binary decimal places to our existing

number representation.

• Pros: arithmetic is easy! And we know exactly how much precision we
have.

1 0 1 1 . 0 1 1
8s 4s 2s 1s 1/2s 1/4s 1/8s

15

Fixed Point
• Problem: we have to fix where the decimal point is in our representation.

What should we pick? This also fixes us to 1 place per bit.

. 0 1 1 0 0 1 1
1/2s 1/4s 1/8s …

1 0 1 1 0 . 1 1
16s 8s 4s 2s 1s 1/2s 1/4s

16

Fixed Point
• Problem: we have to fix where the decimal point is in our representation.

What should we pick? This also fixes us to 1 place per bit.

10.....0.1
100 zeros

5.07E30 =
Base 10 Base 2

0.0.....01
100 zeros

9.86E-32 =

To be able to store
both these numbers
using the same fixed
point representation,
the bitwidth of the
type would need to
be at least 207 bits
wide!

17

Let’s Get Real
What would be nice to have in a real number representation?
• Represent widest range of numbers possible
• Flexible “floating” decimal point
• Represent scientific notation numbers, e.g. 1.2 x 106

• Still be able to compare quickly
• Have more predictable over/under-flow behavior

18

Lecture Plan
• Representing real numbers
• Fixed Point
• Floating Point
• Example and Properties
• Floating Point Arithmetic
• Floating Point in C

19

IEEE Floating Point
Let’s aim to represent numbers of the following scientific-notation-like
format:

𝑥	 ∗ 2!
With this format, 32-bit floats represent numbers in the range ~1.2 x10-38
to ~3.4 x1038! Is every number between those representable? No.

20

IEEE Single Precision Floating Point

𝑥	 ∗ 2!Sign bit
(0 = positive)

31 30 23 22 0

s exponent (8 bits) fraction (23 bits)

21

s exponent (8 bits) fraction (23 bits)

Exponent

Exponent (Binary) Exponent (Base 10)
11111111 ?
11111110 ?
11111101 ?
11111100 ?

… ?
00000011 ?
00000010 ?
00000001 ?
00000000 ?

22

Exponent

Exponent (Binary) Exponent (Base 10)
11111111 RESERVED
11111110 ?
11111101 ?
11111100 ?

… ?
00000011 ?
00000010 ?
00000001 ?
00000000 RESERVED

s exponent (8 bits) fraction (23 bits)

23

Exponent

Exponent (Binary) Exponent (Base 10)
11111111 RESERVED
11111110 127
11111101 126
11111100 125

… …
00000011 -124
00000010 -125
00000001 -126
00000000 RESERVED

s exponent (8 bits) fraction (23 bits)

24

Exponent

• The exponent is not represented in two’s complement.
• Instead, exponents are sequentially represented starting from 000…1 (most

negative) to 111…10 (most positive). This makes bit-level comparison fast.
• Actual value = binary value – 127 (“bias”)

11111110 254 – 127 = 127
11111101 253 – 127 = 126

… …
00000010 2 – 127 = -125
00000001 1 – 127 = -126

s exponent (8 bits) fraction (23 bits)

25

Fraction

𝑥	 ∗ 2!
• We could just encode whatever x is in the fraction field. But there’s a trick

we can use to make the most out of the bits we have.

s exponent (8 bits) fraction (23 bits)

26

An Interesting Observation
In Base 10:
42.4 x 105 = 4.24 x 106

324.5 x 105 = 3.245 x 107

0.624 x 105 = 6.24 x 104

In Base 2:
10.1 x 25 = 1.01 x 26

1011.1 x 25 = 1.0111 x 28

0.110 x 25 = 1.10 x 24

We tend to adjust the exponent
until we get down to one place
to the left of the decimal point.

Observation: in base 2, this
means there is always a 1 to the
left of the decimal point!

27

Fraction

𝑥	 ∗ 2!
• We can adjust this value to fit the format described previously. Then, x will

always be in the format 1.XXXXXXXXX…
• Therefore, in the fraction portion, we can encode just what is to the right of

the decimal point! This means we get one more digit for precision.

