
photo by pixabay user epicioci

Aykut Erdem // Koç University // Fall 2024

COMP201
Computer
Systems &
Programming

Lecture #06 – More Strings, Pointers

Recap
• Characters
• Strings
• Common String Operations

– Comparing
– Copying
– Concatenating
– Substrings

• Practice: Diamonds

2

Recap: C Strings
C strings are arrays of characters ending with a null-terminating character '\0'.

String operations such as strlen use the null-terminating character to find the
end of the string.

Side note: use strlen to get the length of a string. Don’t use sizeof!

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
value 'H' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

3

Recap: Common string.h Functions
Function Description

strlen(str) returns the # of chars in a C string (before null-terminating character).

strcmp(str1, str2),
strncmp(str1, str2, n)

compares two strings; returns 0 if identical, <0 if str1 comes before
str2 in alphabet, >0 if str1 comes after str2 in alphabet. strncmp
stops comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, needle) string search: returns a pointer to the start of the first occurrence of
needle in haystack, or NULL if needle was not found in haystack.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial part of str which contains
only characters in accept. strcspn returns the length of the initial
part of str which does not contain any characters in reject.

4

Key takeaways
1. Valid strings are null-terminated.

char str[6];
strcpy(str, "Hello");
int length = strlen(str); // 5

0xf0 0xf1 0xf2 0xf3 0xf4 0xf5 address

'H' 'e' 'l' 'l' 'o' '\0' charstr

Key takeaways from this time
1. Valid strings are null-terminated.
2. An array name (and a string name, by extension) is the

address of the first element.

char str[6];
strcpy(str, "Hello");
int length = strlen(str); // 5
char *ptr = str + 1; // 0xf1
printf("%s\n", ptr); // ello

0xf0 0xf1 0xf2 0xf3 0xf4 0xf5 address

'H' 'e' 'l' 'l' 'o' '\0' charstrptr

0xe8

?0xf1

Key takeaways from this time
1. Valid strings are null-terminated.
2. An array name (and a string name, by extension) is the

address of the first element.
3. When you pass a char[] as a parameter, it is

automatically passed as a char * (pointer to its first character)

Why did C bother with this representation?
• C is a powerful, efficient language that requires a solid

understanding of computer memory.
• We’ll hone this understanding over these next two weeks!

char buf[6];
 strcpy(buf, "Hello");
 printf("%s\n", buf);
 …

Takeaway #3 : man strcpy

1
2
3
…

• Lecture 6: where string constants
like "hello" are stored.

• Lecture 12: what const means

0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7 0xf8 0xf9
? ? ? ? ? ? ? ? ?

0xee

dest

buf

0xf1 The address of the first element of buf

Plan for Today
• Searching in Strings
• Practice: Password Verification
• Pointers
• Practice: Printing the value of a pointer
• Strings in Memory

Disclaimer: Slides for this lecture were borrowed from
—Nick Troccoli and Lisa Yan's Stanford CS107 class

9

Lecture Plan
• Searching in Strings
• Practice: Password Verification
• Pointers
• Practice: Printing the value of a pointer
• Strings in Memory

13

Recap: Common string.h Functions
Function Description

strlen(str) returns the # of chars in a C string (before null-terminating character).

strcmp(str1, str2),
strncmp(str1, str2, n)

compares two strings; returns 0 if identical, <0 if str1 comes before
str2 in alphabet, >0 if str1 comes after str2 in alphabet. strncmp
stops comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, needle) string search: returns a pointer to the start of the first occurrence of
needle in haystack, or NULL if needle was not found in haystack.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial part of str which contains
only characters in accept. strcspn returns the length of the initial
part of str which does not contain any characters in reject.

14

Searching For Letters
strchr returns a pointer to the first occurrence of a character in a string,
or NULL if the character is not in the string.

char daisy[6];
strcpy(daisy, "Daisy");
char *letterA = strchr(daisy, 'a');
printf("%s\n", daisy); // Daisy
printf("%s\n", letterA); // aisy

If there are multiple occurrences of the letter, strchr returns a pointer to
the first one. Use strrchr to obtain a pointer to the last occurrence.

