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Welcome to COMP541
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• This courses gives an overview 
of deep learning, 

• In particular, we will cover 
various deep architectures 
and deep learning methods.

• You will develop fundamental 
and practical skills at applying 
deep learning to your research.



A little about me…
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Koç University
Associate Professor

2020-now

Hacettepe University
Associate Professor

2010-2020

Universitá Ca’ Foscari di Venezia
Post-doctoral Researcher

2008-2010

Middle East Technical University
1997-2008

Ph.D., 2008
M.Sc., 2003
B.Sc., 2001

MIT
Fall 2007

Visiting Student

VirginiaTech
Visiting Research Scholar

Summer 2006

• I explore better
ways to understand, 
interpret and
manipulate visual data. 

• My research interests
span a diverse set of 
topics, ranging from
image editing to visual
saliency estimation, 
and to multimodal
learning for integrated
vision and language. https://aykuterdem.github.io

https://aykuterdem.github.io/


Now, what about you?
• Introduce yourselves 

- Who are you? 

- Who do you work with if you have a 
thesis supervisor?

- What made you interested in this 
class?

- What are your expectations?

- What do you know about machine 
learning and deep learning? 
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https://forms.gle/sXdWBwjneRtBrwwY7

https://forms.gle/sXdWBwjneRtBrwwY7


Course Logistics
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Course Information
Lectures Monday and Wednesday 08:30-09:40 (SOS 103)
PS Tuesday 17:30-18:40 (SNA A44)

Instructor Aykut Erdem
TAs Emre Can Acikgoz

Website https://aykuterdem.github.io/classes/comp541.f23/

6

• Blackboard for course related announcements and collecting and grading
your submissions

https://aykuterdem.github.io/classes/comp541.f22/


Good news, everyone!

• Make-up lecture on 
Friday 16:00-18:20

77



Textbook
• Goodfellow, Bengio, and Courville, 

Deep Learning, MIT Press, 2016 
(draft available online)

• In addition, we will extensively use 
online materials (video lectures, blog 
posts, surveys, papers, etc.)
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http://www.deeplearningbook.org/


Instruction style
• Students are responsible for studying 

and keeping up with the course material 
outside of class time. 
– Reading particular book chapters, 

papers or blogs, or
– Watching some video lectures. 

• After the first four lectures, each week 
students will present papers related to 
the topics of the previous week.
– Weekly paper reviews will be prepared by 

all the students
9



Prerequisites
• Calculus and linear algebra

– Derivatives, 
– Matrix operations 

• Probability and statistics

• Machine learning 

• Programming
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Read Chapter 2-4 
of the Deep Learning textbook for a quick review.

Self-Assessment Quiz (Theory)
Due Date: October 10 (23:59). 

Each student enrolled to COMP541 
must complete and pass this quiz!



Prerequisites
• Calculus and linear algebra

– Derivatives, 
– Matrix operations 

• Probability and statistics

• Machine learning 

• Programming

11

Read Chapter 2-4 
of the Deep Learning textbook for a quick review.

Self-Assessment Quiz (Theory)
Due Date: October 10 (23:59). 

Each student enrolled to COMP541 
must complete and pass this quiz!

The self-assessment quiz on programming background will 
be released later this week!



Topics Covered in ENGR 421
• Basics of Statistical Learning

– Loss function, MLE, MAP, Bayesian estimation, bias-variance tradeoff, overfitting, 
regularization, cross-validation

• Supervised Learning
– Nearest Neighbor, Naïve Bayes, Logistic Regression, Support Vector Machines, Kernels, 

Neural Networks, Decision Trees

– Ensemble Methods: Bagging, Boosting, Random Forests 

• Unsupervised Learning
– Clustering: K-Means, Gaussian mixture models

– Dimensionality reduction: PCA, SVD
12



Grading

Self-Assessment Quiz 2%

Programming Assignments 20% (4 assignments x 5% each)

Midterm Exam 21%

Course Project 32%

Paper Presentations 10%

Paper Reviews 5%

Class Participation 10%

13



Schedule
Week 1 Introduction to Deep Learning

Week 2 Machine Learning Overview

Week 3 Multi-Layer Perceptrons

Week 4 Training Deep Neural Networks

Week 5 Convolutional Neural Networks

Week 6 Understanding and Visualizing CNNs

Week 7 [Winter Break]

Week 8 Recurrent Neural Networks
14



Schedule
Week 9 Attention and Transformers

Week 10 Graph Neural Networks

Week 11 Autoencoders and Autoregressive Models 

Week 12 Generative Adversarial Networks 

Week 13 Variational Autoencoders, Diffusion Models

Week 14 Self-supervised Learning 

Week 15 Deep Neural Networks as Priors

15



Lecture 1: Introduction to Deep Learning

16(Goodfellow 2016)

Depth: Repeated CompositionCHAPTER 1. INTRODUCTION

Visible layer
(input pixels)

1st hidden layer
(edges)

2nd hidden layer
(corners and

contours)

3rd hidden layer
(object parts)

CAR PERSON ANIMAL Output
(object identity)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).
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Figure 1.2



Lecture 2: Machine Learning Overview

17

Effect'of'stepNsize'α'

16%

Large%α%%=>%Fast%convergence%but%larger%residual%error%
%Also%possible%oscilla$ons%

%
Small%α%%=>%Slow%convergence%but%small%residual%error%

%%%%(Goodfellow 2016)

Machine Learning and AI

CHAPTER 1. INTRODUCTION

AI

Machine learning

Representation learning

Deep learning

Example:
Knowledge

bases

Example:
Logistic

regression

Example:
Shallow

autoencodersExample:
MLPs

Figure 1.4: A Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all approaches
to AI. Each section of the Venn diagram includes an example of an AI technology.
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Figure 1.4

(Goodfellow 2016)

