
Lecture #10 –Generative Adversarial Networks

Artificial faces synthesized by StyleGAN (Nvidia)

Aykut Erdem // Koç University // Fall 2023

COMP541
DEEP LEARNING



• graph structured data
• graph neural nets (GNNs)
• GNNs for ”classical” network problems

2

Previously on COMP541
Illustration: Kevin Hong // Quanta Magazine



Lecture overview
• supervised vs unsupervised learning
• generative modeling
• basic foundations

– sparse coding
– autoencoders

• generative adversarial networks (GANs)

Disclaimer: Some of the material and slides for this lecture were borrowed from 
—Justin Johnson’s EECS 498/598 class
—Ruslan Salakhutdinov’s talk titled “Unsupervised Learning: Learning Deep Generative Models”

—Ian Goodfellow’s tutorial on “Generative Adversarial Networks”

—Aaron Courville’s IFT6135 class
3



Cat

Classification

Supervised vs Unsupervised Learning

4

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x → y

Examples: classification, regression, 
object detection, semantic 
segmentation, image captioning, 
sentiment analysis, etc.



DOG, DOG, CAT

Object Detection

Supervised vs Unsupervised Learning

5

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x → y

Examples: classification, regression, 
object detection, semantic 
segmentation, image captioning, 
sentiment analysis, etc.



Semantic Segmentation

GRASS, CAT, TREE, SKY

Supervised vs Unsupervised Learning

6

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x → y

Examples: classification, regression, 
object detection, semantic 
segmentation, image captioning, 
sentiment analysis, etc.



Image captioning

A cat sitting on a 
suitcase on the floor

Supervised vs Unsupervised Learning

7

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x → y

Examples: classification, regression, 
object detection, semantic 
segmentation, image captioning, 
sentiment analysis, etc.



👍

Supervised vs Unsupervised Learning

8

“This Movie is amazing. 
It has a great plot and
talented actors, and 
the supporting cast is 
really good as well.“

Sentiment Analysis
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x → y

Examples: classification, regression, 
object detection, semantic 
segmentation, image captioning, 
sentiment analysis, etc.



Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

Supervised vs Unsupervised Learning

9

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x → y

Examples: classification, regression, 
object detection, semantic 
segmentation, image captioning, 
sentiment analysis, etc.



Clustering
(e.g. K-Means)

Supervised vs Unsupervised Learning

10

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.



Dimensionality Reduction
(e.g. Principal Components Analysis)

3D 2D

Supervised vs Unsupervised Learning

11

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.



Feature Learning
(e.g. autoencoders)

Supervised vs Unsupervised Learning

12

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.



Density Estimation

Supervised vs Unsupervised Learning

13

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.



Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

Supervised vs Unsupervised Learning

14

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x → y

Examples: classification, regression, 
object detection, semantic 
segmentation, image captioning, 
sentiment analysis, etc.



Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model: 
Learn p(x|y) Cat

Discriminative vs Generative Models

15

Data: x

Label: y



Cat

Data: x

Label: y

Probability Recap:

Density Function
p(x) assigns a positive 
number to each possible x; 
higher numbers mean x is 
more likely

!
!
𝑝 𝑥 𝑑𝑥 = 1

Density functions 
are normalized:

Different values of x 
compete for density 

Discriminative vs Generative Models

16

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model: 
Learn p(x|y)



Data: x

!
!
𝑝 𝑥 𝑑𝑥 = 1

Density Function
p(x) assigns a positive number to 
each possible x; higher numbers 
mean x is more likely

Density functions 
are normalized:

P(cat|.      )

P(dog|.      )

Discriminative vs Generative Models

17

Different values of x 
compete for density 

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model: 
Learn p(x|y)



P(cat|.      )

P(dog|.      )

P(cat|      )

P(dog|       )

Discriminative model: the possible labels for 
each input ”compete” for probability mass. 
But no competition between images

Discriminative vs Generative Models

18

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model: 
Learn p(x|y)



P(cat|      )

P(dog|      )

Discriminative model: No way for the model to 
handle unreasonable inputs; it must give label 
distributions for all images

P(cat|      )

P(dog|       )

Discriminative vs Generative Models

19

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model: 
Learn p(x|y)



P(cat|      )

P(dog|      )

Discriminative model: No way for the model to 
handle unreasonable inputs; it must give label 
distributions for all images

P(cat|      )
P(dog|      )

Discriminative vs Generative Models

20

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model: 
Learn p(x|y)



Generative model: All possible images compete with each other 
for probability mass

P(       )

P(       )

P(      )
P(       )

…

Discriminative vs Generative Models

21

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model: 
Learn p(x|y)



Generative model: All possible images compete with each other 
for probability mass

Requires deep image understanding! Is a dog more likely to sit or 
stand? How about 3-legged dog vs 3-armed monkey?

P(       )

P(       )

P(      )
P(       )

…

Discriminative vs Generative Models

22

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model: 
Learn p(x|y)



Generative model: All possible images compete with each other 
for probability mass

Model can “reject” unreasonable inputs by assigning them small 
values

P(       )

P(       )

P(      )
P(       )

…

Discriminative vs Generative Models

23

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model: 
Learn p(x|y)



Conditional Generative Model: Each possible label 
induces a competition among all images

P(      |cat)
P(      |cat)

P(      |cat)

P(       |cat)

…

P(      |dog)
P(      |dog)

P(      |dog)
P(      |dog)

Discriminative vs Generative Models

24

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model: 
Learn p(x|y)



𝑃 𝑥	 𝑦) =
𝑃 𝑦	 𝑥)
𝑃 𝑦

𝑃(𝑥)

Recall Bayes’ Rule:

Discriminative vs Generative Models

25

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model: 
Learn p(x|y)



We can build a conditional generative 
model from other components!

𝑃 𝑥	 𝑦) =
𝑃 𝑦	 𝑥)
𝑃 𝑦

𝑃(𝑥)
Conditional 

Generative Model

Discriminative Model

Prior over labels

(Unconditional) 
Generative Model

Discriminative vs Generative Models

26

Recall Bayes’ Rule:Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model: 
Learn p(x|y)



Assign labels to data
Feature learning (with labels)

What can we do with a discriminative model?

27

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model: 
Learn p(x|y)



Assign labels to data
Feature learning (with labels)

Detect outliers
Feature learning (without labels)
Sample to generate new data

What can we do with a discriminative model?

28

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model: 
Learn p(x|y)



Assign labels to data
Feature learning (with labels)

Detect outliers
Feature learning (without labels)
Sample to generate new data

Assign labels, while rejecting outliers!
Generate new data conditioned on input labels

What can we do with a discriminative model?

29

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model: 
Learn p(x|y)



Generative Modeling

• Goal: Learn some underlying hidden structure of the training samples 
to generate novel samples from same data distribution

30

P
pdata

pmodel

Slide adapted from Sebastian Nowozin



Learning a generative model
• We are given a training set of examples, e.g., images of dogs

• We want to learn a probability distribution p(x) over images x s.t. 
– Generation: If we sample xnew ∼ p(x), xnew should look like a dog (sampling)
– Density estimation: p(x) should be high if x looks like a dog, and low

otherwise (anomaly detection) 
– Unsupervised representation learning: We should be able to learn what

these images have in common, e.g., ears, tail, etc. (features) 

31Slide adapted from Stefano Ermon, Aditya Grover

Model family



Why Unsupervised Learning?
• Given high-dimensional data                               , we want to find a 

low-dimensional model characterizing the population. 

• Recent progress mostly in supervised DL 

• Real challenges for unsupervised DL 

• Potential benefits: 
−Exploit tons of unlabeled data
−Answer new questions about the variables observed
−Regularizer – transfer learning – domain adaptation
−Easier optimization (divide and conquer)
− Joint (structured) outputs 

32

Unsupervised Learning
•Given high-dimensional data                        , we want to 

estimate a low-dimensional model characterizing the 
population.

