Computer Systems and Programming, Spring 2021
Assignment 6
Understanding Cache Memories
Assigned: Wednesday, May 12, 2021
Due: Monday, May 28, 11:59PM

Ahmed Imam Shah
ashah20@ku.edu.tr

1 Logistics
This is an individual project. You must run this assignment on a 64-bit x86-64 machine. You are highly

recommended to use Linuxpool to complete this assignment.

2 Overview

This assignment will help you understand the impact that cache memories can have on the performance of
your C programs.

In this assignment assignment, you will write a small C program (about 200-300 lines) that simulates the
behavior of a cache memory.

3 Downloading the assignment

Start by copying cacheassignment-handout.zip to a protected Linux directory in which you plan
to do your work. Then give the command

linux> unzip cacheassignment-handout.zip

This will create a directory called cacheassignment-handout that contains a number of files. You
will be modifying only csim. c.

To compile this files, type:

linux> make clean
linux> make

mailto:ashah20@ku.edu.tr

4 Description

For this assignment, you will implement a cache simulator.

4.1 Reference Trace Files

The t races subdirectory of the handout directory contains a collection of reference trace files that we will
use to evaluate the correctness of the cache simulator you write in Part A. The trace files are generated by a
Linux program called valgrind. For example, typing

linux> valgrind —--log-fd=1 —--tool=lackey -v —-—-trace-mem=yes ls -1
on the command line runs the executable program “1s -1, captures a trace of each of its memory accesses

in the order they occur, and prints them on stdout.

Valgrind memory traces have the following form:

I 0400d74d4,8
M 0421c7£0,4
L 04fe6b868,8
S 7££0005c8,8

Each line denotes one or two memory accesses. The format of each line is
[space]operation address, size

The operation field denotes the type of memory access: “I”’ denotes an instruction load, “L” a data load,
“S” a data store, and “M” a data modify (i.e., a data load followed by a data store). There is never a space
before each “I”. There is always a space before each “M”, “L”, and “S”. The address field specifies a 64-bit
hexadecimal memory address. The size field specifies the number of bytes accessed by the operation.

4.2 Writing a Cache Simulator

You will write a cache simulator in csim. c that takes a valgrind memory trace as input, simulates
the hit/miss behavior of a cache memory on this trace, and outputs the total number of hits, misses, and
evictions.

We have provided you with the binary executable of a reference cache simulator, called csim-ref, that
simulates the behavior of a cache with arbitrary size and associativity on a valgrind trace file. It uses the
LRU (least-recently used) replacement policy when choosing which cache line to evict.

The reference simulator takes the following command-line arguments:

Usage: ./csim-ref [-hv] -s <s> -E <E> -b -t <tracefile>

* —h: Optional help flag that prints usage info

* —v: Optional verbose flag that displays trace info

e —s <s>: Number of set index bits (S = 2° is the number of sets)
* —E <E>: Associativity (number of lines per set)

e b : Number of block bits (B = 2° is the block size)

* —t <tracefile>: Name of the valgrind trace to replay

The command-line arguments are based on the notation (s, F, and b) from page 597 of the CS:APP2e
textbook. For example:

linux> ./csim-ref -s 4 -E 1 -b 4 -t traces/yi.trace
hits:4 misses:5 evictions:3

The same example in verbose mode:

linux> ./csim-ref -v -s 4 -E 1 -b 4 -t traces/yi.trace
10,1 miss

20,1 miss hit

22,1 hit

18,1 hit

110,1 miss eviction

210,1 miss eviction

- e v 05 T e O

12,1 miss eviction hit
hits:4 misses:5 evictions:3

Your job is to fill in the csim. c file so that it takes the same command line arguments and produces the
identical output as the reference simulator. Notice that this file is almost completely empty. You’ll need to
write it from scratch.

Programming Rules

* Include your name in the header comment for csim. c.
* Your csim. c file must compile without warnings in order to receive credit.

* Your simulator must work correctly for arbitrary s, F, and b. This means that you will need to
allocate storage for your simulator’s data structures using the malloc function. Type “man malloc”
for information about this function.

* For this assignment, we are interested only in data cache performance, so your simulator should ignore
all instruction cache accesses (lines starting with “I”’). Recall that valgrind always puts “I”” in the
first column (with no preceding space), and “M”, “L”, and “S” in the second column (with a preceding
space). This may help you parse the trace.

* To receive credit you must call the function print Summary, with the total number of hits, misses,
and evictions, at the end of your main function:

printSummary (hit_count, miss_count, eviction_count);
* For this this assignment, you should assume that memory accesses are aligned properly, such that a

single memory access never crosses block boundaries. By making this assumption, you can ignore
the request sizes in the valgrind traces.

5 Evaluation

sec:eval This section describes how your work will be evaluated. The full score for this assignment is 33
points:

e Simulator: 27 Points

* Style: 6 Points

The final score will be out 100 points. It will be the full score multiplied by 3 .

5.1 Evaluation

For evaluation, we will run your cache simulator using different cache parameters and traces. There are
eight test cases, each worth 3 points, except for the last case, which is worth 6 points:

linux> ./csim -s 1 -E 1 -b 1 -t traces/yi2.trace
linux> ./csim -s 4 -E 2 -b 4 -t traces/yi.trace
linux> ./csim -s 2 -E 1 -b 4 -t traces/dave.trace
linux> ./csim -s 2 -E 1 -b 3 -t traces/trans.trace
linux> ./csim -s 2 -E 2 -b 3 -t traces/trans.trace
linux> ./csim -s 2 -E 4 -b 3 -t traces/trans.trace
linux> ./csim -s 5 -E 1 -b 5 -t traces/trans.trace
linux> ./csim -s 5 -E 1 -b 5 -t traces/long.trace

You can use the reference simulator csim—ref to obtain the correct answer for each of these test cases.
During debugging, use the —v option for a detailed record of each hit and miss.

For each test case, outputting the correct number of cache hits, misses and evictions will give you full credit
for that test case. Each of your reported number of hits, misses and evictions is worth 1/3 of the credit
for that test case. That is, if a particular test case is worth 3 points, and your simulator outputs the correct
number of hits and misses, but reports the wrong number of evictions, then you will earn 2 points.

5.2 Evaluation for Style

There are 6 points for coding style. These will be assigned manually by the course staff. Style guidelines
can be found on the course website.

6 Working on the assignment

We have provided you with an autograding program, called test—csim, that tests the correctness of your
cache simulator on the reference traces. Be sure to compile your simulator before running the test:

linux> make
linux> ./test-csim

Points (s,E,Db) Hits
3 (1,1,1) 9
3 (4,2,4) 4
3 (2,1,4) 2
3 (2,1,3) 167
3 (2,2,3) 201
3 (2,4,3) 212
3 (5,1,5) 231
6 (5,1,5) 265189
27

Your simulator

Misses
8

5

3

71

37

26

-
21775

Evicts
6

2

1

67

29

10

0
21743

Reference simulator

Hits

9

4

2

167
201
212
231
265189

Misses Evicts

8 6
5 2
3 1
71 67
37 29
26 10
7 0

21775 21743

traces/yi2.trace
traces/yi.trace
traces/dave.trace
traces/trans.trace
traces/trans.trace
traces/trans.trace
traces/trans.trace
traces/long.trace

For each test, it shows the number of points you earned, the cache parameters, the input trace file, and a
comparison of the results from your simulator and the reference simulator.

Here are some hints and suggestions for working on Part A:

* Do your initial debugging on the small traces, such as t races/dave.trace.

* The reference simulator takes an optional —v argument that enables verbose output, displaying the
hits, misses, and evictions that occur as a result of each memory access. You are not required to
implement this feature in your csim. c code, but we strongly recommend that you do so. It will
help you debug by allowing you to directly compare the behavior of your simulator with the reference

simulator on the reference trace files.

* We recommend that you use the getopt function to parse your command line arguments. You’ll
need the following header files:

#include <getopt.h>
#include <stdlib.h>
#include <unistd.h>

See “man 3 getopt” for details.

» Each data load (L) or store (S) operation can cause at most one cache miss. The data modify operation
(M) is treated as a load followed by a store to the same address. Thus, an M operation can result in

two cache hits, or a miss and a hit plus a possible eviction.

6.1 Putting it all Together

We have provided you with a driver program, called . /driver.py, that performs a complete evaluation
of your simulator and transpose code. This is the same program your instructor uses to evaluate your
handins. The driver uses test—csim to evaluate your simulator. Then it prints a summary of your results
and the points you have earned.

To run the driver, type:
linux> ./driver.py

Each time you type make in the cacheassignment-handout directory, the Makefile creates a tarball,
called userid-handin.tar, that contains your current csim.c. Please upload this tarball on the
blackboard.

IMPORTANT: Do not create the handin tarball on a Windows or Mac machine, and do not handin files in
any other archive format, such as . zip, .gzip, or . tgz files.

7 Oral Assessment

Important Note: We use automated plagiarism detection to compare your assignment submission with
others and also the code repositories on GitHub and similar sites. Moreover, we plan to ask randomly
selected 10 % of students to explain their code verbally after the assignments are graded. And one may lose
full credit if he or she fails from this oral part.

8 Late Submission Policy

* You may use up to 7 grace days (in total) over the course of the semester for the assignments. That is
you can submit your solutions without any penalty if you have free grace days left.

* Any additional unapproved late submission will be punished (1 day late: 20% off, 2 days late: 40%
off) and no submission after 2 days will be accepted.

9 Coding Style Evaluation

We have reserved 7 points for a subjective evaluation of the style of your solutions and your commenting.
Your solutions should be as clean and straightforward as possible. Your comments should be informative,
but they need not be extensive.

10 Academic Integrity

All work on assignments must be done individually unless stated otherwise. You are encouraged to discuss
with your classmates about the given assignments, but these discussions should be carried out in an abstract
way. That is, discussions related to a particular solution to a specific problem (either in actual code or in the
pseudocode) will not be tolerated. In short, turning in someone else’s work, in whole or in part, as your own
will be considered as a violation of academic integrity. Please note that the former condition also holds for
the material found on the web as everything on the web has been written by someone else. |See

11 Acknowledgement

This assignment is adapted from CMU Introduction to Computer Systems (ICS) assignment.

https://apdd.ku.edu.tr/en/academic-policies/student-code-of-conduct/

	Logistics
	Overview
	Downloading the assignment
	Description
	Reference Trace Files
	Writing a Cache Simulator

	Evaluation
	Evaluation
	Evaluation for Style

	Working on the assignment
	Putting it all Together

	Oral Assessment
	Late Submission Policy
	Coding Style Evaluation
	Academic Integrity
	Acknowledgement