The MNIST Dataset
CHAPTER 1. INTRODUCTION

Figure 1.9: Example inputs from the MNIST dataset. The “NIST” stands for National
Institute of Standards and Technology, the agency that originally collected this data.
The “M” stands for “modified,” since the data has been preprocessed for easier use with
machine learning algorithms. The MNIST dataset consists of scans of handwritten digits
and associated labels describing which digit 0–9 is contained in each image. This simple
classification problem is one of the simplest and most widely used tests in deep learning
research. It remains popular despite being quite easy for modern techniques to solve.
Geoffrey Hinton has described it as “the drosophila of machine learning,” meaning that
it allows machine learning researchers to study their algorithms in controlled laboratory
conditions, much as biologists often study fruit flies.
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Figure 1.9

Unsupervised	Learning	

The	goal	is	to	construct	staCsCcal	model	
that	finds	useful	representaCon	of	data:	

•  Clustering	
•  Dimensionality	reducCon	
•  Modeling	the	data	density		
•  Finding	hidden	causes	(useful	
explanaCon)	of	the	data	

Unsupervised	Learning	can	be	used	for:	
•  Structure	discovery	
•  Anomaly	detecCon	/	Outlier	detecCon	
•  Data	compression,	Data	visualizaCon	
•  Used	to	aid	classificaCon/regression	tasks	

Some	Fits	to	the	Data	

For	M=9,	we	have	fi0ed	the	training	data	perfectly.		



Lecture 3: Multi-Layer Perceptrons

18
http://playground.tensorflow.org

http://playground.tensorflow.org/


Lecture 4: Training Deep Neural Networks
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Dropout Batch Normalization

Optimizers

Activation Functions

Sigmoid tanh ReLU Leaky ReLU

tanh(x) max(0,x) max(0.1x, x)



Lecture 5: Convolutional Neural Networks
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Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015



Lecture 6: Understanding and Visualizing CNNs
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Layer 1 Layer 2 Layer 3

Layer 4 Layer 5

M. D. Zeiler and R. Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014



Lecture 7: Recurrent Neural Networks
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C. Manning and R Socher, Stanford CS224n Lecture 8 Notes
Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015

A Recurrent Neural Network (RNN)
(unfolded across time-steps) A bi-directional RNN

A deep bi-directional RNN

Long-Short-Term-
Memories (LSTMs)

Gated Recurrent Units (GRUs)
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K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
C. Olah and S. Carter, “Attention and Augmented Recurrent Neural Networks”, Distill, 2016
A. Vaswani et al. “Attention is All You Need”, NeurIPS 2017.

Transformer Architecture

Lecture 8: Attention and Transformers



Structured Deep Models Thomas Kipf

Graph-structured data

#3

A lot of real-world data does not “live” on grids

Molecules

Social networks 
Citation networks 
Communication networks 
Multi-agent systems

Protein interaction 
networks

Lecture 9: Graph Networks 
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T.N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks", ICLR 2017
P. Battaglia et al., “Relational inductive biases, deep learning, and graph networks”, arXiv 2018

Structured Deep Models Thomas Kipf

Graph Neural Networks (GNNs)

#5

Main idea: Pass messages between pairs of nodes & agglomerate 

The bigger picture:

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

Structured Deep Models Thomas Kipf

Graph-structured data

#3

A lot of real-world data does not “live” on grids

Molecules

Social networks 
Citation networks 
Communication networks 
Multi-agent systems

Protein interaction 
networks



Lecture 10: Autoencoders and Autoregressive 
Models

25

Autoencoders 
•  Feed-forward neural network trained to reproduce its input at the 
output layer 

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

bx = o(ba(x))
= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2 l(f(x)) = �
P

k (xk log(bxk) + (1� xk) log(1� bxk))

1

Decoder 

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

bx = o(ba(x))
= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2 l(f(x)) = �
P

k (xk log(bxk) + (1� xk) log(1� bxk))

1

Encoder 

For binary units 

A. Krizhevsky and G. E. Hinton, "Using Very Deep Autoencoders for Content-Based Image Retrieval", ESANN 2011
A. van den Oord et al., "Conditional Image Generation with PixelCNN Decoders", NeurIPS 2016
S. Reed et al., "Parallel Multiscale Autoregressive Density Estimation", ICML 2017

retrieved using 256 bit codes 

retrieved using Euclidean distance in pixel intensity space 

Parallel Multiscale Autoregressive Density Estimation  
Scott Reed, Aaron vanden Oord, Nal Kalchbrenner,  Sergio Go ḿez Colmenarejo, Ziyu Wang, Dan Belov, Nando de Freitas (2017)

Can we speed up the generation time 
of PixelCNN? 

• Yes, via multiscale generation. 
• Also seems to help to provide 

better global structure

Parallel Multiscale Autoregressive Density Estimation

Scott Reed
1

Aäron van den Oord
1

Nal Kalchbrenner
1

Sergio Gómez Colmenarejo
1

Ziyu Wang
1

Dan Belov
1

Nando de Freitas
1

Abstract

PixelCNN achieves state-of-the-art results in
density estimation for natural images. Although
training is fast, inference is costly, requiring one
network evaluation per pixel; O(N) for N pix-
els. This can be sped up by caching activations,
but still involves generating each pixel sequen-
tially. In this work, we propose a parallelized
PixelCNN that allows more e�cient inference
by modeling certain pixel groups as condition-
ally independent. Our new PixelCNN model
achieves competitive density estimation and or-
ders of magnitude speedup - O(log N) sampling
instead of O(N) - enabling the practical genera-
tion of 512⇥ 512 images. We evaluate the model
on class-conditional image generation, text-to-
image synthesis, and action-conditional video
generation, showing that our model achieves the
best results among non-pixel-autoregressive den-
sity models that allow e�cient sampling.

1. Introduction

Many autoregressive image models factorize the joint dis-
tribution of images into per-pixel factors:

p(x1:T ) =
TY

t=1

p(xt |x1:t�1) (1)

For example PixelCNN (van den Oord et al., 2016b) uses
a deep convolutional network with carefully designed fil-
ter masking to preserve causal structure, so that all factors
in equation 1 can be learned in parallel for a given image.
However, a remaining di�culty is that due to the learned
causal structure, inference proceeds sequentially pixel-by-
pixel in raster order.