•Why is this an important problem?
• It is an essential building block in most high-dimensional 

prediction tasks. 
– Inverse Problems (super-resolution, inpainting, denoising, 

etc.).
– Structured Output Prediction (translation, Q&A, pose 

estimation, etc.)
– “Disentangling” or Posterior Inference.
– Learning with few labeled examples

X = (x1, . . . , xn)

21



33

Explicit Density p(x) 

Unsupervised Learning

Non-probabilistic Models
• Sparse Coding
• Autoencoders
• Others (e.g. k-means)

Probabilistic 
(Generative) Models

Tractable Models
• Fully observed 

Belief Nets
• NADE
• PixelRNN

Non-Tractable Models
• BoltzmannMachines
• Variational 

Autoencoders
• Helmholtz Machines
• Many others...

Implicit Density

• Generative 
Adversarial 
Networks

• Moment 
Matching 
Networks



Unsupervised Learning
• Basic Building Blocks:
• Sparse Coding 
• Autoencoders

• Autoregressive Generative Models 

• Generative Adversarial Networks

• Variational Autoencoders

• Normalizing Flow Models

34



Sparse Coding
• Sparse coding (Olshausen & Field, 1996). Originally developed to explain early 

visual processing in the brain (edge detection).

• Objective: Given a set of input data vectors                         , learn a dictionary of 
bases, such that: 

• Each data vector is represented as a sparse linear combination of bases. 

35

Sparse	Coding	
• 	Sparse	coding	(Olshausen	&	Field,	1996).	Originally	developed	
to	explain	early	visual	processing	in	the	brain	(edge	detecAon).		

• 	ObjecAve:	Given	a	set	of	input	data	vectors																														
learn	a	dicAonary	of	bases																																such	that:					

• 	Each	data	vector	is	represented	as	a	sparse	linear	combinaAon	
of	bases.	

Sparse:	mostly	zeros	

xn =
KX

k=1

ank�k

Sparse: mostly zeros



Sparse Coding

[0.0, 0.0, ... 0.8, ..., 0.3, ..., 0.5, ...] = coefficients (feature representation) 
36

				Natural	Images	

	[0,	0,	…	0.8,	…,	0.3,	…,	0.5,	…]	=	coefficients	(feature	representaAon)		

New	example 

Sparse	Coding	
Learned	bases:		“Edges”	

     x      = 0.8 *       						         +  0.3 *        					
          

+ 0.5 *       	

Slide	Credit:	Honglak	Lee	

= 0.8 *                   + 0.3 *                     + 0.5 * 

Natural Images Learned bases: “Edges”

New example

Slide Credit: Honglak Lee 



Sparse Coding: Training
• Input image patches: 
• Learn dictionary of bases: 

• Alternating Optimization: 
1. Fix dictionary of bases and solve for activations a (a standard Lasso 

problem). 
2. Fix activations a, optimize the dictionary of bases (convex QP problem). 

37

Sparse	Coding:	Training	
• 	Input	image	patches:		
• 	Learn	dicAonary	of	bases:	

ReconstrucAon	error	 Sparsity	penalty	

• 	AlternaAng	OpAmizaAon:	

1.  Fix	dicAonary	of	bases																											and	solve	for	
acAvaAons	a	(a	standard	Lasso	problem).			

2.  Fix	acAvaAons	a,	opAmize	the	dicAonary	of	bases	(convex	
QP	problem).		

Sparse	Coding:	Training	
• 	Input	image	patches:		
• 	Learn	dicAonary	of	bases:	

ReconstrucAon	error	 Sparsity	penalty	

• 	AlternaAng	OpAmizaAon:	

1.  Fix	dicAonary	of	bases																											and	solve	for	
acAvaAons	a	(a	standard	Lasso	problem).			

2.  Fix	acAvaAons	a,	opAmize	the	dicAonary	of	bases	(convex	
QP	problem).		

Sparse	Coding:	Training	
• 	Input	image	patches:		
• 	Learn	dicAonary	of	bases:	

ReconstrucAon	error	 Sparsity	penalty	

• 	AlternaAng	OpAmizaAon:	

1.  Fix	dicAonary	of	bases																											and	solve	for	
acAvaAons	a	(a	standard	Lasso	problem).			

2.  Fix	acAvaAons	a,	opAmize	the	dicAonary	of	bases	(convex	
QP	problem).		

Reconstruction error Sparsity penalty



Sparse Coding: Testing Time
• Input: a new image patch x* , and K learned bases 
• Output: sparse representation a of an image patch x*. 

38

Sparse	Coding:	TesAng	Time	
• 	Input:	a	new		image	patch	x*	,	and	K	learned	bases			
• 	Output:	sparse	representaAon	a	of	an	image	patch	x*.		

= 0.8 *                   + 0.3 *                     + 0.5 * 

     x*      = 0.8 *       						         +  0.3 *        					
          

+ 0.5 *       	

	[0,	0,	…	0.8,	…,	0.3,	…,	0.5,	…]	=	coefficients	(feature	representaAon)		

Sparse	Coding:	TesAng	Time	
• 	Input:	a	new		image	patch	x*	,	and	K	learned	bases			
• 	Output:	sparse	representaAon	a	of	an	image	patch	x*.		

= 0.8 *                   + 0.3 *                     + 0.5 * 

     x*      = 0.8 *       						         +  0.3 *        					
          

+ 0.5 *       	

	[0,	0,	…	0.8,	…,	0.3,	…,	0.5,	…]	=	coefficients	(feature	representaAon)		



Sparse Coding: Testing Time
• Input: a new image patch x* , and K learned bases 
• Output: sparse representation a of an image patch x*. 

39

[0.0, 0.0, ... 0.8, ..., 0.3, ..., 0.5, ...] = coefficients (feature representation) 

Sparse	Coding:	TesAng	Time	
• 	Input:	a	new		image	patch	x*	,	and	K	learned	bases			
• 	Output:	sparse	representaAon	a	of	an	image	patch	x*.		

= 0.8 *                   + 0.3 *                     + 0.5 * 

     x*      = 0.8 *       						         +  0.3 *        					
          

+ 0.5 *       	

	[0,	0,	…	0.8,	…,	0.3,	…,	0.5,	…]	=	coefficients	(feature	representaAon)		

Sparse	Coding:	TesAng	Time	
• 	Input:	a	new		image	patch	x*	,	and	K	learned	bases			
• 	Output:	sparse	representaAon	a	of	an	image	patch	x*.		

= 0.8 *                   + 0.3 *                     + 0.5 * 

     x*      = 0.8 *       						         +  0.3 *        					
          

+ 0.5 *       	

	[0,	0,	…	0.8,	…,	0.3,	…,	0.5,	…]	=	coefficients	(feature	representaAon)		



Image Classification
• Evaluated on Caltech101 object category dataset.

40Slide Credit: Honglak Lee (Lee, Battle, Raina, Ng, NIPS 2007) 

Evaluated	on	Caltech101	object	category	dataset.	

Classification 
Algorithm 

(SVM) 

Algorithm	 Accuracy	
Baseline	(Fei-Fei	et	al.,	2004)	 16%	

PCA	 37%	
Sparse	Coding	 47%	

Input	Image Features	(coefficients) 
Learned		
bases 

Image	ClassificaAon	

	9K	images,	101	classes	

(Lee, Battle, Raina, Ng, NIPS 2007)Slide	Credit:	Honglak	Lee	

Input Image Learned
bases Features (coefficients) 9K images, 101 classes



Modeling Image Patches 
• Natural image patches: 

⎯ small image regions extracted from an image of nature (forest, grass, …)

41

Modeling Image Patches 
•  Natural image patches: 

Ø  small image regions extracted from an image of nature (forest, 

grass, ...) 

LETTERS

Emergence of complex cell properties by learning to
generalize in natural scenes
Yan Karklin1{ & Michael S. Lewicki1{

A fundamental function of the visual system is to encode the build-
ing blocks of natural scenes—edges, textures and shapes—that sub-
serve visual tasks such as object recognition and scene
understanding. Essential to this process is the formation of abstract
representations that generalize from specific instances of visual
input. A common view holds that neurons in the early visual system
signal conjunctions of image features1,2, but how these produce
invariant representations is poorly understood. Here we propose that
to generalize over similar images, higher-level visual neurons encode
statistical variations that characterize local image regions. We pre-
sent a model in which neural activity encodes the probability distri-
bution most consistent with a given image. Trained on natural
images, themodel generalizes by learning a compact set of dictionary
elements for image distributions typically encountered in natural
scenes. Model neurons show a diverse range of properties observed
in cortical cells. These results provide a new functional explanation
for nonlinear effects in complex cells3–6 and offer insight into coding
strategies in primary visual cortex (V1) and higher visual areas.

As we scan across a complex natural scene, fixations at multiple
locations (for example, on the trunk of a tree or along its edge)
produce a coherent percept of the underlying structure (the bark
texture or the contour of the edge), even though individual images
collected at the retina are inherently highly variable. Figure 1 illus-
trates the problem our brain solves so effortlessly: perceptually dis-
tinct image regions produce response patterns that are highly
overlapping and cannot be easily distinguished using low-level, linear
representations. What sort of computations are required to achieve
generalization across natural stimuli?

Early visual neurons are typically described as linear feature detec-
tors1,2. Models developed around this idea can accurately capture the
behaviour of neurons from the retina7 to simple cells in the cortex8

but, as the examples in Fig. 1 illustrate, neither individual features nor
linear transformations can reliably discriminate images of one struc-
ture from another. More abstract features are presumably computed
in later stages of the visual system, but our knowledge of processing
by these neurons is limited. In V1, complex cells respond to an edge
over a range of positions1, but classical models of these cells9,10 fail to
explain a number of nonlinear effects, such as surround suppression
and cross-orientation inhibition3–5. More importantly, there is no
functional explanation for the role of these behaviours in the percep-
tion of natural scenes. In higher visual areas such as V2 and V4,
neurons are more invariant to image properties such as position
and scale11–13 and might be encoding shape or texture12,14,15. For these
neurons to generalize effectively, the neural circuitry must generate a
representation that is similar across the wide distribution of images of
a given type (for example, a texture or contour) yet distinct across the
much larger distribution of all other images.

Previous theoretical work has shown that neurons in the primary
visual cortex form an efficient code adapted to the statistics of natural
images16,17, but this says nothing about howneurons generalize across

1Computer Science Department & Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA. {Present address: Center for Neural Science, New
York University, NewYork, NewYork, USA (Y.K.); Electrical Engineering and Computer ScienceDepartment, CaseWesternUniversity, Cleveland, Ohio, USA andWissenschaftskolleg
(Institute for Advanced Study) zu Berlin, Germany (M.S.L.).

ba

c

Figure 1 | Statistical patterns distinguish local regions of natural scenes.
a, A natural scene with four distinct regions outlined (image courtesy of
E. Doi). b, The scatter plot shows the joint output of a pair of linear feature
detectors (oriented Gabor filters) for 203 20-image patches sampled from
the four regions. The outputs from different regions are highly overlapping,
indicating that linear features provide no means to distinguish between the
regions. c, Each column shows the joint output of a different pair of linear
feature detectors sampled from the regions containing the tree bark or the
tree edge (the first column corresponds to features in b). The correlations in
each panel can be described by a Gaussian distribution and its covariance
(ellipses). The differences in the distributions between the rows reveal
characteristic patterns in correlations, which become even more prominent
as projections ontomore features are considered. These patterns can be used
to generalize within regions while still distinguishing among them. As an
example, we highlight two patches in each region, shown by the circle and
triangle in each panel. Although the pairs of images are visibly quite
different, each image is consistent with the distribution of the local image
region. By contrasting the distributions across multiple dimensions, it is
possible to infer image type for single patches, even if the patches have
similar projections along some image features.

doi:10.1038/nature07481

1
 ©2008 Macmillan Publishers Limited. All rights reserved

Image	taken	from:		
Emergence	of	complex	cell	properDes		
by	learning	to	generalize	in	natural	scenes.	
Karklin	and	Lewicki,	2009	 36 

Image taken from:  Emergence of complex cell properties by learning to generalize in natural scenes. Karklin and Lewicki, 2009 



Relationship to V1 
• When trained on natural image 

patches
⎯ the dictionary columns (‘‘atoms’’) look 

like edge detectors 

⎯ each atom is tuned to a particular 
position, orientation and spatial 
frequency 

⎯ V1 neurons in the mammalian brain 
have a similar behavior 

42Emergence of simple-cell receptive field properties by learning a sparse code of natural images. Olshausen and Field, 1996

Relationship to V1 
•  When trained on natural image patches 

Ø  the dictionary columns 
(‘‘atoms’’) look like edge 
detectors 

Ø  each atom is tuned to a 
particular position, 
orientation and spatial 
frequency 

Ø  V1 neurons in the 
mammalian brain have a 
similar behavior 

Emergence	of	simple-cell	recepDve	field	
properDes	by	learning	a	sparse	code	of	natural	
images.Olshausen	and	Field,	1996.	 37 



Relationship to V1 
• Suggests that the brain might be 

learning a sparse code of visual 
stimulus 
⎯ Since then, many other models have 

been shown to learn similar features

⎯ they usually all incorporate a notion of 
sparsity 

43Emergence of simple-cell receptive field properties by learning a sparse code of natural images. Olshausen and Field, 1996

Relationship to V1 
•  When trained on natural image patches 

Ø  the dictionary columns 
(‘‘atoms’’) look like edge 
detectors 

Ø  each atom is tuned to a 
particular position, 
orientation and spatial 
frequency 

Ø  V1 neurons in the 
mammalian brain have a 
similar behavior 

Emergence	of	simple-cell	recepDve	field	
properDes	by	learning	a	sparse	code	of	natural	
images.Olshausen	and	Field,	1996.	 37 



Interpreting Sparse Coding

44

�(a)	

InterpreAng	Sparse	Coding	

x’	

Explicit	
Linear	
Decoding	

a	

�(x)	
Implicit	
nonlinear	
encoding	

x	

a	

• 	Sparse,	over-complete	representaAon	a.	
• 	Encoding	a	=	f(x)	is	implicit	and	nonlinear	funcAon	of	x.		
• 	ReconstrucAon	(or	decoding)	x’	=	g(a)	is	linear	and	explicit.		

Sparse	features	

�(a)	

InterpreAng	Sparse	Coding	

x’	

Explicit	
Linear	
Decoding	

a	

�(x)	
Implicit	
nonlinear	
encoding	

x	

a	

• 	Sparse,	over-complete	representaAon	a.	
• 	Encoding	a	=	f(x)	is	implicit	and	nonlinear	funcAon	of	x.		
• 	ReconstrucAon	(or	decoding)	x’	=	g(a)	is	linear	and	explicit.		

Sparse	features	Sparse features

Explicit
Linear
Decoding



Interpreting Sparse Coding

• Sparse, over-complete representation a.
• Encoding a = f(x) is implicit and nonlinear function of x.
• Reconstruction (or decoding) x’ = g(a) is linear and explicit. 

45

�(a)	

InterpreAng	Sparse	Coding	

x’	

Explicit	
Linear	
Decoding	

a	

�(x)	
Implicit	
nonlinear	
encoding	

x	

a	

• 	Sparse,	over-complete	representaAon	a.	
• 	Encoding	a	=	f(x)	is	implicit	and	nonlinear	funcAon	of	x.		
• 	ReconstrucAon	(or	decoding)	x’	=	g(a)	is	linear	and	explicit.		

Sparse	features	

�(a)	

InterpreAng	Sparse	Coding	

x’	

Explicit	
Linear	
Decoding	

a	

�(x)	
Implicit	
nonlinear	
encoding	

x	

a	

• 	Sparse,	over-complete	representaAon	a.	
• 	Encoding	a	=	f(x)	is	implicit	and	nonlinear	funcAon	of	x.		
• 	ReconstrucAon	(or	decoding)	x’	=	g(a)	is	linear	and	explicit.		

Sparse	features	Sparse features

Explicit
Linear
Decoding

Implicit
Nonlinear
Encoding



Autoencoder

46

Autoencoder	

Encoder Decoder 

Input Image 

Feature Representation 

Feed-back, 
generative, 
top-down 
path	

Feed-forward,  
bottom-up	

• 	Details	of	what	goes	insider	the	encoder	and	decoder	maler!	
• 	Need	constraints	to	avoid	learning	an	idenAty.		