15

Searching For Strings
strstr returns a pointer to the first occurrence of the second string in
the first, or NULL if it cannot be found.

char daisy[10];
strcpy(daisy, "Daisy Dog");
char *substr = strstr(daisy, "Dog");
printf("%s\n", daisy); // Daisy Dog
printf("%s\n", substr); // Dog

If there are multiple occurrences of the string, strstr returns a pointer to
the first one.

16

String Spans
strspn returns the length of the initial part of the first string which
contains only characters in the second string.

char daisy[10];
strcpy(daisy, "Daisy Dog");
int spanLength = strspn(daisy, "aDeoi"); // 3

“How many places can we go in the first string before
I encounter a character not in the second string?”

17

String Spans
strcspn (c = “complement”) returns the length of the initial part of the
first string which contains only characters not in the second string.

char daisy[10];
strcpy(daisy, "Daisy Dog");
int spanLength = strcspn(daisy, "driso"); // 2

“How many places can we go in the first string before
I encounter a character in the second string?”

18

C Strings As Parameters
When we pass a string as a parameter, it is passed as a char *. We can
still operate on the string the same way as with a char[]. (We’ll see why
today!).

int doSomething(char *str) {
 char secondChar = str[1];
 ...
}

// can also write this, but it is really a pointer
int doSomething(char str[]) { ...

19

Arrays of Strings
We can make an array of strings to group multiple strings together:

char *stringArray[5]; // space to store 5 char *s

We can also use the following shorthand to initialize a string array:

char *stringArray[] = {
 "Hello",
 "Hi",
 "Hey there"
};

20

Arrays of Strings
We can access each string using bracket syntax:

printf("%s\n", stringArray[0]); // print out first string

When an array is passed as a parameter in C, C passes a pointer to the
first element of the array. This is what argv is in main! This means we
write the parameter type as:

void myFunction(char **stringArray) {

// equivalent to this, but it is really a double pointer
void myFunction(char *stringArray[]) {

21

Lecture Plan
• Searching in Strings
• Practice: Password Verification
• Pointers
• Practice: Printing the value of a pointer
• Strings in Memory

22

Practice: Password Verification
Write a function verifyPassword that accepts a candidate password
and certain password criteria and returns whether the password is valid.

bool verifyPassword(char *password, char *validChars,
char *badSubstrings[], int numBadSubstrings);

password is valid if it contains only letters in validChars, and does not
contain any substrings in badSubstrings.

23

Practice: Password Verification
bool verifyPassword(char *password, char *validChars,
char *badSubstrings[], int numBadSubstrings);

Example:

char *invalidSubstrings[] = { "1234" };

bool valid1 = verifyPassword("1572", "0123456789",
 invalidSubstrings, 1); // true
bool valid2 = verifyPassword("141234", "0123456789",
 invalidSubstrings, 1); // false

24

Practice: Password
Verification

verify_password.c

Lecture Plan
• Searching in Strings
• Practice: Password Verification
• Pointers
• Practice: Printing the value of a pointer
• Strings in Memory

26

Pointers
• A pointer is a variable that stores a memory address.
• Because there is no pass-by-reference in C like in C++, pointers let us

pass around the address of one instance of memory, instead of making
many copies.
• One (8 byte) pointer can refer to any size memory location!
• Pointers are also essential for allocating memory on the heap, which we

will cover later.
• Pointers also let us refer to memory generically, which we will cover

later.

27

Memory
• Memory is a big array of bytes.
• Each byte has a unique numeric index that is

commonly written in hexadecimal.
• A pointer stores one of these memory

addresses.

Address Value

…

0x105 '\0'

0x104 'e'

0x103 'l'

0x102 'p'

0x101 'p'

0x100 'a'

…

28

Memory
• Memory is a big array of bytes.
• Each byte has a unique numeric index that is

commonly written in hexadecimal.
• A pointer stores one of these memory

addresses.

Address Value

…

261 '\0'

260 'e'

259 'l'

258 'p'

257 'p'

256 'a'

…

29

Looking Closely at C
• All parameters in C are “pass by value.” For efficiency purposes, arrays

(and strings, by extension) passed in as parameters are converted to
pointers.
• This means whenever we pass something as a parameter, we pass a

copy.
• If we want to modify a parameter value in the function we call and have

the changes persist afterwards, we can pass the location of the value
instead of the value itself. This way we make a copy of the address
instead of a copy of the value.

31

Pointers
int x = 2;

// Make a pointer that stores the address of x.
// (& means "address of")
int *xPtr = &x;

// Dereference the pointer to go to that address.
// (* means "dereference")
printf("%d", *xPtr); // prints 2

32

Pointers
A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

33

Pointers
A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

STACK

34

Pointers
A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

2

STACK

35

Pointers
A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

2

STACK

36

Pointers
A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

myFunc

intPtr

2

STACK

37

Pointers
A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

myFunc

intPtr

2

STACK

38

Pointers
A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

myFunc

intPtr

3

STACK

39

Pointers
A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

3

STACK

40

Pointers
A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

3

STACK

41

Pointers
A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

42

Pointers
A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 2
…

xmain()

STACK

43

Pointers
A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

44

Pointers
A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

45

Pointers
A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 3
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

46

Pointers
A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 3
…

xmain()

STACK

47

Pointers
A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 3
…

xmain()

STACK

48

Pointers Summary
• If you are performing an operation with some input and do not care

about any changes to the input, pass the data type itself. This makes
a copy of the data.
• If you are modifying a specific instance of some value, pass the

location of what you would like to modify. This makes a copy of the
data’s location.
• If a function takes an address (pointer) as a parameter, it can go to that

address if it needs the actual value.

49

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

50

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

51

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

0x10 2
…

x

val

main()

myFunc()

52

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

0x10 2
…

x

val

main()

myFunc()

53

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

0x10 3
…

x

val

main()

myFunc()

54

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

55

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

56

Lecture Plan
• Searching in Strings
• Practice: Password Verification
• Pointers
• Practice: Printing the value of a pointer
• Strings in Memory

57

Practice: Printing the value
of a pointer

pointer.c

Lecture Plan
• Searching in Strings
• Practice: Password Verification
• Pointers
• Practice: Printing the value of a pointer
• Strings in Memory

59

Strings In Memory
1. If we create a string as a char[], we can modify its characters because its memory

lives in our stack space.

2. We cannot set a char[] equal to another value, because it is not a pointer; it refers to
the block of memory reserved for the original array.

3. If we pass a char[] as a parameter, set something equal to it, or perform arithmetic
with it, it’s automatically converted to a char *.

4. If we create a new string with new characters as a char *, we cannot modify its
characters because its memory lives in the data segment.

5. We can set a char * equal to another value, because it is a reassign-able pointer.

6. Adding an offset to a C string gives us a substring that many places past the first
character.

7. If we change characters in a string parameter, these changes will persist outside of the
function.

60

String Behavior #1: If we create a string as a
char[], we can modify its characters
because its memory lives in our stack space.

61

Character Arrays
Address Value

…

0x105 '\0'

0x104 'e'

0x103 'l'

0x102 'p'

0x101 'p'

0x100 'a'

…

When we declare an array of characters, contiguous
memory is allocated on the stack to store the contents
of the entire array. We can modify what is on the
stack.

char str[6];
strcpy(str, "apple");

str

STACK

62

String Behavior #2: We cannot set a char[]
equal to another value, because it is not a
pointer; it refers to the block of memory
reserved for the original array.

63

Character Arrays
An array variable refers to an entire block of memory. We cannot reassign
an existing array to be equal to a new array.
char str[6];
strcpy(str, "apple");
char str2[8];
strcpy(str2, "apple 2");

str = str2; // not allowed!

An array’s size cannot be changed once we create it; we must create
another new array instead.

64

String Behavior #3: If we pass a char[] as
a parameter, set something equal to it, or
perform arithmetic with it, it’s automatically
converted to a char *.

65

String Parameters
How do you think the parameter str is being represented?

void fun_times(char *str) {
 ...
}

int main(int argc, char *argv[]) {
 char local_str[5];
 strcpy(local_str, "rice");
 fun_times(local_str);
 return 0;
}

🤔

str ?

A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

66

How do you think the parameter str is being represented?

void fun_times(char *str) {
 ...
}

int main(int argc, char *argv[]) {
 char local_str[5];
 strcpy(local_str, "rice");
 fun_times(local_str);
 return 0;
}

A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str

String Parameters

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

str 0xa0

67

char * Variables
How do you think the local variable str is being represented?

int main(int argc, char *argv[]) {
 char local_str[5];
 strcpy(local_str, "rice");
 char *str = local_str;
 ...
 return 0;
}

🤔

str ?

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str
68

char * Variables
How do you think the local variable str is being represented?

int main(int argc, char *argv[]) {
 char local_str[5];
 strcpy(local_str, "rice");
 char *str = local_str;
 ...
 return 0;
}

str

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str

0xa0

69

char * Variables
How do you think the local variable str is being represented?

int main(int argc, char *argv[]) {
 char local_str[5];
 strcpy(local_str, "rice");
 char *str = local_str + 2;
 ...
 return 0;
}

🤔

str ?

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

A. A copy of part of the array local_str
B. A pointer containing an address to

the third element in local_str

70

char * Variables
How do you think the local variable str is being represented?

int main(int argc, char *argv[]) {
 char local_str[5];
 strcpy(local_str, "rice");
 char *str = local_str + 2;
 ...
 return 0;
}

str

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

A. A copy of part of the array local_str
B. A pointer containing an address to

the third element in local_str

0xa2

71

String Parameters
All string functions take char * parameters – they accept char[], but
they are implicitly converted to char * before being passed.

• strlen(char *str)
• strcmp(char *str1, char *str2)
• …

• char * is still a string in all the core ways a char[] is
– Access/modify characters using bracket notation
– Print it out
– Use string functions
– But under the hood they are represented differently!

• Takeaway: We create strings as char[], pass them around as char *
72

String Behavior #4: If we create a new string
with new characters as a char *, we cannot
modify its characters because its memory
lives in the data segment.

73

char *
There is another convenient way to create a string if we do not need to
modify it later. We can create a char * and set it directly equal to a
string literal.

char *myString = "Hello, world!";
char *empty = "";

myString[0] = 'h'; // crashes!
printf("%s", myString); // Hello, world!

74

char *
There is an important difference between the following two definitions:
char aString[] = "Hello, world!"; // an array
char *pString = "Hello, world!"; // a pointer

• aString is an array, just big enough to hold the sequence of
characters and also the NULL terminating symbol at the end.
• pString is a pointer, initialized to point to a string constant. Note the

the pointer may be modified to point to a different location.

75

char *

Address Value
…

0xff0 0x10
…
…

0x12 '\0'
0x11 'i'
0x10 'h'

…

When we declare a char pointer equal to a
string literal, the characters are not stored on
the stack. Instead, they are stored in a special
area of memory called the “data segment”.
We cannot modify memory in this segment.
char *str = "hi";
The pointer variable (e.g. str) refers to the
address of the first character of the string in
the data segment.

strSTACK

DATA SEGMENT

This applies only to creating new
strings with char *. This does not
apply for making a char * that
points to an existing stack string.

76

Memory Locations
For each code snippet below, can we modify the characters in myStr?

char myStr[6];

Key Question: where do its characters
live? Do they live in memory we own?
Or the read-only data segment?

77

Memory Locations
For each code snippet below, can we modify the characters in myStr?

char *myStr = "Hi";

78

Key Question: where do its characters
live? Do they live in memory we own?
Or the read-only data segment?

Memory Locations
For each code snippet below, can we modify the characters in myStr?

char buf[6];
strcpy(buf, "Hi");
char *myStr = buf;

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-
only data segment?

79

Memory Locations
For each code snippet below, can we modify the characters in myStr?

char *otherStr = "Hi";
char *myStr = otherStr;

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-
only data segment?

80

Memory Locations
For each code snippet below, can we modify the characters in myStr?

void myFunc(char *myStr) {
 ...
}

int main(int argc, char *argv[]) {
 char buf[6];
 strcpy(buf, "Hi");
 myFunc(buf);
 return 0;
}

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-
only data segment?

81

Memory Locations
Q: Is there a way to check in code whether a string’s characters are
modifiable?
A: No. This is something you can only tell by looking at the code itself
and how the string was created.

Q: So then if I am writing a string function that modifies a string, how can
I tell if the string passed in is modifiable?
A: You can’t! This is something you instead state as an assumption in
your function documentation. If someone calls your function with a read-
only string, it will crash, but that’s not your function’s fault :-)

82

Recap
• Searching in Strings
• Practice: Password Verification
• Pointers
• Practice: Printing the value of a pointer
• Strings in Memory

Next time: Arrays and Pointers
112