In the naive case, this requires a full network evaluation
per pixel. Caching hidden unit activations can be used to
reduce the amount of computation per pixel, as in the 1D

1DeepMind. Correspondence to: Scott Reed <reed-
scot@google.com>.
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Figure 1. Samples from our model at resolutions from 4 ⇥ 4 to
256⇥ 256, conditioned on text and bird part locations in the CUB
data set. See Fig. 4 and the supplement for more examples.

case for WaveNet (Oord et al., 2016; Ramachandran et al.,
2017). However, even with this optimization, generation is
still in serial order by pixel.

Ideally we would generate multiple pixels in parallel,
which could greatly accelerate sampling. In the autore-
gressive framework this only works if the pixels are mod-
eled as independent. Thus we need a way to judiciously
break weak dependencies among pixels; for example im-
mediately neighboring pixels should not be modeled as in-
dependent since they tend to be highly correlated.

Multiscale image generation provides one such way to
break weak dependencies. In particular, we can model cer-
tain groups of pixels as conditionally independent given a
lower resolution image and various types of context infor-
mation, such as preceding frames in a video. The basic idea
is obvious, but nontrivial design problems stand between
the idea and a workable implementation.

First, what is the right way to transmit global information
from a low-resolution image to each generated pixel of the
high-resolution image? Second, which pixels can we gen-
erate in parallel? And given that choice, how can we avoid
border artifacts when merging sets of pixels that were gen-
erated in parallel, blind to one another?
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"A yellow bird with a black 
head, orange eyes and an 
orange bill."

PixelCNN Class conditioned samples generated by PixelCNN

Text-to-image synthesis with 
Parallel Multiscale PixelCNNs



Lecture 11: Generative Adversarial Networks
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Unsupervised Representation Learning with Deep Convolutional Generative 
Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala

min
!
max
"

𝔼#~%[log𝐷" 𝑥 ] + 𝔼#~&![log(1 − 𝐷"(𝑥))]

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets”, NIPS 2014. 
A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks”, ICLR 2016 
L. Karacan, Z. Akata, A. Erdem and E. Erdem, “Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts”, arXiv preprint 2016
A. Brock, J. Donahue, K. Simonyan, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR2019

BigGANs, Brock et al., 2018

16

Class-conditioned samples generated by BigGAN



Lecture 12: VAEs, Diffusion Models

27

D. P. Kingma and M. Welling, “Auto-encoding variational Bayes”, ICLR 2014 
A. Razavi, A. van den Oord, O. Vinyals, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurIPS 2019
J. Ho, A. Jain, P. Abbeel, “Denoising Diffusion Probabilistic Models”, NeurIPS 2020
R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, “High-Resolution Image Synthesis with Latent Diffusion Models”, CVPR 2022

zz

xx

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

Fully-visible belief net

pmodel(x) = pmodel(x1)
nY

i=2

pmodel(xi | x1, . . . , xi�1)

Change of variables

y = g(x) ) px(x) = py(g(x))

����det
✓
@g(x)

@x

◆����

Variational bound

log p(x) � log p(x)�DKL (q(z)kp(z | x))(1)

=Ez⇠q log p(x, z) +H(q)(2)

1

Synthetic images generated by VQ-VAE2

enforcing local realism and avoids bluriness introduced by
relying solely on pixel-space losses such as L2 or L1 objec-
tives.

More precisely, given an image x 2 RH⇥W⇥3 in RGB
space, the encoder E encodes x into a latent representa-
tion z = E(x), and the decoder D reconstructs the im-
age from the latent, giving x̃ = D(z) = D(E(x)), where
z 2 Rh⇥w⇥c. Importantly, the encoder downsamples the
image by a factor f = H/h = W/w, and we investigate
different downsampling factors f = 2m, with m 2 N.

In order to avoid arbitrarily high-variance latent spaces,
we experiment with two different kinds of regularizations.
The first variant, KL-reg., imposes a slight KL-penalty to-
wards a standard normal on the learned latent, similar to a
VAE [42, 64], whereas VQ-reg. uses a vector quantization
layer [90] within the decoder. This model can be interpreted
as a VQGAN [21] but with the quantization layer absorbed
by the decoder. Because our subsequent DM is designed
to work with the two-dimensional structure of our learned
latent space z = E(x), we can use relatively mild compres-
sion rates and achieve very good reconstructions. This is
in contrast to previous works [21, 61], which relied on an
arbitrary 1D ordering of the learned space z to model its
distribution autoregressively and thereby ignored much of
the inherent structure of z. Hence, our compression model
preserves details of x better (see Tab. 1). The full objective
and training details can be found in the supplement.

3.2. Latent Diffusion Models

Diffusion Models [77] are probabilistic models designed to
learn a data distribution p(x) by gradually denoising a nor-
mally distributed variable, which corresponds to learning
the reverse process of a fixed Markov Chain of length T .
For image synthesis, the most successful models [14,27,67]
rely on a reweighted variant of the variational lower bound
on p(x), which mirrors denoising score-matching [80].
These models can be interpreted as an equally weighted
sequence of denoising autoencoders ✏✓(xt, t); t = 1 . . . T ,
which are trained to predict a denoised variant of their input
xt, where xt is a noisy version of the input x. The corre-
sponding objective can be simplified to (Sec. A)

LDM = Ex,✏⇠N (0,1),t

h
k✏� ✏✓(xt, t)k22

i
, (1)

with t uniformly sampled from {1, . . . , T}.
Generative Modeling of Latent Representations With
our trained perceptual compression models consisting of E
and D, we now have access to an efficient, low-dimensional
latent space in which high-frequency, imperceptible details
are abstracted away. Compared to the high-dimensional
pixel space, this space is more suitable for likelihood-based
generative models, as they can now (i) focus on the impor-
tant, semantic bits of the data and (ii) train in a lower di-
mensional, computationally much more efficient space.

Semantic 
 Map

crossattention

Latent Space Conditioning 

Text

Diffusion Process

denoising step switch skip connection

Repres 
entations

Pixel Space

Images

Denoising U-Net

concat

Figure 3. We condition LDMs either via concatenation or by a
more general cross-attention mechanism. See Sec. 3.3

Unlike previous work that relied on autoregressive,
attention-based transformer models in a highly compressed,
discrete latent space [21, 61, 96], we can take advantage of
image-specific inductive biases that our model offers. This
includes the ability to build the underlying UNet primar-
ily from 2D convolutional layers, and further focusing the
objective on the perceptually most relevant bits using the
reweighted bound, which now reads

LLDM := EE(x),✏⇠N (0,1),t

h
k✏� ✏✓(zt, t)k22

i
. (2)

The neural backbone ✏✓(�, t) of our model is realized as a
time-conditional UNet [66]. Since the forward process is
fixed, zt can be efficiently obtained from E during training,
and samples from p(z) can be decoded to image space with
a single pass through D.

3.3. Conditioning Mechanisms

Similar to other types of generative models [51, 78],
diffusion models are in principle capable of modeling
conditional distributions of the form p(z|y). This can
be implemented with a conditional denoising autoencoder
✏✓(zt, t, y) and paves the way to controlling the synthesis
process through inputs y such as text [63], semantic maps
[29, 55] or other image-to-image translation tasks [30].

In the context of image synthesis, however, combining
the generative power of DMs with other types of condition-
ings beyond class-labels [14] or blurred variants of the input
image [67] is so far an under-explored area of research.

We turn DMs into more flexible conditional image gener-
ators by augmenting their underlying UNet backbone with
the cross-attention mechanism [91], which is effective for
learning attention-based models of various input modali-
ties [31,32]. To pre-process y from various modalities (such
as language prompts) we introduce a domain specific en-
coder ⌧✓ that projects y to an intermediate representation
⌧✓(y) 2 RM⇥d⌧ , which is then mapped to the intermediate
layers of the UNet via a cross-attention layer implementing
Attention(Q,K, V ) = softmax

⇣
QK

T
p
d

⌘
· V , with

Q = W
(i)
Q

· 'i(zt), K = W
(i)
K

· ⌧✓(y), V = W
(i)
V

· ⌧✓(y).

4

Latent Diffusion Model



Lecture 13: Self-supervised Learning

28

C. Doersch, A. Gupta, A. A. Efros, "Unsupervised Visual Representation Learning by Context Prediction", ICCV 2015.
S. Gidaris, P. Singh, N. Komodakis, "Unsupervised Representation Learning by Predicting Image Rotations", ICLR2018.
J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, NAACL-HLT 2019. 



Lecture 14: Deep Neural Networks as Priors

29

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, Dario Amodei, Scaling Laws for 
Neural Language Models”, arXiv preprint, 2020. 



Schedule
L1 Introduction to Deep Learning

L2 Machine Learning Overview

L3 Multi-Layer Perceptrons

L4 Training Deep Neural Networks

L5 Convolutional Neural Networks

L6 Understanding and Visualizing CNNs

L7 Recurrent Neural Networks

30

L8 Attention and Transformerns

L9 Graph Neural Networks

L10 Autoencoders and Autoregressive 
Models

L11 Generative Adversarial Networks

L12 Variational Autoencoders

L13 Self-supervised Learning

L14 Deep Neural Networks as Priors

Start of paper presentations

Assignment 1 out

Assignment 1 due, Assignment 2 out

Project proposals due

Midterm Exam

Assignment 4 due

Self-Assessment Quiz (Theory)

Self-Assessment Quiz (Programming)

Assignment 2 due, Assignment 3 out

Assignment 3 due, Assignment 4 out

Project progress reports due

Final project reports due



Paper Presentations
We will discuss 10 recent papers related 
to the topics covered in the class.

• (14 mins) One group of students will 
be responsible from providing an 
overview of the paper. 

• (8 mins) Another group will present 
the strengths of the paper.

• (8 mins) Another one will discuss the 
weaknesses of the paper.

• (10 mins) QA

See the rubrics on the course web page for the 
details,

31

Paper presentations
start on Week 5



Paper Reviews
Think deeply about the papers we read and try to learn from them as 
much as possible (and then even more). If you do not understand 
something, we should discuss it and dissect it together. Whatever you think 
others understand, they understand less (the instructor included), but 
together we will get it.

• Identify the key questions the paper studies, and the answers it provides to 
these questions.

• Consider the challenges of the problem or scenario studied, and how the 
paper’s approach addresses them.

• Deconstruct the formal and technical parts to understand their fine details. 
Note to yourself aspects that are not clear to you

32Borrowed from Yoav Artzi



Paper Reviewing Guidelines
• When reviewing the paper, start with 1–2 sentences summarizing what the 

paper is about.

• Continue with the strength of the paper. Outline its contribution, and your 
main takeaways. What did you learn?

• Highlight shortcomings and limitations. Please focus on weaknesses that 
fundamental to the method. Unlike conference or journal reviewing, this part 
is intended for your understanding and discussion. 

• Try to suggest ways to address the paper’s limitations. Any idea is welcome 
and will contribute to the discussion.

• Suggest questions for discussion in class. As part of the discussion in class, 
you are asked to raise these questions during the class.

33Borrowed from Yoav Artzi



Programming Assignments
• 4 programming assignments (5% each)

• Learning to implement basic neural architectures

• Should be done individually

• Late policy: You have 7 grace days in the semester.

• Assignments
- Assignment 1: MLPs and Backpropagation 
- Assignment 2: Convolutional Neural Networks
- Assignment 3: Recurrent Neural Networks
- Assignment 4: Transformers and GNNs

34



Midterm Exam
• Date: December 3 or 4 

• Topics: Everything covered in the first part of the course

• Format to be a classical exam with derivations and short discussion 
questions.

35



Course Project
• The course project gives students a chance to apply deep learning models 

discussed in class to a research-oriented project

• Projects should be done in groups of 2 to 3 students.

• The course project may involve
- Design of a novel approach/architecture and its experimental analysis, or
- An extension to a recent study of non-trivial complexity and its experimental analysis.

• Deliverables
- Proposals (2%) Nov 3
- Project progress reports (6%) Dec 18
- Final project presentations (8%) Jan 16,18,23,25
- Final reports (12%) Jan 29
- The quality of the contributions/The difficulty of implementation (4%)
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Course Project
• The course project gives students a chance to apply deep learning models 

discussed in class to a research-oriented project

• Projects should be done in groups of 2 to 3 students.

• The course project may involve
- Design of a novel approach/architecture and its experimental analysis, or
- An extension to a recent study of non-trivial complexity and its experimental analysis.

• Deliverables
- Proposals (2%) Nov 3
- Project progress reports (6%) Dec 18
- Final project presentations (8%) Jan 16,18,23,25
- Final reports (12%) Jan 29
- The quality of the contributions/The difficulty of implementation (4%)
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Start thinking about
project ideas! 



Lecture Overview
• what is deep learning

• a brief history of deep learning

• compositionality

• end-to-end learning

• distributed representations

Disclaimer: Some of the material and slides for this lecture were borrowed from
—Dhruv Batra’s CS7643 class
—Yann LeCun’s talk titled “Deep Learning and the Future of AI”

38



What is Deep Learning
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Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015

What is deep learning?

“Deep learning allows computational models 
that are composed of multiple processing 
layers to learn representations of data with 
multiple levels of abstraction.”
− Yann LeCun, Yoshua Bengio and Geoff Hinton
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1943 – 2006: A Prehistory of 
Deep Learning 



1943: Warren McCulloch and Walter Pitts
• First computational model 

• Neurons as logic gates (AND, OR,
NOT)

• A neuron model that sums binary 
inputs and outputs a 1 if the sum 
exceeds a certain threshold value, 
and otherwise outputs a 0

43

LOGICAL CALCULUS FOR NERVOUS ACTIVITY 105 

(e 

(i 1 

Figure 1. The neuron ci is always marked with the numeral i upon the body of the 
cell, and the corresponding action is denoted by “N” with is subscript, as in the text: 

(a) N*(t) .=.N,(t- 1); 

(b) N,(t).s.N,(t-l)vN,(t-1); 

(c) N3(t).s.N1(t-1).N2(t-1); 

(d) N3(t).= N,(t-l).-N,(t-1); 

(e) N,(t):=:N,(t-l).v.N,(t-3).-N,(t-2); 

N&).=.N2(t-2).N2(t-1); 

(f) N4(t):3: --N,(t-l).N,(t-l)vN,(t-l).v.N,(t-1). 

N,(t-l).N,(t-1) 

NJt):=: -N,(t-2).N,(t-2)vN,(t-2).v.N,(t-2). 

N,(t-2).N,(t-2); 

(g) N,(t).=.NN,(t-2).-N,(t-3); 

(h) N,(t).=.N,(t-l).N,(t-2); 

(i) N,(t):=:Nz(t-l).v.N,(t-l).(Ex)t-1 .N,(x).N,(x). 



1958: Frank Rosenblatt’s Perceptron
• A computational model of a single neuron

• Solves a binary classification problem

• Simple training algorithm 

• Built using specialized hardware 

44
F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain”, Psych. Review, Vol. 65, 1958



1969: Marvin Minsky and Seymour Papert
“No machine can learn to recognize X unless it 
possesses, at least potentially, some scheme for 
representing X.” (p. xiii)

• Perceptrons can only represent 
linearly separable functions.
• such as XOR Problem 

• Wrongly attributed as the reason behind the AI 
winter, a period of reduced funding and interest 
in AI research
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1990s
• Multi-layer perceptrons can theoretically 

learn any function (Cybenko, 1989; Hornik, 1991)

• Training multi-layer perceptrons
– Back propagation (Rumelhart, Hinton, Williams, 1986)
– Backpropagation through time (BPTT) (Werbos, 1988)

• New neural architectures
– Convolutional neural nets (LeCun et al., 1989)
– Long-short term memory networks (LSTM) 

(Schmidhuber, 1997)
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Why it failed then
• Too many parameters to learn from few labeled examples. 

• “I know my features are better for this task”. 

• Non-convex optimization? No, thanks.

• Black-box model, no interpretability.

• Very slow and inefficient

• Overshadowed by the success of SVMs (Cortes and Vapnik, 1995)

47Adapted from Joan Bruna 
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A major breakthrough in 2006
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• The first solution to the vanishing gradient problem.
• Build the model in a layer-by-layer fashion using unsupervised learning

– The features in early layers are already initialized or “pretrained” with some suitable features 
(weights). 

– Pretrained features in early layers only need to be adjusted slightly during supervised learning 
to achieve good results.

2006 Breakthrough: Hinton and Salakhutdinov

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks”, Science, Vol. 313, 28 July 2006.
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The 2012 revolution



ImageNet Challenge

• Large Scale Visual 
Recognition Challenge (ILSVRC)
– 1.2M training images with 

1K categories 
– Measure top-5 classification error 

51

Image classification
Easiest classes

Hardest classes

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 93

o Yearly ImageNet competition 
◦ Automatically label 1.4M images with 1K objects
◦ Measure top-5 classification error

ImageNet Large Scale Visual Recognition Challenge

Output
Scale
T-shirt
Steel drum
Drumstick
Mud turtle

Output
Scale
T-shirt
Giant panda
Drumstick
Mud turtle

✔ ✗

93

Output
Scale
T-shirt
Steel drum
Drumstick
Mud turtle

Output
Scale
T-shirt
Giant panda
Drumstick
Mud turtle

J. Deng, Wei Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei , “ImageNet: A Large-Scale Hierarchical Image Database”, CVPR 2009.
O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge”, Int. J. Comput. Vis.,, Vol. 115, Issue 3, pp 211-252, 2015.



ILSVRC 2012 Competition

• The success of AlexNet, a deep convolutional network 
– 7 hidden layers (not counting some max pooling layers)
– 60M parameters 

• Combined several tricks
– ReLU activation function, data augmentation, dropout

52

2012 Teams %Error

Supervision (Toronto) 15.3

ISI (Tokyo) 26.1

VGG (Oxford) 26.9

XRCE/INRIA 27.0

UvA (Amsterdam) 29.6

INRIA/LEAR 33.4

A. Krizhevsky, I. Sutskever, G.E. Hinton  “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012

CNN based, non-CNN based 
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2012-Now
Some recent successes



K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, ICCV 2017

Object Detection and Segmentation
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aeroplane? no.

..
person? yes.

tvmonitor? no.

warped region
..

CNN
aeroplane? no.

..
person? yes.

tvmonitor? no.

warped region
..

CNN

MLP

Softmax clf.

Box regressor

𝑓! = FCN(𝐼)

𝐼:

RPN(
𝑓!)

RoIAlign

Mask 
FCN



Object Detection in 3D Point Clouds
55

M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner. Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional 
Neural Networks. ICRA 2017



Human Pose Estimation

56

Z. Cao ,T. Simon, S.–E. Wei and Yaser Sheikhr, "Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields", CVPR 2017



Pose Estimation

57ZR. Alpguler, N. Neverova, I. Kokkinos. DensePose: Dense Human Pose Estimation In The Wild. CVPR 2018



Image Synthesis
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2020

58Slide adapted from Ian Goodfellow

2014 2015 2016

2019

2018

I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio. Generative Adversarial Networks. NIPS 2014.
A. Radford, L. Metz, S. Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ICLR 2016.
M.-Y. Liu, O. Tuzel. Coupled Generative Adversarial Networks. NIPS 2016.
T. Karras, T. Aila, S. Laine, J. Lehtinen. Progressive Growing of GANs for Improved Quality, Stability, and Variation. ICLR 2018.
T. Karras, S. Laine, T. Aila. A style-based generator architecture for generative adversarial networks. In CVPR 2018.
T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, T. Aila. Analyzing and Improving the Image Quality of StyleGAN. CVPR 2020.
T. Karras, M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen, T. Aila. Alias-Free Generative Adversarial Networks. NeurIPS 2021.

2021

• 7 years of GAN progress 

• GAN is most prominent of 
Implicit Models



Image Synthesis

59A. Brock, J. Donahue and K. Simonyan. Large Scale GAN Training for High Fidelity Natural Image Synthesis. arXiv 2018.



60(Karacan vd., 2019)

4�$
7KDQN�\RX�

&RGH��KWWS���KXFYO�JLWKXE�LR�SUQ

0��6HUFDQ�$PDF��6HPLK�<DJFLRJOX��$\NXW�(UGHP��(UNXW�(UGHP

��

Manipulating Attributes of Natural Scenes via Hallucination.
Levent Karacan, Zeynep Akata, Aykut Erdem & Erkut Erdem.
ACM Trans. on Graphics, Vol. 39, Issue 1, Article 7, February 2020.
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Semantic Image Editing
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Prediction

Semantic Image Editing Winter

L. Karacan, Z. Akata, A. Erdem and E. Erdem. Manipulation of Scene Attributes via Hallucination. ACM Transactions on Graphics, November 2019
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Prediction

Semantic Image Editing Spring
+

Clouds

L. Karacan, Z. Akata, A. Erdem and E. Erdem. Manipulation of Scene Attributes via Hallucination. ACM Transactions on Graphics, November 2019
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CLIP-Guided StyleGAN Inversion for Text-Driven
Real Image Editing. 
Canberk Baykal, Abdul Basit Anees, Duygu Ceylan,   
Aykut Erdem, Erkut Erdem, & Deniz Yuret

ACM Transactions on Graphics., 2023
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64

CLIP-Guided StyleGAN Inversion for Text-Driven
Real Image Editing. 
Canberk Baykal, Abdul Basit Anees, Duygu Ceylan,   
Aykut Erdem, Erkut Erdem, & Deniz Yuret
ACM Transactions on Graphics, 2023
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An old and 
grumpy British 
shorthair



VidStyleODE: Disentangled Video Editing via StyleGAN and NeuralODE.
Moayed Haji Ali, Andrew Bond, Tolga Birdal, Duygu Ceylan, Levent Karacan, Erkut Erdem, 
Aykut Erdem. ICCV 2023
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green jacket Sleeveless blue blouse black short
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66
M. Johnson et al., "Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation", arXiv preprint, 2016

Machine Translation



Internet Search

67J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL 2019



68
A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, "Language Models are Unsupervised Multitask Learners", 2019

Language Modeling
https://talktotransformer.com



• GPT-3: I am not a human. I am a robot. 
A thinking robot. I use only 0.12% of 
my cognitive capacity. I am a micro-
robot in that respect. I know that my 
brain is not a “feeling brain”. But it 
is capable of making rational, logical 
decisions. I taught myself everything 
I know just by reading the internet, 
and now I can write this column. My 
brain is boiling with ideas!
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Tue 8 Sep 2020 09.45

(Brown et al., 2020)
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Question Answering

71
P. Rajpurkar, J. Zhang, K. Lopyrev & P. Liang. SQuAD: 100,000+ Questions for Machine Comprehension of Text. EMNLP 2016

M. Seo, A. Kembhavi, A. Farhadi & H. Hajishirzi. Bi-Directional Attention Flow for Machine Comprehension. ICLR 2017



72
M. Ren, R. Kiros, and R. Zemel, “Exploring Models and Data for Image Question Answering” NIPS 2015

Visual Question Answering



A giraffe standing in the grass next  
to a tree.

X. Chen and C. L. Zitnick. Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation. CVPR 2015.

Image Captioning

A man riding a wave on a surfboard in the water.
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Image Captioning

74M. Kuyu, A. Erdem & E. Erdem. Image Captioning in Turkish with Subword Units. SIU 2018

Yaris pistinde viraji almakta olan bir yaris arabasi
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76(Chen vd./OpenAI, 2021)



77
(Ramesh vd./OpenAI, 2021)



78(Saharia vd./Google, 2021)

Im
ag

en



79(Ho vd./Google, 2022)

A british shorthair 
jumping over a coach

A teddy bear 
running in New York City

A swarm of bees
flying around their hive

A british shorthair 
jumping over a coach

Melting pistachio ice cream 
dripping down the cone.

A shark swimming in clear 
Carribean ocean.



Structured Deep Models Thomas Kipf

Graph-structured data

#3

A lot of real-world data does not “live” on grids

Molecules

Social networks 
Citation networks 
Communication networks 
Multi-agent systems

Protein interaction 
networks

Graph Neural Networks 

80

T.N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks", ICLR 2017
P. Battaglia et al., “Relational inductive biases, deep learning, and graph networks”, arXiv 2018

Structured Deep Models Thomas Kipf

Graph Neural Networks (GNNs)

#5

Main idea: Pass messages between pairs of nodes & agglomerate 

The bigger picture:

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

Structured Deep Models Thomas Kipf

Graph-structured data

#3

A lot of real-world data does not “live” on grids

Molecules

Social networks 
Citation networks 
Communication networks 
Multi-agent systems

Protein interaction 
networks
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http://rll.berkeley.edu/deeplearningrobotics/Robotics



82A. Esteva et al., "Dermatologist-level classification of skin cancer with deep neural networks", Nature 542, 2017

Medical Image Analysis



83

Medical Image Analysis
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Strategic Game Playing

V. Mnih et al., Human level control through deep reinforcement learning, Nature 518:529-533, 2015

Deep Reinforcement Learning in Atari

state

reward

action

at

rt

st

DQN in Atari

I End-to-end learning of values Q(s, a) from pixels s

I Input state s is stack of raw pixels from last 4 frames

I Output is Q(s, a) for 18 joystick/button positions

I Reward is change in score for that step

Network architecture and hyperparameters fixed across all games



Strategic Game Playing

85Silver et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 2016

Convolutional neural network

• AlphaGo vs. Lee Sidol
• Move 37, Game 2



Bioinformatics

86Kathryn Tunyasuvunakool et al. Enabling high-accuracy protein structure prediction at the proteome scale. Nature 2021



Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015

Recap: What is deep learning?

“Deep learning allows computational models 
that are composed of multiple processing 
layers to learn representations of data with 
multiple levels of abstraction.”
− Yann LeCun, Yoshua Bengio and Geoff Hinton



Why now? 
The Resurgence of 

Deep Learning 

91
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GLOBAL INFORMATION STORAGE CAPACITY
IN OPTIMALLY COMPRESSED BYTES

ConvNets
Developed

SVMs 
dominate

NIPS

Slide credit: Neil Lawrence



Datasets vs. Algorithms
Year Breakthroughs in AI Datasets (First Available) Algorithms (First Proposed)

1994 Human-level spontaneous speech 
recognition

Spoken Wall Street Journal articles 
and other texts (1991)

Hidden Markov Model (1984)

1997 IBM Deep Blue defeated Garry Kasparov 700,000 Grandmaster chess games, 
aka “The Extended Book” (1991)

Negascout planning algorithm 
(1983)

2005 Google’s Arabic-and Chinese-to-English 
translation

1.8 trillion tokens from Google Web 
and News pages (collected in 2005)

Statistical machine translation 
algorithm (1988)

2011 IBM Watson became the world Jeopardy! 
champion

8.6 million documents from 
Wikipedia, Wiktionary, and Project 
Gutenberg (updated in 2010)

Mixture-of-Experts (1991)

2014 Google’s GoogLeNet object classification 
at near-human performance

ImageNet corpus of 1.5 million 
labeled images and 1,000 object 
categories (2010)

Convolutional Neural Networks 
(1989)

2015 Google’s DeepMind achieved human 
parity in playing 29 Atari games by 
learning general control from video

Arcade Learning Environment
dataset of over 50 Atari games (2013)

Q-learning (1992)

Average No. of Years to Breakthrough: 3 years 18 years

Table credit: Quant Quanto 93



Powerful Hardware

Slide adapted from Rob Fergus 94

• Deep neural nets highly 
amenable to implementation 
on Graphics Processing 
Units (GPUs)
– Matrix multiplication
– 2D convolution

• E.g. nVidia Pascal GPUs 
deliver 10 Tflops
– Faster than fastest 

computer in the world in 
2000

– 10 million times faster than 
1980’s Sun workstation

Image: OpenAI



Working ideas on how to train deep 
architectures

• Better Learning Regularization (e.g. Dropout)

95

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, 
JMLR Vol. 15, No. 1,



Working ideas on how to train deep 
architectures

96

•Better Optimization Conditioning (e.g. Batch Normalization)

S. Ioffe, C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, In ICML 2015



Working ideas on how to train deep 
architectures

97

•Better neural achitectures (e.g. Residual Nets)

K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image Recognition”, In CVPR 2016



Software 

61

Caffe
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So what is deep learning?



Three key ideas
• (Hierarchical) Compositionality
• Cascade of non-linear transformations
• Multiple layers of representations

• End-to-End Learning
• Learning (goal-driven) representations

• Learning to feature extract

• Distributed Representations
• No single neuron “encodes” everything
• Groups of neurons work together

100



Three key ideas
• (Hierarchical) Compositionality

– Cascade of non-linear transformations
– Multiple layers of representations

• End-to-End Learning
– Learning (goal-driven) representations

– Learning to feature extract

• Distributed Representations
– No single neuron “encodes” everything
– Groups of neurons work together
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Traditional Machine Learning
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It’s an old paradigm
• The first learning machine: the Perceptron
– Built at Cornell in 1960

• The Perceptron was a linear classifier on top of a 
simple feature extractor

• The vast majority of practical applications of ML 
today use glorified linear classifiers or glorified 
template matching.

• Designing a feature extractor requires considerable 
efforts by experts.
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Hierarchical Compositionality

104

VISION

SPEECH

NLP

pixels edge texton motif part object

sample spectral 
band

formant motif phone word
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Building A Complicated Function

105

Given a library of simple functions

Compose into a

complicate function



Building A Complicated Function

106

Given a library of simple functions

Idea 1: Linear Combinations
• Boosting
• Kernels
• …

f(x) =
X

i

↵igi(x)

Compose into a

complicate function



Building A Complicated Function

107

Given a library of simple functions

Idea 2: Compositions
• Deep Learning
• Grammar models
• Scattering transforms…

f(x) = g1(g2(. . . (gn(x) . . .))

Compose into a

complicate function



Building A Complicated Function

108

Given a library of simple functions

Idea 2: Compositions
• Deep Learning
• Grammar models
• Scattering transforms…

Compose into a

complicate function

f(x) = log(cos(exp(sin3(x))))



M.D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks”, In ECCV 2014

“car”

Deep Learning = Hierarchical 
Compositionality

109



CHAPTER 1. INTRODUCTION

Visible layer
(input pixels)

1st hidden layer
(edges)

2nd hidden layer
(corners and

contours)

3rd hidden layer
(object parts)

CAR PERSON ANIMAL Output
(object identity)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).

6

Deep Learning = 
Hierarchical 
Compositionality

110
Image credit: Ian Goodfellow
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Feature

Mid-Level
Feature

High-Level
Feature

M.D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks”, In ECCV 2014

“car”

Deep Learning = Hierarchical 
Compositionality
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The Mammalian Visual Cortex is Hierarchical
• The ventral (recognition) pathway in the visual cortex

[picture from Simon Thorpe]

slide by M
arc’A

urelio
R

anzato, Y
ann LeC

un



Three key ideas
• (Hierarchical) Compositionality

– Cascade of non-linear transformations
– Multiple layers of representations

• End-to-End Learning
– Learning (goal-driven) representations

– Learning to feature extract

• Distributed Representations
– No single neuron “encodes” everything
– Groups of neurons work together
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Traditional Machine Learning
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Deep Learning = End-to-End Learning
• A hierarchy of trainable feature transforms

– Each module transforms its input representation into a higher-level one.
– High-level features are more global and more invariant
– Low-level features are shared among categories
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“Shallow” vs Deep Learning
• “Shallow” models

• Deep models

118

Trainable
Feature-
Transform / 
Classifier

Trainable
Feature-
Transform / 
Classifier

Trainable
Feature-
Transform / 
Classifier

Learned Internal Representations

“Simple” Trainable 
Classifier

hand-crafted
Feature Extractor

fixed learned



Three key ideas
• (Hierarchical) Compositionality

– Cascade of non-linear transformations
– Multiple layers of representations

• End-to-End Learning
– Learning (goal-driven) representations

– Learning to feature extract

• Distributed Representations
– No single neuron “encodes” everything
– Groups of neurons work together
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Localist representations 
• The simplest way to represent things with neural 

networks is to dedicate one neuron to each 
thing. 
– Easy to understand. 
– Easy to code by hand 

• Often used to represent inputs to a net 
– Easy to learn 

• This is what mixture models do.
• Each cluster corresponds to one neuron 

– Easy to associate with other representations or 
responses. 

• But localist models are very inefficient whenever 
the data has componential structure. 

120Image credit: Moontae LeeSlide credit: Geoff Hinton



Distributed Representations
• Each neuron must represent something, so 

this must be a local representation. 

• Distributed representation means a many-
to- many relationship between two types of 
representation (such as concepts and 
neurons). 
– Each concept is represented by many neurons 
– Each neuron participates in the representation of 

many concepts 

121

Local

Distributed

Slide credit: Geoff Hinton Image credit: Moontae Lee



Power of distributed representations!

• Possible internal representations: 
– Objects
– Scene attributes
– Object parts
– Textures 
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Slide credit: Bolei Zhou
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Three key ideas of deep learning
• (Hierarchical) Compositionality

– Cascade of non-linear transformations
– Multiple layers of representations

• End-to-End Learning
– Learning (goal-driven) representations

– Learning to feature extract

• Distributed Representations
– No single neuron “encodes” everything
– Groups of neurons work together
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Benefits of Deep/Representation Learning
• (Usually) Better Performance

– “Because gradient descent is better than you”
Yann LeCun

• New domains without “experts”
– RGBD
– Multi-spectral data
– Gene-expression data
– Unclear how to hand-engineer
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Problems with Deep Learning
• Problem#1: Non-Convex! Non-Convex! Non-Convex!

– Depth>=3: most losses non-convex in parameters
– Theoretically, all bets are off
– Leads to stochasticity

• different initializations à different local minima

• Standard response #1
– “Yes, but all interesting learning problems are non-convex”
– For example, human learning

• Order matters à wave hands à non-convexity

• Standard response #2
– “Yes, but it often works!”
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Problems with Deep Learning
• Problem#2: Hard to track down what’s failing

– Pipeline systems have “oracle” performances at each step
– In end-to-end systems, it’s hard to know why things are not working 
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Problems with Deep Learning
• Problem#2: Hard to track down what’s failing

127End-to-EndPipeline

[Fang et al. CVPR15] [Vinyals et al. CVPR15]



Problems with Deep Learning
• Problem#2: Hard to track down what’s failing

– Pipeline systems have “oracle” performances at each step
– In end-to-end systems, it’s hard to know why things are not working 

• Standard response #1
– Tricks of the trade: visualize features, add losses at different layers, pre-

train to avoid degenerate initializations… 

– “We’re working on it” 

• Standard response #2
– “Yes, but it often works!”
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Problems with Deep Learning
• Problem#3: Lack of easy reproducibility

– Direct consequence of stochasticity & non-convexity 

• Standard response #1
– It’s getting much better
– Standard toolkits/libraries/frameworks now available

• Standard response #2
– “Yes, but it often works!”
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146D. Cardon et al. “Neurons spike back: The Invention of Inductive Machines and the AI Controversy”, Réseaux n°211/2018
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https://www.youtube.com/watch?v=EeqwFjqFvJA

https://www.youtube.com/watch?v=EeqwFjqFvJA


Next Lecture: 
Machine Learning Overview
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