Feed-back,
generative,
top-down

Feed-forward,
bottom-up



Autoencoder

• Details of what goes insider the encoder and decoder matter! 
• Need constraints to avoid learning an identity. 

47

Autoencoder	

Encoder Decoder 

Input Image 

Feature Representation 

Feed-back, 
generative, 
top-down 
path	

Feed-forward,  
bottom-up	

• 	Details	of	what	goes	insider	the	encoder	and	decoder	maler!	
• 	Need	constraints	to	avoid	learning	an	idenAty.		

Feed-back,
generative,
top-down

Feed-forward,
bottom-up



Autoencoder

48

Decoder
Filters D

Linear
function

Encoder
filters W

Sigmoid
function



Autoencoder

49

Decoder
Filters D

Encoder
filters W

Sigmoid
function

• Need additional constraints to avoid learning an identity.
• Relates to Restricted Boltzmann Machines (later). 

Autoencoder	

z=σ(Wx) σ(WTz) 

Binary Input x 

 Binary Features z 

Decoder 
filters D 
path	

Encoder 
filters W. 

Sigmoid 
function	

• 	Relates	to	Restricted	Boltzmann	Machines	(later).		
• 	Need	addiAonal	constraints	to	avoid	learning	an	idenAty.		

Autoencoder	

z=σ(Wx) σ(WTz) 

Binary Input x 

 Binary Features z 

Decoder 
filters D 
path	

Encoder 
filters W. 

Sigmoid 
function	

• 	Relates	to	Restricted	Boltzmann	Machines	(later).		
• 	Need	addiAonal	constraints	to	avoid	learning	an	idenAty.		



Autoencoder
• Feed-forward neural network trained to reproduce its input at the 

output layer

50

Autoencoders	
• 	Feed-forward	neural	network	trained	to	reproduce	its	input	at	the	output	
layer	

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

bx = o(ba(x))
= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2 l(f(x)) = �
P

k (xk log(bxk) + (1� xk) log(1� bxk))

1

Decoder	

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

bx = o(ba(x))
= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2 l(f(x)) = �
P

k (xk log(bxk) + (1� xk) log(1� bxk))

1

Encoder	

For	binary	units	

Decoder

Encoder

for binary units



Loss Function
• Loss function for binary inputs

⎯ Cross-entropy error function (reconstruction loss) 

• Loss function for real-valued inputs

⎯ sum of squared differences (reconstruction loss)
⎯we use a linear activation function at the output

51

Loss Function 
•  Loss function for binary inputs 

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(b+Wx)

= sigm(b+Wx)

•

bx = o(c+W⇤h(x))

= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2 l(f(x)) = �
P

k (xk log(bxk) + (1� xk) log(1� bxk))

1

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

bx = o(ba(x))
= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) = 1
2

P
k(bxk � xk)2 l(f(x)) = �

P
k (xk log(bxk) + (1� xk) log(1� bxk))

• rba(x(t))l(f(x
(t))) = bx(t) � x(t)

a(x(t)) (= b+Wx(t)

h(x(t)) (= sigm(a(x(t)))

ba(x(t)) (= c+W>h(x(t))

bx(t) (= sigm(ba(x(t)))

rba(x(t))l(f(x
(t))) (= bx(t) � x(t)

rcl(f(x
(t))) (= rba(x(t))l(f(x

(t)))

rh(x(t))l(f(x
(t))) (= W

⇣
rba(x(t))l(f(x

(t)))
⌘

ra(x(t))l(f(x
(t))) (=

⇣
rh(x(t))l(f(x

(t)))
⌘
� [. . . , h(x(t))j(1� h(x(t))j), . . . ]

rbl(f(x
(t))) (= ra(x(t))l(f(x

(t)))

rWl(f(x(t))) (=
⇣
ra(x(t))l(f(x

(t)))
⌘
x(t)> + h(x(t))

⇣
rba(x(t))l(f(x

(t)))
⌘>

• W⇤ = W>

1

•  Loss function for real-valued inputs 

Ø  sum of squared differences (reconstruction loss) 

Ø  we use a linear activation function at the output 

Ø  Cross-entropy error function (reconstruction loss) 

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(b+Wx)

= sigm(b+Wx)

•

bx = o(c+W⇤h(x))

= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2

1

Loss Function 
•  Loss function for binary inputs 

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(b+Wx)

= sigm(b+Wx)

•

bx = o(c+W⇤h(x))

= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2 l(f(x)) = �
P

k (xk log(bxk) + (1� xk) log(1� bxk))

1

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

bx = o(ba(x))
= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) = 1
2

P
k(bxk � xk)2 l(f(x)) = �

P
k (xk log(bxk) + (1� xk) log(1� bxk))

• rba(x(t))l(f(x
(t))) = bx(t) � x(t)

a(x(t)) (= b+Wx(t)

h(x(t)) (= sigm(a(x(t)))

ba(x(t)) (= c+W>h(x(t))

bx(t) (= sigm(ba(x(t)))

rba(x(t))l(f(x
(t))) (= bx(t) � x(t)

rcl(f(x
(t))) (= rba(x(t))l(f(x

(t)))

rh(x(t))l(f(x
(t))) (= W

⇣
rba(x(t))l(f(x

(t)))
⌘

ra(x(t))l(f(x
(t))) (=

⇣
rh(x(t))l(f(x

(t)))
⌘
� [. . . , h(x(t))j(1� h(x(t))j), . . . ]

rbl(f(x
(t))) (= ra(x(t))l(f(x

(t)))

rWl(f(x(t))) (=
⇣
ra(x(t))l(f(x

(t)))
⌘
x(t)> + h(x(t))

⇣
rba(x(t))l(f(x

(t)))
⌘>

• W⇤ = W>

1

•  Loss function for real-valued inputs 

Ø  sum of squared differences (reconstruction loss) 

Ø  we use a linear activation function at the output 

Ø  Cross-entropy error function (reconstruction loss) 

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(b+Wx)

= sigm(b+Wx)

•

bx = o(c+W⇤h(x))

= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2

1

Loss Function 
•  Loss function for binary inputs 

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(b+Wx)

= sigm(b+Wx)

•

bx = o(c+W⇤h(x))

= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2 l(f(x)) = �
P

k (xk log(bxk) + (1� xk) log(1� bxk))

1

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

bx = o(ba(x))
= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) = 1
2

P
k(bxk � xk)2 l(f(x)) = �

P
k (xk log(bxk) + (1� xk) log(1� bxk))

• rba(x(t))l(f(x
(t))) = bx(t) � x(t)

a(x(t)) (= b+Wx(t)

h(x(t)) (= sigm(a(x(t)))

ba(x(t)) (= c+W>h(x(t))

bx(t) (= sigm(ba(x(t)))

rba(x(t))l(f(x
(t))) (= bx(t) � x(t)

rcl(f(x
(t))) (= rba(x(t))l(f(x

(t)))

rh(x(t))l(f(x
(t))) (= W

⇣
rba(x(t))l(f(x

(t)))
⌘

ra(x(t))l(f(x
(t))) (=

⇣
rh(x(t))l(f(x

(t)))
⌘
� [. . . , h(x(t))j(1� h(x(t))j), . . . ]

rbl(f(x
(t))) (= ra(x(t))l(f(x

(t)))

rWl(f(x(t))) (=
⇣
ra(x(t))l(f(x

(t)))
⌘
x(t)> + h(x(t))

⇣
rba(x(t))l(f(x

(t)))
⌘>

• W⇤ = W>

1

•  Loss function for real-valued inputs 

Ø  sum of squared differences (reconstruction loss) 

Ø  we use a linear activation function at the output 

Ø  Cross-entropy error function (reconstruction loss) 

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(b+Wx)

= sigm(b+Wx)

•

bx = o(c+W⇤h(x))

= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2

1



Autoencoder

• With nonlinear hidden units, we have a nonlinear generalization of PCA. 

