
COMP 201 - Spring 2022
Assignment 3 - Heap Management - WoW: Alliance vs. Horde

Assigned: 24 March 2022 23:59, Due: 7 April 2022 23:59

Mert Cokelek (mcokelek21@ku.edu.tr) is the lead person for this assignment.

1. Introduction

You are expected to implement a board game version of ”World of Warcraft” in this assignment. Your
program should take two input files as command-line arguments for initializing and playing the game. In
World of Warcraft, there are two factions: Alliance and Horde. Your game is expected to simulate the
spawning, movement, and attacking of the characters of these sides. The corresponding messages should be
printed to the terminal based on the input scenario.

2. Background

The sides of this war and the characters are inspired by the well-known role-playing game World of War-
craft. In our version of the game, all characters will have health and damage points. Unlike the Horde, the
Alliance side will have additional experience points. At the beginning of your program, the game map will
be created, and the characters will be spawned in the given positions on that map. Later, based on a given
sequence of commands, the warriors of Alliance will be able to move across the map, and the characters
will have combat.

Horde characters are initially spawned in different locations and do not move. At some point, if any two
characters from different sides are adjacent, they can attack each other. In this stage, the defender’s health
point (HP) will be decreased by the damage point of the attacker. If a character’s HP reaches 0, it dies. If
an Alliance kills a Horde, it earns one experience point (XP). Recall that only Alliance can have XPs. The
details will be in the following sections.

3. Handout Instructions:

Accept the GitHub Classroom assignment using the link: https://classroom.github.com/a/0gfppA3w. Clone
the GitHub repository created for you to a Linux machine in which you plan to do your work (We advice
you to do your work on our linux servers [linuxpool.ku.edu.tr].

1 g i t c l o n e h t t p s : / / g i t h u b . com / COMP201− S p r i n g2 2 / a s s ignmen t −3−USER . g i t

(Replace USER with your GitHub username that you use to accept the assignment).

• main.c: The main file of the assignment that should be submitted to be graded.

• chars <input number>.txt

• commands <input number>.txt

1

https://classroom.github.com/a/0gfppA3w

The details for the input and outputs are in the following sections.

4. Tasks

4.1 Spawning Characters

In the beginning of the game, you will read 2 input files. The first one is: chars <input number>.txt.
This input file contains the properties of Alliance and Horde characters. These properties are: name, HP,
damage, in the given order, separated by comma. Each line contains information of a character, with the
format: <type>,<name>,<hp>,<damage>.

A sample for the first input file is given below, and all the explanations in this handout will be based on
this example:

ALLIANCE,ELF,8,3
HORDE,VULPERA,10,2
ALLIANCE,IRON,6,3
HORDE,TROLL,4,3
HORDE,GOBLIN,1,3

Here are some important points you should keep in mind:

• There can be any number of Alliance and Horde characters.

• The attacking order will be the same as spawning order of the characters.

– For this example, when its Alliance’s turn to attack, the order of attacking will be: “ELF, IRON”.

– For the Horde, it will be: “VULPERA, TROLL, GOBLIN”.

4.2 Playing the Game

The second input file argument commands <input number>.txt, contains a sequence of commands, to
play a game. Since we first need to load the map and spawn the characters, the game will always begin with
the following three lines. Keep in mind that the parameters (size of the map, location of the characters) can
and will be different.

LOADMAP,5 5
PUT,ALLIANCE,ELF,0,0,IRON,4,1
PUT,HORDE,TROLL,1,1,GOBLIN,4,0,VULPERA,0,1

Apart from these default commands in the beginning, there will be other commands for playing. They
are described as the following:

• LOADMAP

Loads a map with the specified size (row, column). They will be positive integers. The map should
be implemented using a 2 dimensional array, and created dynamically.

Input:

LOADMAP,<number_of_rows>,<number_of_columns>

2

Output:
There will not be output messages for this command.

• PUT

Puts the given characters on the map. <type> will be ”ALLIANCE” or ”HORDE”. Characters can
be given in any order for this command. While attacking, you should take into account the spawning
order, not this.

Input:

PUT,ALLIANCE,<name_1>,<row>,<column>,<name_2>,<row>,<column> ...
PUT,HORDE,<name_1>,<row>,<column>,<name_2>,<row>,<column> ...

Output:
There will not be output messages for this command.

• SHOW (30 points)

Prints the current status of either Alliance, Horde, or the map.

Input (e.g. in the beginning of the game):

SHOW,ALLIANCE

Output:

ALLIANCE STATUS
ELF HP: 8 XP: 0
IRON HP: 6 XP: 0

Input: (e.g. in the beginning of the game)

SHOW,HORDE

Output:

HORDE STATUS
VULPERA HP: 10
TROLL HP: 4
GOBLIN HP: 1

Input: (e.g. in the beginning of the game)

SHOW,MAP

Output:

3

MAP STATUS
E V . . .
. T . . .
.
.
G I . . .

• ATTACK (30 points)

Executes the attack command for the given <type>. The characters for the given type should attack
the other types. There are some rules you should consider:

– Characters attack with their spawn order.

– Characters can only attack their adjacent enemies. There are a total of 8 directions. These
directions have a priority as well.

Figure 1: Attacking order for a character in the red cell is given numerically.

– For the example in the above map, for ATTACK,ALLIANCE command, ELF will attack the
Hordes before IRON. ELF will attack VULPERA first, and then TROLL. Some other cases for
attacking orders are illustrated below:

Figure 2: Attacking orders for the characters in the red cells, in the map borders.

– The same types of characters do not attack each other.

– To simulate the strike, you should decrease the HP of the damaged character, by the damage
value of the attacker. So, for the same example, after a Horde attack, ELF will have HP=3
(8-2-3), and IRON will have 3 (6-3).

– A character’s HP can not be less than 0. If a character reaches HP=0, it should be removed from
the map. However, its status should still be printed in the SHOW command.

– If an Alliance kills a Horde, its XP should be increased by 1 point. If a Horde kills an Alliance,
nothing happens.

Input:

ATTACK,<type>

Output:

4

<type>s ATTACKED

• MOVE (30 points) This command will be only for the Alliance. There are some important points
here:

– You should check if the new position is valid (unoccupied, and inside the boundaries of the map).

– A dead character can not be moved.

– A character can move only one unit at a time. (You don’t need to handle this case, the inputs
will be given accordingly.)

– Characters can be given in any order for this command.

Input:

MOVE,ALLIANCE,<name_1>,<row>,<column>,<name_2>,<row>,<column> ...

Output:

ALLIANCES MOVED
If the target position is occupied by another character:
<character_name> can’t move. Place is occupied.
If the target position exceeds the map:
<character_name> can’t move. There is a wall.
If the character is dead:
<character_name> can’t move. Dead.

• ENDING (10 Points) After each ATTACK command, you should check whether a type of characters
are all dead. In that case, you should print a message and terminate the program, even there are more
commands in the commands file. Message is:

ALL <type>s ARE DEAD!

Other than that, the game may not be finished according to the given scenario. In other words, at the
end of the game, there still might be alive Alliance and Hordes. In that case, you don’t need to print
anything.

5. Important Points

• You should use dynamic arrays and structs, for the map and the characters. Other methods will not
be accepted.

• The game map should be created as a 2D dynamic array. Other methods will not be accepted.

• Do not forget tor free the allocated memory. You can check the memory leaks using valgrind.

• Your outputs should be printed to the terminal, and they should comply with the given output formats.

5

6. Submission

As with the previous assignments, we use GitHub for the submissions as follows. Note that we want you
to get used to using a version management system (Git) in terms of writing good commit messages and
frequently committing your work so that you can get most out of Git.

1. Commit all the changes you make:

1 g i t commit −a −m ” commit message ”

Note: please use meaningful commit messages because

2. Push your work to GitHub servers:

1 g i t push o r i g i n main

Please submit your main.c file, with the untouched Makefile and input files. A starter code for the basic
skeleton will be provided. However, feel free to make any changes as you wish, taking into account the
important points mentioned in the previous sections.

7. Evaluation:

Your score will be computed out of a maximum of 100 points based on the following distribution:

• SHOW (30%)

• ATTACK (30%)

• MOVE (30%)

• END (10%)

Testing on the inputs: You are provided a Makefile for the given sample inputs. Just type

make compile_and_test1
or

make compile_and_test2

to test your game.

Effective use of version control: You are required to push your changes to the repository frequently.
If you only push the final version, even if it is implemented 100% correctly, you will lose a fraction of the
grade because you are expected to learn to use Version Control Systems effectively. You do not have to push
every small piece of change to GitHub but every meaningful change should be pushed. For example, each
of the tasks coded and tested can be one commit. For each task, there should be at least one commit (with
proper commit message) that includes just modifications on that function.

Important Note: We use automated plagiarism detection to compare your assignment submission with
others and also the code repositories on GitHub and similar sites.

Oral Assessment: As usual, we are going to ask randomly selected 10% of students to explain their
approach verbally after the assignments are graded. And one may lose full credit due to a failure o this oral
part.

6

8. How to use linuxpool.ku.edu.tr linux servers

I Connect to KU VPN (If you are connected to the KU network, you can skip this step.)
See for details: https://confluence.ku.edu.tr/kuhelp/ithelp/it-services/network-and-wireless/vpn-access

II Connect to linuxpool.ku.edu.tr server using SSH (Replace USER with your Koç University username):

1 s s h USER@linuxpool . ku . edu . t r

(It will ask your password, type your Koç University password.)

III When you are finished with your work, you can disconnect by typing: $ exit

Your connection to the server may drop sometimes. In that case, you need to reconnect.
We advise you to watch the following video about the usage of SSH, which is used to connect re-

mote servers, and SCP, which is used to transfer files between remote servers and your local machine:
https://www.youtube.com/watch?v=rm6pewTcSro

Figure 3: How to connect and disconnect using SSH

9. Academic Integrity

All work on assignments must be done individually unless stated otherwise. You are encouraged to discuss
the given assignments with your classmates, but these discussions should be carried out in an abstract way.
That is, discussions related to a particular solution to a specific problem (either in actual code or in the
pseudocode) will not be tolerated. In short, turning in someone else’s work, in whole or in part, as your own
will be considered as a violation of academic integrity. Please note that the former condition also holds for
the web material as everything on the web has been written by someone else. See Koç University - Student
Code of Conduct.

10. Late Submission Policy

You may use up to 7 grace days (in total) over the course of the semester for the assignments. That
is, you can submit your solutions without any penalty if you have free grace days left. Any additional
unapproved late submission will be punished (1 day late: 20% off, 2 days late: 40% off) and no submission
after 2 days will be accepted.

Acknowledgement

This assignment is adapted from a C Programming Assignment in Hacettepe University.

7

https://confluence.ku.edu.tr/kuhelp/ithelp/it-services/network-and-wireless/vpn-access
https://www.youtube.com/watch?v=rm6pewTcSro
https://apdd.ku.edu.tr/en/academic-policies/student-code-of-conduct/
https://apdd.ku.edu.tr/en/academic-policies/student-code-of-conduct/

	Introduction
	Background
	Handout Instructions:
	Tasks
	Spawning Characters
	Playing the Game

	Important Points
	Submission
	Evaluation:
	How to use linuxpool.ku.edu.tr linux servers
	Academic Integrity
	Late Submission Policy