Value encoded = 1._[FRACTION BINARY DIGITS]_

s exponent (8 bits) fraction (23 bits)

28

Practice
Sign Exponent Fraction

0 0 … 0 0 0 1 0 1 0 …

Is this number:
A) Greater than 0?
B) Less than 0?

29

Practice
Sign Exponent Fraction

0 0 … 0 0 0 1 0 1 0 …

Is this number:
A) Greater than 0?
B) Less than 0?

Is this number:
A) Less than -1?
B) Between -1 and 1?
C) Greater than 1?

30

1.25 x 2^-126

Skipping Numbers
• We said that it’s not possible to represent all real numbers using a fixed-

width representation. What does this look like?

Float Converter
• https://www.h-schmidt.net/FloatConverter/IEEE754.html

Floats and Graphics
• https://www.shadertoy.com/view/4tVyDK

31

https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.shadertoy.com/view/4tVyDK

Let’s Get Real
What would be nice to have in a real number representation?
• Represent widest range of numbers possible ✔
• Flexible “floating” decimal point ✔
• Represent scientific notation numbers, e.g. 1.2 x 106 ❓

• Still be able to compare quickly ✔
• Have more predictable over/under-flow behavior ❓

32

Representing Zero
The float representation of zero is all zeros (with any value for the sign bit)

• This means there are two representations for zero! L

Sign Exponent Fraction

any All zeros All zeros

33

Representing Small Numbers
If the exponent is all zeros, we switch into “denormalized” mode.

• We now treat the exponent as -126, and the fraction as without the
leading 1.
• This allows us to represent the smallest numbers as precisely as

possible.

Sign Exponent Fraction

any All zeros Any

34

Representing Exceptional Values
If the exponent is all ones, and the fraction is all zeros, we have +- infinity.

• The sign bit indicates whether it is positive or negative infinity.
• Floats have built-in handling of over/underflow!

– Infinity + anything = infinity
– Negative infinity + negative anything = negative infinity
– Etc.

Sign Exponent Fraction

any All ones All zeros

35

Representing Exceptional Values
If the exponent is all ones, and the fraction is nonzero, we have
Not a Number (NaN)

• NaN results from computations that produce an invalid mathematical
result.
– Sqrt(negative)
– Infinity / infinity
– Infinity + -infinity
– Etc.

Sign Exponent Fraction

any 1 … … … … 1 Any nonzero

36

Number Ranges
• 32-bit integer (type int):

› -2,147,483,648 to 2147483647
› Every integer in that range can be represented

• 64-bit integer (type long):
› −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

• 32-bit floating point (type float):
– ~1.2 x10-38 to ~3.4 x1038

– Not all numbers in the range can be represented (not even all integers in the range can be
represented!)

– Gaps can get quite large! (larger the exponent, larger the gap between successive fraction
values)

• 64-bit floating point (type double):
– ~2.2 x10-308 to ~1.8 x10308

37

Precision options
• Single precision: 32 bits

• Double precision: 64 bits

• Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 63 or 64-bits

38

Carnegie Mellon

+¥−¥

-0

+Denorm +Normalized−Denorm−Normalized

+0
NaN NaN

Visualization: Floating Point Encodings

39

Lecture Plan
• Representing real numbers
• Fixed Point
• Floating Point
• Example and Properties
• Floating Point Arithmetic
• Floating Point in C

40

Tiny Floating Point Example

• 8-bit Floating Point Representation
– the sign bit is in the most significant bit
– the next four bits are the exponent, with a bias of 7 (= 2(4-1)-1)
– the last three bits are the frac

• Same general form as IEEE Format
– normalized, denormalized
– representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits

41

Dynamic Range (Positive Only)

closest to zero

largest denorm

smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

s exp frac E Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512

…
0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001 -6 9/8*1/64 = 9/512
…

0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1 = 1
0 0111 001 0 9/8*1 = 9/8

0 0111 010 0 10/8*1 = 10/8
…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

v = (–1)s M 2E

n: E = Exp – Bias
d: E = 1 – Bias

Bias = 2(4-1)-1 = 7

42

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Distribution of Values
• 6-bit IEEE-like format

– e = 3 exponent bits
– f = 2 fraction bits
– Bias is 23-1-1 = 3

• Notice how the distribution gets denser toward zero.