52

Autoencoder	
• 		If	the	hidden	and	output	layers	
are	linear,	it	will	learn	hidden	units	
that	are	a	linear	funcAon	of	the	data	
and	minimize	the	squared	error.	

• 	The	K	hidden	units	will	span	the	
same	space	as	the	first	k	principal	
components.	The	weight	vectors	
may	not	be	orthogonal.		

z=Wx Wz 

Input Image x 

 Linear Features z 

• 	With	nonlinear	hidden	units,	we	have	a	nonlinear	
generalizaAon	of	PCA.	

• If the hidden and output layers are 
linear, it will learn hidden units that 
are a linear function of the data and 
minimize the squared error. 

• The K hidden units will span the 
same space as the first k principal 
components. The weight vectors 
may not be orthogonal. 



Denoising Autoencoder

53(Vincent et al., ICML 2008) 

Denoising Autoencoder 

•  Idea: representation should be robust to introduction of noise: 

Ø  random assignment of subset of 

inputs to 0, with probability 

Ø  Similar to dropouts on the input layer 

Ø  Gaussian additive noise 

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x)) = � log p(x|µ)

• p(x|µ) = 1
(2⇡)D/2 exp(� 1

2

P
k(xk � µk)2) µ = c+W⇤h(x)

• A A = U ⌃ V> U·,k ⌃k,k V>
·,k B

•
B⇤ = argmin

B s.t. rank(B)=k
||A�B||F

B⇤ = U·,k ⌃k,k V>
·,k

argmin
✓

X

t

1

2

X

k

(x(t)
k � bx

(t)
k )2 � argmin

W⇤,h(X)
||X�W⇤h(X)||F

• x(t) X = U ⌃ V>

argmin
W⇤,h(X)

||X�W⇤h(X)||F =
�
W⇤  U·,k ⌃k,k, h(X) V>

·,k

�

h(X) = V>
·,k

= V>
·,k (X> X)�1 (X> X)

= V>
·,k (V ⌃> U> U ⌃ V>)�1 (V ⌃> U> X)

= V>
·,k (V ⌃> ⌃ V>)�1 V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 V> V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 ⌃> U> X

= Ik,· (⌃
> ⌃)�1 ⌃> U> X

= Ik,· ⌃
�1 (⌃>)�1 ⌃> U> X

= Ik,· ⌃
�1 U> X

= ⌃�1
k,k (U·,k)

> X

• bx = (U·,k ⌃k,k)h(x) h(x) =
⇣
⌃�1

k,k (U·,k)>
⌘
x W⇤ W

• x(t)  1p
T

⇣
x(t) � 1

T

PT
t0=1 x

(t0)
⌘

• p(ex|x) ⌫ ex

• bx = sigm(c+W⇤h(ex))

• l(f(x(t))) + �||rx(t)h(x(t))||2F
•

||rx(t)h(x(t))||2F =
X

j

X

k

 
@h(x(t))j

@x(t)
k

!2

• l(f(x(t))) = �
P

k

⇣
x(t)
k log(bx(t)

k ) + (1� x(t)
k ) log(1� bx(t)

k )
⌘

2

•  Reconstruction     computed 
from the corrupted input 

•  Loss function compares 
reconstruction with the noiseless 
input 

�x

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x)) = � log p(x|µ)

• p(x|µ) = 1
(2⇡)D/2 exp(� 1

2

P
k(xk � µk)2) µ = c+W⇤h(x)

• A A = U ⌃ V> U·,k ⌃k,k V>
·,k B

•
B⇤ = argmin

B s.t. rank(B)=k
||A�B||F

B⇤ = U·,k ⌃k,k V>
·,k

argmin
✓

X

t

1

2

X

k

(x(t)
k � bx(t)

k )2 � argmin
W⇤,h(X)

||X�W⇤h(X)||F

• x(t) X = U ⌃ V>

argmin
W⇤,h(X)

||X�W⇤h(X)||F =
�
W⇤  U·,k ⌃k,k, h(X) V>

·,k

�

h(X) = V>
·,k

= V>
·,k (X> X)�1 (X> X)

= V>
·,k (V ⌃> U> U ⌃ V>)�1 (V ⌃> U> X)

= V>
·,k (V ⌃> ⌃ V>)�1 V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 V> V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 ⌃> U> X

= Ik,· (⌃
> ⌃)�1 ⌃> U> X

= Ik,· ⌃
�1 (⌃>)�1 ⌃> U> X

= Ik,· ⌃
�1 U> X

= ⌃�1
k,k (U·,k)

> X

• bx = (U·,k ⌃k,k)h(x) h(x) =
⇣
⌃�1

k,k (U·,k)>
⌘
x W⇤ W

• x(t)  1p
T

⇣
x(t) � 1

T

PT
t0=1 x

(t0)
⌘

• p(ex|x) ⌫ ex

2

x

�x

(Vincent et al., ICML 2008)

Denoising Autoencoder 

•  Idea: representation should be robust to introduction of noise: 

Ø  random assignment of subset of 

inputs to 0, with probability 

Ø  Similar to dropouts on the input layer 

Ø  Gaussian additive noise 

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x)) = � log p(x|µ)

• p(x|µ) = 1
(2⇡)D/2 exp(� 1

2

P
k(xk � µk)2) µ = c+W⇤h(x)

• A A = U ⌃ V> U·,k ⌃k,k V>
·,k B

•
B⇤ = argmin

B s.t. rank(B)=k
||A�B||F

B⇤ = U·,k ⌃k,k V>
·,k

argmin
✓

X

t

1

2

X

k

(x(t)
k � bx

(t)
k )2 � argmin

W⇤,h(X)
||X�W⇤h(X)||F

• x(t) X = U ⌃ V>

argmin
W⇤,h(X)

||X�W⇤h(X)||F =
�
W⇤  U·,k ⌃k,k, h(X) V>

·,k

�

h(X) = V>
·,k

= V>
·,k (X> X)�1 (X> X)

= V>
·,k (V ⌃> U> U ⌃ V>)�1 (V ⌃> U> X)

= V>
·,k (V ⌃> ⌃ V>)�1 V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 V> V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 ⌃> U> X

= Ik,· (⌃
> ⌃)�1 ⌃> U> X

= Ik,· ⌃
�1 (⌃>)�1 ⌃> U> X

= Ik,· ⌃
�1 U> X

= ⌃�1
k,k (U·,k)

> X

• bx = (U·,k ⌃k,k)h(x) h(x) =
⇣
⌃�1

k,k (U·,k)>
⌘
x W⇤ W

• x(t)  1p
T

⇣
x(t) � 1

T

PT
t0=1 x

(t0)
⌘

• p(ex|x) ⌫ ex

• bx = sigm(c+W⇤h(ex))

• l(f(x(t))) + �||rx(t)h(x(t))||2F
•

||rx(t)h(x(t))||2F =
X

j

X

k

 
@h(x(t))j

@x(t)
k

!2

• l(f(x(t))) = �
P

k

⇣
x(t)
k log(bx(t)

k ) + (1� x(t)
k ) log(1� bx(t)

k )
⌘

2

•  Reconstruction     computed 
from the corrupted input 

•  Loss function compares 
reconstruction with the noiseless 
input 

�x

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x)) = � log p(x|µ)

• p(x|µ) = 1
(2⇡)D/2 exp(� 1

2

P
k(xk � µk)2) µ = c+W⇤h(x)

• A A = U ⌃ V> U·,k ⌃k,k V>
·,k B

•
B⇤ = argmin

B s.t. rank(B)=k
||A�B||F

B⇤ = U·,k ⌃k,k V>
·,k

argmin
✓

X

t

1

2

X

k

(x(t)
k � bx(t)

k )2 � argmin
W⇤,h(X)

||X�W⇤h(X)||F

• x(t) X = U ⌃ V>

argmin
W⇤,h(X)

||X�W⇤h(X)||F =
�
W⇤  U·,k ⌃k,k, h(X) V>

·,k

�

h(X) = V>
·,k

= V>
·,k (X> X)�1 (X> X)

= V>
·,k (V ⌃> U> U ⌃ V>)�1 (V ⌃> U> X)

= V>
·,k (V ⌃> ⌃ V>)�1 V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 V> V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 ⌃> U> X

= Ik,· (⌃
> ⌃)�1 ⌃> U> X

= Ik,· ⌃
�1 (⌃>)�1 ⌃> U> X

= Ik,· ⌃
�1 U> X

= ⌃�1
k,k (U·,k)

> X

• bx = (U·,k ⌃k,k)h(x) h(x) =
⇣
⌃�1

k,k (U·,k)>
⌘
x W⇤ W

• x(t)  1p
T

⇣
x(t) � 1

T

PT
t0=1 x

(t0)
⌘

• p(ex|x) ⌫ ex

2

x

�x

(Vincent et al., ICML 2008)

Denoising Autoencoder 

•  Idea: representation should be robust to introduction of noise: 

Ø  random assignment of subset of 

inputs to 0, with probability 

Ø  Similar to dropouts on the input layer 

Ø  Gaussian additive noise 

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x)) = � log p(x|µ)

• p(x|µ) = 1
(2⇡)D/2 exp(� 1

2

P
k(xk � µk)2) µ = c+W⇤h(x)

• A A = U ⌃ V> U·,k ⌃k,k V>
·,k B

•
B⇤ = argmin

B s.t. rank(B)=k
||A�B||F

B⇤ = U·,k ⌃k,k V>
·,k

argmin
✓

X

t

1

2

X

k

(x(t)
k � bx

(t)
k )2 � argmin

W⇤,h(X)
||X�W⇤h(X)||F

• x(t) X = U ⌃ V>

argmin
W⇤,h(X)

||X�W⇤h(X)||F =
�
W⇤  U·,k ⌃k,k, h(X) V>

·,k

�

h(X) = V>
·,k

= V>
·,k (X> X)�1 (X> X)

= V>
·,k (V ⌃> U> U ⌃ V>)�1 (V ⌃> U> X)

= V>
·,k (V ⌃> ⌃ V>)�1 V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 V> V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 ⌃> U> X

= Ik,· (⌃
> ⌃)�1 ⌃> U> X

= Ik,· ⌃
�1 (⌃>)�1 ⌃> U> X

= Ik,· ⌃
�1 U> X

= ⌃�1
k,k (U·,k)

> X

• bx = (U·,k ⌃k,k)h(x) h(x) =
⇣
⌃�1

k,k (U·,k)>
⌘
x W⇤ W

• x(t)  1p
T

⇣
x(t) � 1

T

PT
t0=1 x

(t0)
⌘

• p(ex|x) ⌫ ex

• bx = sigm(c+W⇤h(ex))

• l(f(x(t))) + �||rx(t)h(x(t))||2F
•

||rx(t)h(x(t))||2F =
X

j

X

k

 
@h(x(t))j

@x(t)
k

!2

• l(f(x(t))) = �
P

k

⇣
x(t)
k log(bx(t)

k ) + (1� x(t)
k ) log(1� bx(t)

k )
⌘

2

•  Reconstruction     computed 
from the corrupted input 

•  Loss function compares 
reconstruction with the noiseless 
input 

�x

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x)) = � log p(x|µ)

• p(x|µ) = 1
(2⇡)D/2 exp(� 1

2

P
k(xk � µk)2) µ = c+W⇤h(x)

• A A = U ⌃ V> U·,k ⌃k,k V>
·,k B

•
B⇤ = argmin

B s.t. rank(B)=k
||A�B||F

B⇤ = U·,k ⌃k,k V>
·,k

argmin
✓

X

t

1

2

X

k

(x(t)
k � bx(t)

k )2 � argmin
W⇤,h(X)

||X�W⇤h(X)||F

• x(t) X = U ⌃ V>

argmin
W⇤,h(X)

||X�W⇤h(X)||F =
�
W⇤  U·,k ⌃k,k, h(X) V>

·,k

�

h(X) = V>
·,k

= V>
·,k (X> X)�1 (X> X)

= V>
·,k (V ⌃> U> U ⌃ V>)�1 (V ⌃> U> X)

= V>
·,k (V ⌃> ⌃ V>)�1 V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 V> V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 ⌃> U> X

= Ik,· (⌃
> ⌃)�1 ⌃> U> X

= Ik,· ⌃
�1 (⌃>)�1 ⌃> U> X

= Ik,· ⌃
�1 U> X

= ⌃�1
k,k (U·,k)

> X

• bx = (U·,k ⌃k,k)h(x) h(x) =
⇣
⌃�1

k,k (U·,k)>
⌘
x W⇤ W

• x(t)  1p
T

⇣
x(t) � 1

T

PT
t0=1 x

(t0)
⌘

• p(ex|x) ⌫ ex

2

x

�x

(Vincent et al., ICML 2008)

Denoising Autoencoder 

•  Idea: representation should be robust to introduction of noise: 

Ø  random assignment of subset of 

inputs to 0, with probability 

Ø  Similar to dropouts on the input layer 

Ø  Gaussian additive noise 

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x)) = � log p(x|µ)

• p(x|µ) = 1
(2⇡)D/2 exp(� 1

2

P
k(xk � µk)2) µ = c+W⇤h(x)

• A A = U ⌃ V> U·,k ⌃k,k V>
·,k B

•
B⇤ = argmin

B s.t. rank(B)=k
||A�B||F

B⇤ = U·,k ⌃k,k V>
·,k

argmin
✓

X

t

1

2

X

k

(x(t)
k � bx

(t)
k )2 � argmin

W⇤,h(X)
||X�W⇤h(X)||F

• x(t) X = U ⌃ V>

argmin
W⇤,h(X)

||X�W⇤h(X)||F =
�
W⇤  U·,k ⌃k,k, h(X) V>

·,k

�

h(X) = V>
·,k

= V>
·,k (X> X)�1 (X> X)

= V>
·,k (V ⌃> U> U ⌃ V>)�1 (V ⌃> U> X)

= V>
·,k (V ⌃> ⌃ V>)�1 V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 V> V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 ⌃> U> X

= Ik,· (⌃
> ⌃)�1 ⌃> U> X

= Ik,· ⌃
�1 (⌃>)�1 ⌃> U> X

= Ik,· ⌃
�1 U> X

= ⌃�1
k,k (U·,k)

> X

• bx = (U·,k ⌃k,k)h(x) h(x) =
⇣
⌃�1

k,k (U·,k)>
⌘
x W⇤ W

• x(t)  1p
T

⇣
x(t) � 1

T

PT
t0=1 x

(t0)
⌘

• p(ex|x) ⌫ ex

• bx = sigm(c+W⇤h(ex))

• l(f(x(t))) + �||rx(t)h(x(t))||2F
•

||rx(t)h(x(t))||2F =
X

j

X

k

 
@h(x(t))j

@x(t)
k

!2

• l(f(x(t))) = �
P

k

⇣
x(t)
k log(bx(t)

k ) + (1� x(t)
k ) log(1� bx(t)

k )
⌘

2

•  Reconstruction     computed 
from the corrupted input 

•  Loss function compares 
reconstruction with the noiseless 
input 

�x

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x)) = � log p(x|µ)

• p(x|µ) = 1
(2⇡)D/2 exp(� 1

2

P
k(xk � µk)2) µ = c+W⇤h(x)

• A A = U ⌃ V> U·,k ⌃k,k V>
·,k B

•
B⇤ = argmin

B s.t. rank(B)=k
||A�B||F

B⇤ = U·,k ⌃k,k V>
·,k

argmin
✓

X

t

1

2

X

k

(x(t)
k � bx(t)

k )2 � argmin
W⇤,h(X)

||X�W⇤h(X)||F

• x(t) X = U ⌃ V>

argmin
W⇤,h(X)

||X�W⇤h(X)||F =
�
W⇤  U·,k ⌃k,k, h(X) V>

·,k

�

h(X) = V>
·,k

= V>
·,k (X> X)�1 (X> X)

= V>
·,k (V ⌃> U> U ⌃ V>)�1 (V ⌃> U> X)

= V>
·,k (V ⌃> ⌃ V>)�1 V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 V> V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 ⌃> U> X

