The exam is open book and open note, and focuses on material covered in the lectures, labs, assignments, and additional readings. The exam questions will require you to demonstrate a good understanding of the key concepts and the ability to analyze a particular situation and apply your knowledge.

Material Covered: The first half the class concentrates on the following three modules:

1. Data Representations,
2. Introduction to C,
3. Introduction to x86-64 Assembly

Hence, the midterm exam will cover all materials contained in Lectures 2-23. Topics covered in the lectures are listed in detail below:

Data Representations
- Lecture 2: A Tour of C Programs, Bits & Bytes
 bits and bytes, hexadecimal, integer representations, unsigned integers
- Lecture 3: Representing and Operating on Integers
 signed integers, overflow, casting and combining types
- Lecture 4: Bits and Bitwise Operators
 bitwise operators, bitmasks, bit shift operators
- Lecture 5: Floating Point
 representing real numbers, fixed point, floating point
- Lecture 6: More Floating Point
 tiny floating point, floating point arithmetic, floating point in C

Introduction to C
- Lecture 7: Chars and Strings in C
 characters, string, common string operations (comparing, copying, concatenating, substrings)
- Lecture 8: More Strings in C, Pointers
 searching in strings, points
- Lecture 9: Strings in Memory
 printing the value of a pointer, strings in memory
- Lecture 10: Arrays and Pointers
 pointers and parameters, double pointers, arrays in memory, arrays of pointers
- Lecture 11: The Stack and The Heap
 pointer arithmetic, the stack, the heap and dynamic memory, realloc
- Lecture 12: Other Heap Allocations, realloc
 calloc, strdup, freeing the memory with free, realloc, stack vs. heap
- Lecture 13: Generics
 generic swap, generic pitfalls, generic array swap
Lecture 14: Function Pointers

 generic bubble sort, function pointers

Lecture 15: More Function Pointers, const

 generic printing, counting matches, function pointers as variables, generic C standard library functions, const

Lecture 16: Structures

 struct, generic stack

Lecture 17: Compiling C programs

 what really happens in GCC, make and makefiles

Introduction to x86-64 Assembly

Lecture 18: Introduction to x86-64

 gcc and assembly, looking at an executable, registers, the mov instruction

Lecture 19: Data Movement

 operand forms, data and register sizes, mov and data sizes

Lecture 20: Arithmetic and Logic Operations

 the lea instruction, logical and arithmetic operations, reverse engineering assembly code

Lecture 21: Assembly Execution and %rip

 executing instructions, the program counter register (%rip)

Lecture 22: x86-64 Control Flow

 unconditional and conditional jump instructions, control mechanics (condition codes, the cmp and test instructions), implementation of if statements in assembly

Lecture 23: More Control Flow

 implementation of while and for loops in assembly, other instructions that depend on condition codes (the set and cmov instructions)