COMP201
Gor Pital
Sxichicio
Q10eginininiti
Hh
H1

Recap: Bitwise Operators

- You're already familiar with many operators in C:
- Arithmetic operators: +, -, *, /, \%
- Comparison operators: $==$, !=, <, >, <=, >=
- Logical Operators: \&\&, ||, !
- Bitwise operators:
- Logical operators: \& |, ~, ^,
- Bit shift operators: <<, >>

Plan For Today

- Representing real numbers
- Fixed Point
- Floating Point
- Example and Properties
- Floating Point Arithmetic
- Floating Point in C

Disclaimer: Slides for this lecture were borrowed from
—Nick Troccoli's Stanford CS107 class
—Randal E. Bryant and David R. O'Hallaron's CMU 15-213 class

COMP201 Topic 2: How can a computer represent real numbers in addition to integer numbers?

Learning Goals

Understand the design and compromises of the floating point representation, including:

- Fixed point vs. floating point
- How a floating point number is represented in binary
- Issues with floating point imprecision
- Other potential pitfalls using floating point numbers in programs

Plan For Today

- Representing real numbers
- Fixed Point
- Floating Point
- Example and Properties
- Floating Point Arithmetic
- Floating Point in C

Real Numbers

- We previously discussed representing integer numbers using two's complement.
- However, this system does not represent real numbers such as $3 / 5$ or 0.25 .
- How can we design a representation for real numbers?

Real Numbers

Problem: unlike with the integer number line, where there are a finite number of values between two numbers, there are an infinite number of real number values between two numbers!

Integers between 0 and 2: 1
Real Numbers Between 0 and 2: 0.1, $0.01,0.001,0.0001,0.00001, \ldots$

We need a fixed-width representation for real numbers. Therefore, by definition, we will not be able to represent all numbers.

Real Numbers

Problem: every number base has un-representable real numbers.

Base 10: $1 / 6_{10}=0.16666666 \ldots . . .{ }_{10}$
Base 2: $1 / 10_{10}=0.000110011001100110011 \ldots 2$

Therefore, by representing in base 2, we will not be able to represent all numbers, even those we can exactly represent in base 10.

Plan For Today

- Representing real numbers
- Fixed Point
- Floating Point
- Example and Properties
- Floating Point Arithmetic
- Floating Point in C

Fixed Point

- Idea: Like in base 10, let's add binary decimal places to our existing number representation.

$$
\begin{aligned}
& 5934 \text {. } 216 \\
& \begin{array}{lllllll}
10^{3} & 10^{2} & 10^{1} & 10^{0} & 10^{-1} & 10^{-2} & 10^{-3}
\end{array}
\end{aligned}
$$

Fixed Point

- Idea: Like in base 10, let's add binary decimal places to our existing number representation.
10
1
1
1
2s
1s
1/2s $\quad 1 / 4 s \quad 1 / 8 s$
- Pros: arithmetic is easy! And we know exactly how much precision we have.

Fixed Point

- Problem: we have to fix where the decimal point is in our representation. What should we pick? This also fixes us to 1 place per bit.

$$
\begin{aligned}
& . \begin{array}{rrrrrrr}
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 / 2 s_{1 / 4 s}^{1 / 8 s} & \cdots & & \\
1 & 0 & 1 & 1 & 0 & & 1
\end{array} 1
\end{aligned}
$$

Fixed Point

- Problem: we have to fix where the decimal point is in our representation. What should we pick? This also fixes us to 1 place per bit.

$$
5.072
$$

Let's Get Real

What would be nice to have in a real number representation?

- Represent widest range of numbers possible
- Flexible "floating" decimal point
- Represent scientific notation numbers, e.g. 1.2×10^{6}
- Still be able to compare quickly
- Have more predictable over/under-flow behavior

Lecture Plan

- Representing real numbers
- Fixed Point
- Floating Point
- Example and Properties
- Floating Point Arithmetic
- Floating Point in C

IEEE Floating Point

Let's aim to represent numbers of the following scientific-notation-like format:

With this format, 32-bit floats represent numbers in the range $\sim 1.2 \times 10^{-38}$ to $\sim 3.4 \times 10^{38}$! Is every number between those representable? No.

IEEE Single Precision Floating Point

Exponent

s exponent (8 bits)	fraction (23 bits)
Exponent (Binary)	Exponent (Base 10)
11111111	$?$
11111110	$?$
11111101	$?$
11111100	$?$
\ldots	$?$
00000011	$?$
00000010	$?$
00000001	$?$
00000000	$?$

Exponent

S exponent (8 bits)	fraction (23 bits)
Exponent (Binary)	Exponent (Base 10)
11111111	RESERVED
11111110	$?$
11111101	$?$
11111100	$?$
\ldots	$?$
00000011	$?$
00000010	$?$
00000001	RESERVED
00000000	$?$

Exponent

S exponent (8 bits)	fraction (23 bits)
Exponent (Binary)	Exponent (Base 10)
11111111	RESERVED
11111110	127
11111101	126
11111100	125
\ldots	\ldots
00000011	-124
00000010	-125
00000001	-126
00000000	RESERVED

Exponent

s exponent (8 bits)

 fraction (23 bits)- The exponent is not represented in two's complement.
- Instead, exponents are sequentially represented starting from 000... 1 (most negative) to 111... 10 (most positive). This makes bit-level comparison fast.
- Actual value = binary value - 127 ("bias")

11111110	$254-127=127$
11111101	$253-127=126$
\ldots	$2-127=-125$
00000010	$1-127=-126$
00000001	2

Fraction

s exponent (8 bits)
 fraction (23 bits)

$x * 2^{y}$

- We could just encode whatever x is in the fraction field. But there's a trick we can use to make the most out of the bits we have.

An Interesting Observation

In Base 10:
$42.4 \times 10^{5}=4.24 \times 10^{6}$
$324.5 \times 10^{5}=3.245 \times 10^{7}$
$0.624 \times 10^{5}=6.24 \times 10^{4}$

In Base 2:
$10.1 \times 2^{5}=1.01 \times 2^{6}$
$1011.1 \times 2^{5}=1.0111 \times 2^{8}$
$0.110 \times 2^{5}=1.10 \times 2^{4}$

We tend to adjust the exponent until we get down to one place to the left of the decimal point.

Observation: in base 2, this means there is always a 1 to the left of the decimal point!

Fraction

s exponent (8 bits) fraction (23 bits)

$x * 2^{y}$

- We can adjust this value to fit the format described previously. Then, x will always be in the format 1.XXXXXXXXX...
- Therefore, in the fraction portion, we can encode just what is to the right of the decimal point! This means we get one more digit for precision.

Value encoded = 1._[FRACTION BINARY DIGITS]_

Practice

Sign	Exponent						Fraction			
0	0	\ldots	0	0	0	1	0	1	0	
\ldots										

Is this number:
A) Greater than 0 ?
B) Less than 0 ?

Practice

Sign	Exponent					Fraction				
0	0	\ldots	0	0	0	1	0	1	0	\ldots

Is this number:
A) Greater than 0 ?
B) Less than 0 ?

Is this number:

$1.25 \times 2^{\wedge}-126$

A) Less than -1?
B) Between -1 and 1 ?
C) Greater than 1?

Skipping Numbers

- We said that it's not possible to represent all real numbers using a fixedwidth representation. What does this look like?

Float Converter

- https://www.h-schmidt.net/FloatConverter/IEEE754.html

Floats and Graphics

- https://www.shadertoy.com/view/4tVyDK

Let's Get Real

What would be nice to have in a real number representation?

- Represent widest range of numbers possible $\sqrt{ }$
- Flexible "floating" decimal point $\sqrt{ }$
- Represent scientific notation numbers, e.g. 1.2×10^{6} ?
- Still be able to compare quickly $\sqrt{ }$
- Have more predictable over/under-flow behavior ?

Representing Zero

The float representation of zero is all zeros (with any value for the sign bit)

Sign	Exponent	Fraction
any	All zeros	All zeros

- This means there are two representations for zero! :

Representing Small Numbers

If the exponent is all zeros, we switch into "denormalized" mode.

Sign	Exponent	Fraction
any	All zeros	Any

- We now treat the exponent as -126 , and the fraction as without the leading 1 .
- This allows us to represent the smallest numbers as precisely as possible.

Representing Exceptional Values

If the exponent is all ones, and the fraction is all zeros, we have +- infinity.

Sign	Exponent	Fraction
any	All ones	All zeros

- The sign bit indicates whether it is positive or negative infinity.
- Floats have built-in handling of over/underflow!
- Infinity + anything $=$ infinity
- Negative infinity + negative anything $=$ negative infinity
- Etc.

Representing Exceptional Values

If the exponent is all ones, and the fraction is nonzero, we have Not a Number (NaN)

Sign	Exponent						Fraction
any	1	\ldots	\ldots	\ldots	\ldots	1	Any nonzero

- NaN results from computations that produce an invalid mathematical result.
- Sqrt(negative)
- Infinity / infinity
- Infinity + -infinity
- Etc.

Number Ranges

- 32-bit integer (type int):
>-2,147,483,648 to 2147483647
, Every integer in that range can be represented
- 64-bit integer (type long):
> $-9,223,372,036,854,775,808$ to $9,223,372,036,854,775,807$
- 32-bit floating point (type float):
$-\sim 1.2 \times 10^{-38}$ to $\sim 3.4 \times 10^{38}$
- Not all numbers in the range can be represented (not even all integers in the range can be represented!)
- Gaps can get quite large! (larger the exponent, larger the gap between successive fraction values)
-64-bit floating point (type double):
$-\sim 2.2 \times 10^{-308}$ to $\sim 1.8 \times 10^{308}$

Precision options

- Single precision: 32 bits

s	\exp	frac	
8-bits			23-bits

- Double precision: 64 bits

s	\exp	frac	
$1 \quad$ 11-bits	52-bits		

- Extended precision: 80 bits (Intel only)

s	\exp	frac	
1	15-bits	63 or 64-bits	

Visualization: Floating Point Encodings

Lecture Plan

- Representing real numbers
- Fixed Point
- Floating Point
- Example and Properties
- Floating Point Arithmetic
- Floating Point in C

Tiny Floating Point Example

s	\exp	frac
1	4-bits	3-bits

- 8-bit Floating Point Representation
- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of $7\left(=2^{(4-1)}-1\right)$
- the last three bits are the frac
- Same general form as IEEE Format
- normalized, denormalized
- representation of $0, \mathrm{NaN}$, infinity

Dynamic Range (Positive Only)

n: $E=\operatorname{Exp}-$ Bias $\mathrm{d}: \mathrm{E}=1$ - Bias

largest denorm
smallest norm
closest to 1 below
closest to 1 above
largest norm

Distribution of Values

-6-bit IEEE-like format

- e = 3 exponent bits
- $\mathrm{f}=2$ fraction bits
- Bias is $2^{3-1}-1=3$

s	\exp	frac
1	3-bits	2-bits

- Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

-6-bit IEEE-like format

- e = 3 exponent bits
- $f=2$ fraction bits
- Bias is 3

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
- All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
- Must first compare sign bits
- Must consider -0 $=0$
- NaNs problematic
- Will be greater than any other values
-What should comparison yield?
- Otherwise OK
- Denorm vs. normalized
- Normalized vs. infinity

Lecture Plan

- Representing real numbers
- Fixed Point
- Floating Point
- Example and Properties
- Floating Point Arithmetic
- Floating Point in C

Demo: Float Arithmetic

Floating Point Arithmetic

Is this just overflowing? It turns out it's more subtle.

```
float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14
Let's look at the binary representations for 3.14 and 1e20:
```


Floating Point Arithmetic

To add real numbers, we must align their binary points:

$$
\begin{array}{r}
3.14 \\
+\quad 100000000000000000000.00 \\
\hline 100000000000000000003.14
\end{array}
$$

What does this number look like in 32-bit IEEE format?

Floating Point Arithmetic

Step 1: convert from base 10 to binary

What is 100000000000000000003.14 in binary? Let's find out!
http://web.stanford.edu/class/archive/cs/cs107/cs107.1184/float/convert.html

Floating Point Arithmetic

Step 2: find most significant 1 and take the next 23 digits for the fractional component, rounding if needed.

Floating Point Arithmetic

Step 3: find how many places we need to shift left to put the number in 1.xxx format. This fills in the exponent component.

66 shifts -> $66+127=193$

Floating Point Arithmetic

Step 4: if the sign is positive, the sign bit is 0 . Otherwise, it's 1 .

Sign bit is 0 .

Floating Point Arithmetic

The binary representation for $1 \mathrm{e} 20+3.14$ thus equals the following:

3130	23	
0	11000001	01011010111100011101100

This is the same as the binary representation for 1e20 that we had before!

> We didn't have enough bits to differentiate between 1 e 20 and $1 \mathrm{e} 20+3.14$.

Floating Point Arithmetic

Is this just overflowing? It turns out it's more subtle.

```
float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14
```

Floating point arithmetic is not associative. The order of operations matters!

- The first line loses precision when first adding 3.14 and 1e20, as we have seen.
- The second line first evaluates $1 \mathrm{e} 20-1 \mathrm{e} 20=0$, and then adds 3.14

Demo: Float Equality

Floating Point Arithmetic

Float arithmetic is an issue with most languages, not just C!

- http://geocar.sdf1.org/numbers.html

Let's Get Real

What would be nice to have in a real number representation?

- Represent widest range of numbers possible $\sqrt{ }$
- Flexible "floating" decimal point $\sqrt{ }$
- Represent scientific notation numbers, e.g. $1.2 \times 10^{6} \boldsymbol{V}$
- Still be able to compare quickly $\sqrt{ }$
- Have more predictable over/under-flow behavior $\sqrt{ }$

Lecture Plan

- Representing real numbers
- Fixed Point
- Floating Point
- Example and Properties
- Floating Point Arithmetic
- Floating Point in C

Floating Point in C

- C Guarantees Two Levels
- float single precision
- double double precision
- Conversions/Casting
- Casting between int, float, and double changes bit representation
- double/float \rightarrow int
- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN: Generally sets to TMin
- int \rightarrow double
- Exact conversion, as long as int has ≤ 53 bit word size
- int \rightarrow float
- Will round according to rounding mode

Ariane 5: A Bug and A Crash

- On June 4, 1996, Ariane 5 rocket self destructed just after 37 seconds after liftoff
- Cost: \$500 million
- Cause: An overflow in the conversion from a 64 bit floating point number to a 16 bit signed integer
- A design flaw:
- 5 times faster than Ariane 4
- Reused same software specifications from Ariane 4
- Ariane 4 assumes horizontal velocity would never overflow a 16-bit number

0×5 F3759DF or The Fast Inverse Squtre Root

float Q_rsqrt(float number)
long i;
float x2, y
const float threehalfs $=1.5 \mathrm{~F}$;
$\mathrm{x} 2=$ number $* 0.5 \mathrm{~F}$;
$\mathrm{y}=$ number;
$\mathrm{i}=*($ long $*) ~ \& y$
// evil floating point bit
level hacking
i $=0 \times 5 f 3759 \mathrm{df}-(\mathrm{i} \gg 1)$;
// what the fuck?

- * (loat *) \&i;
$\mathrm{y}=\mathrm{y} *$ (threehalfs $-(\mathrm{x} 2 * \mathrm{y} * \mathrm{y})$);
// 1st iteration
// 2nd iteration, this can be
removed
return y;
The fast inverse square root implementation from Quake III Arena-including the exact original comment text

Floating Point Puzzles

- For each of the following C expressions, either:
- Argue that it is true for all argument values
- Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither \mathbf{d} nor \mathbf{f} is NaN

- $x==$ (int)(float) x
- $x==$ (int)(double) x
- $f==$ (float)(double) f
- d == (float) d
- $f==-(-f)$;
- $2 / 3=2 / 3.0$
- $d<0.0 \Rightarrow\left(\left(d^{*} 2\right)<0.0\right)$
- $d>f \quad \Rightarrow \quad-f>-d$
- $d * d>=0.0$
- $(d+f)-d==f$

False
True
True
False
True
False
True (OF?)
True
True (OF?)
False

Floats Summary

- IEEE Floating Point is a carefully-thought-out standard. It's complicated, but engineered for their goals.
- Floats have an extremely wide range, but cannot represent every number in that range.
- Some approximation and rounding may occur! This means you definitely don't want to use floats e.g. for currency.
- Associativity does not hold for numbers far apart in the range
- Equality comparison operations are often unwise.

Additional Reading

What Every Computer Scientist Should Know About Floating-Point Arithmetic

DAVID GOLDBERG
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304

> Floating-point arithmetic is considered an esotoric subject by many people. This is rather surprising, because floating-point is ubiquitous in computer systems: Almost every language has a floating-point datatype; computers from PCs to supercomputers have floating-point accelerators; most compilers will be called upon to compile
> floating-point algorithms from time to time; and virtually every operating system must respond to floating-point exceptions such as overflow This paper presents a tutorial on the aspects of floating-point that have a direct impact on designers of computer systems. It begins with background on floating-point representation and rounding error, continues with a discussion of the IEEE floating-point standard, and concludes with examples of how computer system builders can better support floating point.
> Categories and Subject Descriptors: (Primary) C.0 [Computer Systems Organization]: General-instruction set design; D.3.4 [Programming Languages]:
> Processors-compilers, optimuzation; G.1.0 [Numerical Analysis]: General-computer arithmetic, error analysis, numercal algorithms (Secondary) D.2.1 [Software
> Engineering]: Requirements/Specifications-languages; D.3.1 [Programming
> Languages]: Formal Definitions and Theory-semantics D.4.1 [Operating Systems]: Process Management-synchronization
> General Terms: Algorithms, Design, Languages
> Additional Key Words and Phrases: denormalized number, exception, floating-point, floating-point standard, gradual underflow, guard digit, NaN, overflow, relative error, rounding error, rounding mode, ulp, underflow

What Every Computer Scientist Should Know About Floating-Point Arithmetic, David Goldberg, ACM Computing Surveys, 23(1), 1991

Recap

- Representing real numbers
- Fixed Point
- Floating Point
- Example and Properties
- Floating Point Arithmetic
- Floating Point in C

Next time: How can a computer represent and manipulate more complex data like text?