= Ik,· (⌃
> ⌃)�1 ⌃> U> X

= Ik,· ⌃
�1 (⌃>)�1 ⌃> U> X

= Ik,· ⌃
�1 U> X

= ⌃�1
k,k (U·,k)

> X

• bx = (U·,k ⌃k,k)h(x) h(x) =
⇣
⌃�1

k,k (U·,k)>
⌘
x W⇤ W

• x(t)  1p
T

⇣
x(t) � 1

T

PT
t0=1 x

(t0)
⌘

• p(ex|x) ⌫ ex

2

x

�x

(Vincent et al., ICML 2008)

Denoising Autoencoder 

•  Idea: representation should be robust to introduction of noise: 

Ø  random assignment of subset of 

inputs to 0, with probability 

Ø  Similar to dropouts on the input layer 

Ø  Gaussian additive noise 

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x)) = � log p(x|µ)

• p(x|µ) = 1
(2⇡)D/2 exp(� 1

2

P
k(xk � µk)2) µ = c+W⇤h(x)

• A A = U ⌃ V> U·,k ⌃k,k V>
·,k B

•
B⇤ = argmin

B s.t. rank(B)=k
||A�B||F

B⇤ = U·,k ⌃k,k V>
·,k

argmin
✓

X

t

1

2

X

k

(x(t)
k � bx

(t)
k )2 � argmin

W⇤,h(X)
||X�W⇤h(X)||F

• x(t) X = U ⌃ V>

argmin
W⇤,h(X)

||X�W⇤h(X)||F =
�
W⇤  U·,k ⌃k,k, h(X) V>

·,k

�

h(X) = V>
·,k

= V>
·,k (X> X)�1 (X> X)

= V>
·,k (V ⌃> U> U ⌃ V>)�1 (V ⌃> U> X)

= V>
·,k (V ⌃> ⌃ V>)�1 V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 V> V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 ⌃> U> X

= Ik,· (⌃
> ⌃)�1 ⌃> U> X

= Ik,· ⌃
�1 (⌃>)�1 ⌃> U> X

= Ik,· ⌃
�1 U> X

= ⌃�1
k,k (U·,k)

> X

• bx = (U·,k ⌃k,k)h(x) h(x) =
⇣
⌃�1

k,k (U·,k)>
⌘
x W⇤ W

• x(t)  1p
T

⇣
x(t) � 1

T

PT
t0=1 x

(t0)
⌘

• p(ex|x) ⌫ ex

• bx = sigm(c+W⇤h(ex))

• l(f(x(t))) + �||rx(t)h(x(t))||2F
•

||rx(t)h(x(t))||2F =
X

j

X

k

 
@h(x(t))j

@x(t)
k

!2

• l(f(x(t))) = �
P

k

⇣
x(t)
k log(bx(t)

k ) + (1� x(t)
k ) log(1� bx(t)

k )
⌘

2

•  Reconstruction     computed 
from the corrupted input 

•  Loss function compares 
reconstruction with the noiseless 
input 

�x

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x)) = � log p(x|µ)

• p(x|µ) = 1
(2⇡)D/2 exp(� 1

2

P
k(xk � µk)2) µ = c+W⇤h(x)

• A A = U ⌃ V> U·,k ⌃k,k V>
·,k B

•
B⇤ = argmin

B s.t. rank(B)=k
||A�B||F

B⇤ = U·,k ⌃k,k V>
·,k

argmin
✓

X

t

1

2

X

k

(x(t)
k � bx(t)

k )2 � argmin
W⇤,h(X)

||X�W⇤h(X)||F

• x(t) X = U ⌃ V>

argmin
W⇤,h(X)

||X�W⇤h(X)||F =
�
W⇤  U·,k ⌃k,k, h(X) V>

·,k

�

h(X) = V>
·,k

= V>
·,k (X> X)�1 (X> X)

= V>
·,k (V ⌃> U> U ⌃ V>)�1 (V ⌃> U> X)

= V>
·,k (V ⌃> ⌃ V>)�1 V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 V> V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 ⌃> U> X

= Ik,· (⌃
> ⌃)�1 ⌃> U> X

= Ik,· ⌃
�1 (⌃>)�1 ⌃> U> X

= Ik,· ⌃
�1 U> X

= ⌃�1
k,k (U·,k)

> X

• bx = (U·,k ⌃k,k)h(x) h(x) =
⇣
⌃�1

k,k (U·,k)>
⌘
x W⇤ W

• x(t)  1p
T

⇣
x(t) � 1

T

PT
t0=1 x

(t0)
⌘

• p(ex|x) ⌫ ex

2

x

�x

(Vincent et al., ICML 2008)

Denoising Autoencoder 

•  Idea: representation should be robust to introduction of noise: 

Ø  random assignment of subset of 

inputs to 0, with probability 

Ø  Similar to dropouts on the input layer 

Ø  Gaussian additive noise 

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x)) = � log p(x|µ)

• p(x|µ) = 1
(2⇡)D/2 exp(� 1

2

P
k(xk � µk)2) µ = c+W⇤h(x)

• A A = U ⌃ V> U·,k ⌃k,k V>
·,k B

•
B⇤ = argmin

B s.t. rank(B)=k
||A�B||F

B⇤ = U·,k ⌃k,k V>
·,k

argmin
✓

X

t

1

2

X

k

(x(t)
k � bx

(t)
k )2 � argmin

W⇤,h(X)
||X�W⇤h(X)||F

• x(t) X = U ⌃ V>

argmin
W⇤,h(X)

||X�W⇤h(X)||F =
�
W⇤  U·,k ⌃k,k, h(X) V>

·,k

�

h(X) = V>
·,k

= V>
·,k (X> X)�1 (X> X)

= V>
·,k (V ⌃> U> U ⌃ V>)�1 (V ⌃> U> X)

= V>
·,k (V ⌃> ⌃ V>)�1 V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 V> V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 ⌃> U> X

= Ik,· (⌃
> ⌃)�1 ⌃> U> X

= Ik,· ⌃
�1 (⌃>)�1 ⌃> U> X

= Ik,· ⌃
�1 U> X

= ⌃�1
k,k (U·,k)

> X

• bx = (U·,k ⌃k,k)h(x) h(x) =
⇣
⌃�1

k,k (U·,k)>
⌘
x W⇤ W

• x(t)  1p
T

⇣
x(t) � 1

T

PT
t0=1 x

(t0)
⌘

• p(ex|x) ⌫ ex

• bx = sigm(c+W⇤h(ex))

• l(f(x(t))) + �||rx(t)h(x(t))||2F
•

||rx(t)h(x(t))||2F =
X

j

X

k

 
@h(x(t))j

@x(t)
k

!2

• l(f(x(t))) = �
P

k

⇣
x(t)
k log(bx(t)

k ) + (1� x(t)
k ) log(1� bx(t)

k )
⌘

2

•  Reconstruction     computed 
from the corrupted input 

•  Loss function compares 
reconstruction with the noiseless 
input 

�x

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x)) = � log p(x|µ)

• p(x|µ) = 1
(2⇡)D/2 exp(� 1

2

P
k(xk � µk)2) µ = c+W⇤h(x)

• A A = U ⌃ V> U·,k ⌃k,k V>
·,k B

•
B⇤ = argmin

B s.t. rank(B)=k
||A�B||F

B⇤ = U·,k ⌃k,k V>
·,k

argmin
✓

X

t

1

2

X

k

(x(t)
k � bx(t)

k )2 � argmin
W⇤,h(X)

||X�W⇤h(X)||F

• x(t) X = U ⌃ V>

argmin
W⇤,h(X)

||X�W⇤h(X)||F =
�
W⇤  U·,k ⌃k,k, h(X) V>

·,k

�

h(X) = V>
·,k

= V>
·,k (X> X)�1 (X> X)

= V>
·,k (V ⌃> U> U ⌃ V>)�1 (V ⌃> U> X)

= V>
·,k (V ⌃> ⌃ V>)�1 V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 V> V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 ⌃> U> X

= Ik,· (⌃
> ⌃)�1 ⌃> U> X

= Ik,· ⌃
�1 (⌃>)�1 ⌃> U> X

= Ik,· ⌃
�1 U> X

= ⌃�1
k,k (U·,k)

> X

• bx = (U·,k ⌃k,k)h(x) h(x) =
⇣
⌃�1

k,k (U·,k)>
⌘
x W⇤ W

• x(t)  1p
T

⇣
x(t) � 1

T

PT
t0=1 x

(t0)
⌘

• p(ex|x) ⌫ ex

2

x

�x

(Vincent et al., ICML 2008)

• Idea: Representation should be robust to 
introduction of noise:
⎯ random assignment of subset of inputs to 0, 

with probability
⎯ Similar to dropouts on the input layer
⎯ Gaussian additive noise

• Reconstruction computed from the 
corrupted input

• Loss function compares     reconstruction 
with the noiseless input 



Denoising Autoencoder

54

Denoising Autoencoder 

Extracting and Composing Robust Features with Denoising Autoencoders

p( eX|X) = qD( eX|X). p(Y ) is a uniform prior over
Y 2 [0, 1]d

0
. This defines a generative model with pa-

rameter set ✓0 = {W0,b0
}. We will use the previ-

ously defined q0(X, eX,Y ) = q0(X)qD( eX|X)�f✓( eX)(Y )
(equation 4) as an auxiliary model in the context of
a variational approximation of the log-likelihood of
p( eX). Note that we abuse notation to make it lighter,
and use the same letters X, eX and Y for di↵erent
sets of random variables representing the same quan-
tity under di↵erent distributions: p or q0. Keep in
mind that whereas we had the dependency structure
X ! eX ! Y for q or q0, we have Y ! X ! eX for p.

Since p contains a corruption operation at the last
generative stage, we propose to fit p( eX) to corrupted
training samples. Performing maximum likelihood fit-
ting for samples drawn from q0( eX) corresponds to min-
imizing the cross-entropy, or maximizing

H = max
✓0

{�IH(q0( eX)kp( eX))}

= max
✓0

{EEq0( eX)[log p( eX)]}. (6)

Let q?(X, Y | eX) be a conditional density, the quan-
tity L(q?, eX) = EEq?(X,Y | eX)

h
log p(X, eX,Y )

q?(X,Y | eX)

i
is a lower

bound on log p( eX) since the following can be shown to
be true for any q?:

log p( eX) = L(q?, eX) + IDKL(q?(X, Y | eX)kp(X, Y | eX))

Also it is easy to verify that the bound is tight when
q?(X, Y | eX) = p(X, Y | eX), where the IDKL becomes 0.
We can thus write log p( eX) = maxq? L(q?, eX), and
consequently rewrite equation 6 as

H = max
✓0

{EEq0( eX)[max
q?

L(q?, eX)]}

= max
✓0,q?

{EEq0( eX)[L(q?, eX)]} (7)

x

x

x̃

x̃
qD(x̃|x)

g✓0(f✓(x̃))

Figure 2. Manifold learning perspective. Suppose
training data (⇥) concentrate near a low-dimensional man-
ifold. Corrupted examples (.) obtained by applying cor-

ruption process qD( eX|X) will lie farther from the manifold.

The model learns with p(X| eX) to “project them back” onto
the manifold. Intermediate representation Y can be inter-
preted as a coordinate system for points on the manifold.

where we moved the maximization outside of the ex-
pectation because an unconstrained q?(X, Y | eX) can
in principle perfectly model the conditional distribu-
tion needed to maximize L(q?, eX) for any eX. Now
if we replace the maximization over an unconstrained
q? by the maximization over the parameters ✓ of our
q0 (appearing in f✓ that maps an x to a y), we get
a lower bound on H: H � max✓0,✓{EEq0( eX)[L(q0, eX)]}
Maximizing this lower bound, we find

arg max
✓,✓0

{EEq0( eX)[L(q0, eX)]}

=arg max
✓,✓0

EEq0(X, eX,Y )

"
log

p(X, eX,Y )
q0(X, Y | eX)

#

=arg max
✓,✓0

EEq0(X, eX,Y)

h
log p(X, eX,Y)

i

+ EEq0( eX)

h
IH[q0(X, Y | eX)]

i

=arg max
✓,✓0

EEq0(X, eX,Y )

h
log p(X, eX,Y )

i
.

Note that ✓ only occurs in Y = f✓( eX), and ✓0 only
occurs in p(X|Y ). The last line is therefore obtained
because q0(X| eX) / qD( eX|X)q0(X) (none of which de-
pends on (✓, ✓0)), and q0(Y | eX) is deterministic, i.e., its
entropy is constant, irrespective of (✓, ✓0). Hence the
entropy of q0(X, Y | eX) = q0(Y | eX)q0(X| eX), does not
vary with (✓, ✓0). Finally, following from above, we
obtain our training criterion (eq. 5):

arg max
✓,✓0

EEq0( eX)[L(q0, eX)]

= arg max
✓,✓0

EEq0(X, eX,Y )[log[p(Y )p(X|Y )p( eX|X)]]

= arg max
✓,✓0

EEq0(X, eX,Y )[log p(X|Y )]

= arg max
✓,✓0

EEq0(X, eX)[log p(X|Y = f✓( eX))]

= arg min
✓,✓0

EEq0(X, eX)

h
LIH

⇣
X, g✓0(f✓( eX))

⌘i

where the third line is obtained because (✓, ✓0)
have no influence on EEq0(X, eX,Y )[log p(Y )] because
we chose p(Y ) uniform, i.e. constant, nor on
EEq0(X, eX)[log p( eX|X)], and the last line is obtained
by inspection of the definition of LIH in eq. 2, when
p(X|Y = f✓( eX)) is a Bg✓0 (f✓( eX)).

4.3. Other Theoretical Perspectives

Information Theoretic Perspective: Consider
X ⇠ q(X), q unknown, Y = f✓( eX). It can easily
be shown (Vincent et al., 2008) that minimizing the
expected reconstruction error amounts to maximizing

x

• rWl(f(x(t))) W

• p(x|µ) µ

• µ h(x)

• l(f(x)) = � log p(x|µ)

• p(x|µ) = 1
(2⇡)D/2 exp(� 1

2

P
k(xk � µk)2) µ = c+W⇤h(x)

• A A = U ⌃ V> U·,k ⌃k,k V>
·,k B

•
B⇤ = argmin

B s.t. rank(B)=k
||A�B||F

B⇤ = U·,k ⌃k,k V>
·,k

argmin
✓

X

t

1

2

X

k

(x(t)
k � bx(t)

k )2 � argmin
W⇤,h(X)

||X�W⇤h(X)||F

• x(t) X = U ⌃ V>

argmin
W⇤,h(X)

||X�W⇤h(X)||F =
�
W⇤  U·,k ⌃k,k, h(X) V>

·,k

�

h(X) = V>
·,k

= V>
·,k (X> X)�1 (X> X)

= V>
·,k (V ⌃> U> U ⌃ V>)�1 (V ⌃> U> X)

= V>
·,k (V ⌃> ⌃ V>)�1 V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 V> V ⌃> U> X

= V>
·,k V (⌃> ⌃)�1 ⌃> U> X

= Ik,· (⌃
> ⌃)�1 ⌃> U> X

= Ik,· ⌃
�1 (⌃>)�1 ⌃> U> X

= Ik,· ⌃
�1 U> X

= ⌃�1
k,k (U·,k)

> X

• bx = (U·,k ⌃k,k)h(x) h(x) =
⇣
⌃�1

k,k (U·,k)>
⌘
x W⇤ W

• x(t)  1p
T

⇣
x(t) � 1

T

PT
t0=1 x

(t0)
⌘

• p(ex|x) ⌫ ex

2



Learned Filters
Non-corrupted                                       25% corrupted input

55(Vincent et al., ICML 2008) 

Learned Filters 

Non-corrupted 

Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction � of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with � = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (�)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction � of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with � = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (�)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

25% corrupted input 

(Vincent et al., ICML 2008)



Learned Filters

56

Learned Filters 

Non-corrupted 

Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction � of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with � = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (