
Valgrind and C-Strings
COMP201 Lab3

Fall 2023

Burak Kızıl

Burak Kızıl

Burak Kızıl

Burak Kızıl
Spring 2024

What is Valgrind?

Valgrind is:
🡪 An open-source system memory debugger
🡪 Used for memory error and leak detection
🡪 Also Profiling
🡪 Detect common memory errors in C and C++

programs

2

Errors that Valgrind can detect and report:

3

● Invalid read/write errors
○ Reads or writes to a memory address which you did not allocate

● Use of an uninitialized value
○ Code uses a declared variable before any kind of explicit assignment

● Invalid free error
○ Code attempts to delete allocated memory twice
○ Delete memory that was not allocated

Memory Errors Vs. Memory Leaks
● Memory leaks:

○ A program dynamically allocates memory and does not free it
○ won't cause a program to misbehave, crash, or give wrong answers

● Memory errors:
○ Is a red alert.
○ Reading uninitialized memory
○ Writing past the end of a piece of memory,
○ Accessing freed memory, etc
○ Can have significant consequences.
○ Memory errors should never be treated casually or ignored

!

4

How to compile:

➢ gcc -g -o Out sample.c

❖ Using -O0 is also a good idea! But…

-g 🡪 Enabling the Valgrind
Out 🡪 Output file
Sample.c 🡪 The program for compile

5

Example: Sample.c

● with a memory error and a memory leak.

6

Memory error
➢ valgrind --tool=memcheck ./out

7

process ID
8

➢ valgrind --tool=memcheck ./out

➢ valgrind --tool=memcheck ./out

Types of error
Here; The program wrote to some memory it should not have due to a heap block overrun.

9

➢ valgrind --tool=memcheck ./out

Stack trace → where the problem occurred.

10

Memory error
➢ valgrind --tool=memcheck --leak-check=yes ./out

11

Memory error
➢ valgrind --tool=memcheck --leak-check=yes ./out

12

Strings in C

C-Strings

● 1-D array of characters
● Terminated by null or \0
● Initializing a String

○ char greeting[6] = {'H', 'e', 'l', 'l', 'o',
'\0'};

○ char greeting[] = "Hello";

14

Standard string
functions in C

strcat()
● Concatenates two given strings.
● Concatenates source string at the end of

destination string.

● strcat (char * destination, char * source);

16

strcat()
● Concatenates two given strings.
● Concatenates source string at the end of

destination string.

● strcat (char * destination, char * source);

Output:

17

strncat()

● Concatenates (appends) portion of one string at the
end of another string.

● strncat (char * destination, char * source, size_t num);

18

strncat()

● Concatenates (appends) portion of one string at the
end of another string.

● strncat (char * destination, char * source, size_t num);

Output:

19

strcpy()

● Copies contents of one string into another string.

● strcpy (char * destination, char * source);

20

strcpy()

● Copies contents of one string into another string.

● strcpy (char * destination, char * source);

Output:

21

strncpy()
● Copies portion of contents of one string into another string.

● strncpy (char * destination, char * source, size_t num);

22

strncpy()
● Copies portion of contents of one string into another string.

● strncpy (char * destination, char * source, size_t num);

Output:

23

strlen()

● Gives the length of the given string.

● strlen (char * str);

24

strlen()

● Gives the length of the given string.

● strlen (char * str);

Output:

25

strcmp()
● Compares two given strings and returns zero if they are same.

● If length of string1 < string2, it returns < 0 value.

● If length of string1 > string2, it returns > 0 value.

● strcmp (char * str1, char * str2);

26

strcmp()
● Compares two given strings and returns zero if they are same.

● If length of string1 < string2, it returns < 0 value.

● If length of string1 > string2, it returns > 0 value.

● strcmp (char * str1, char * str2);

Output:
27

strchr()
● Returns pointer to the first occurrence of the character in a given string.

● strchr(char *str, character);

28

strchr()
● Returns pointer to the first occurrence of the character in a given string.

● strchr(char *str, character);

Output:

29

strrchr()
● Returns pointer to the last occurrence of the character in a given string.

● strrchr(char *str, character);

30

strrchr()
● Returns pointer to the last occurrence of the character in a given string.

● strrchr(char *str, character);

Output:

31

strstr()
● Returns pointer to the first occurrence of the string in a given string.

● strstr(char *str1, char *str2);

32

strstr()
● Returns pointer to the first occurrence of the string in a given string.

● strstr(char *str1, char *str2);

Output:

33

strtok()
● Tokenizes/parses the given string using delimiter.

● strtok (char * str, char * delimiters);

34

strtok()
● Tokenizes/parses the given string using delimiter.

● strtok (char * str, char * delimiters);

Output:

35