8 values

s exp frac

1 3-bits 2-bits

43

Distribution of Values (close-up view)
• 6-bit IEEE-like format

– e = 3 exponent bits
– f = 2 fraction bits
– Bias is 3

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity

44

s exp frac

1 3-bits 2-bits

Special Properties of the IEEE Encoding
• FP Zero Same as Integer Zero

– All bits = 0

• Can (Almost) Use Unsigned Integer Comparison
– Must first compare sign bits
– Must consider −0 = 0
– NaNs problematic
• Will be greater than any other values
• What should comparison yield?

– Otherwise OK
• Denorm vs. normalized
• Normalized vs. infinity

45

Lecture Plan
• Representing real numbers
• Fixed Point
• Floating Point
• Example and Properties
• Floating Point Arithmetic
• Floating Point in C

46

Demo: Float Arithmetic

float_arithmetic.c

Floating Point Arithmetic
Is this just overflowing? It turns out it’s more subtle.

float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14

Let’s look at the binary representations for 3.14 and 1e20:

31 30 23 22 0

0 10000000 10010001111010111000011
31 30 23 22 0

0 11000001 01011010111100011101100

3.14:

1e20:
48

Floating Point Arithmetic

To add real numbers, we must align their binary points:

 3.14
+ 100000000000000000000.00
 100000000000000000003.14

31 30 23 22 0

0 10000000 10010001111010111000011
31 30 23 22 0

0 11000001 01011010111100011101100

3.14:

1e20:

What does this number look
like in 32-bit IEEE format?

49

Floating Point Arithmetic

Step 1: convert from base 10 to binary

What is 100000000000000000003.14 in binary? Let’s find out!
http://web.stanford.edu/class/archive/cs/cs107/cs107.1184/float/convert.html

1010110101111000111010111100010110101100011000100000000000000000011.0010001111010111000010100011…

50

http://web.stanford.edu/class/archive/cs/cs107/cs107.1184/float/convert.html

Floating Point Arithmetic

Step 2: find most significant 1 and take the
next 23 digits for the fractional component,
rounding if needed.

1 01011010111100011101100

1010110101111000111010111100010110101100011000100000000000000000011.0010001111010111000010100011…

51

Floating Point Arithmetic

Step 3: find how many places we need to shift
left to put the number in 1.xxx format. This fills
in the exponent component.

66 shifts -> 66 + 127 = 193

1010110101111000111010111100010110101100011000100000000000000000011.0010001111010111000010100011…

52

Floating Point Arithmetic

Step 4: if the sign is positive, the sign bit is 0.
Otherwise, it’s 1.

Sign bit is 0.

1010110101111000111010111100010110101100011000100000000000000000011.0010001111010111000010100011…

53

Floating Point Arithmetic
The binary representation for 1e20 + 3.14 thus equals the following:

This is the same as the binary representation for 1e20 that we had
before!

31 30 23 22 0

0 11000001 01011010111100011101100

We didn’t have enough bits to differentiate
between 1e20 and 1e20 + 3.14.

54

Floating Point Arithmetic
Is this just overflowing? It turns out it’s more subtle.

float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14

Floating point arithmetic is not associative. The order of operations
matters!
• The first line loses precision when first adding 3.14 and 1e20, as we have

seen.
• The second line first evaluates 1e20 – 1e20 = 0, and then adds 3.14

55

Demo: Float Equality

float_equality.c

Floating Point Arithmetic
Float arithmetic is an issue with most languages, not just C!
• http://geocar.sdf1.org/numbers.html

57

http://geocar.sdf1.org/numbers.html

Let’s Get Real
What would be nice to have in a real number representation?
• Represent widest range of numbers possible ✔
• Flexible “floating” decimal point ✔
• Represent scientific notation numbers, e.g. 1.2 x 106 ✔

• Still be able to compare quickly ✔
• Have more predictable over/under-flow behavior ✔

58

Lecture Plan
• Representing real numbers
• Fixed Point
• Floating Point
• Example and Properties
• Floating Point Arithmetic
• Floating Point in C

59

Floating Point in C
• C Guarantees Two Levels

– float single precision
– double double precision

• Conversions/Casting
– Casting between int, float, and double changes bit representation
– double/float → int
• Truncates fractional part
• Like rounding toward zero
• Not defined when out of range or NaN: Generally sets to TMin

– int → double
• Exact conversion, as long as int has ≤ 53 bit word size

– int → float
• Will round according to rounding mode

60

Ariane 5: A Bug and A Crash
• On June 4, 1996, Ariane 5 rocket self

destructed just after 37 seconds after
liftoff
• Cost: $500 million
• Cause: An overflow in the conversion

from a 64 bit floating point number to a
16 bit signed integer
• A design flaw:

– 5 times faster than Ariane 4
– Reused same software

specifications from Ariane 4
– Ariane 4 assumes horizontal

velocity would never overflow a
16-bit number

© Fourmy/REA/SABA/Corbis

Section 2.4 Floating Point 117

would never overflow a 16-bit number. Unfortunately, they simply reused this part of the software in
the Ariane 5 without checking the assumptions on which it had been based.

© Fourmy/REA/SABA/Corbis

Practice Problem 2.54
Assume variables x, f, and d are of type int, float, and double, respectively.
Their values are arbitrary, except that neither f nor d equals +∞, −∞, or NaN .
For each of the following C expressions, either argue that it will always be true
(i.e., evaluate to 1) or give a value for the variables such that it is not true (i.e.,
evaluates to 0).

A. x == (int)(double) x

B. x == (int)(float) x

C. d == (double)(float) d

D. f == (float)(double) f

E. f == -(-f)

F. 1.0/2 == 1/2.0

G. d*d >= 0.0

H. (f+d)-f == d

61

0x5F3759DF or The Fast Inverse Square Root

62

The fast inverse square root implementation
from Quake III Arena, including the exact
original comment text

◼

https://en.wikipedia.org/wiki/Quake_III_Arena

Floating Point Puzzles
• For each of the following C expressions, either:

– Argue that it is true for all argument values
– Explain why not true

• x == (int)(float) x
• x == (int)(double) x
• f == (float)(double) f
• d == (float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0 ⇒ ((d*2) < 0.0)
• d > f ⇒ -f > -d
• d * d >= 0.0
• (d+f)-d == f

int x = …;
float f = …;
double d = …;

Assume neither
d nor f is NaN

False
True
True
False
True
False
True (OF?)
True
True (OF?)
False

63

Floats Summary
• IEEE Floating Point is a carefully-thought-out standard. It’s complicated,

but engineered for their goals.
• Floats have an extremely wide range, but cannot represent every number

in that range.
• Some approximation and rounding may occur! This means you definitely

don’t want to use floats e.g. for currency.
• Associativity does not hold for numbers far apart in the range
• Equality comparison operations are often unwise.

64

Additional
Video

65
https://www.youtube.com/watch?v=dQhj5RGtag0

Thanks Turan Berke Yakarer
for the suggestion J

https://www.youtube.com/watch?v=dQhj5RGtag0

Additional Reading

66

What Every Computer Scientist Should Know About Floating-Point Arithmetic,
David Goldberg, ACM Computing Surveys, 23(1), 1991

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Recap
• Representing real numbers
• Fixed Point
• Floating Point
• Example and Properties
• Floating Point Arithmetic
• Floating Point in C

Next time: How can a computer represent and manipulate more complex
data like text?

67

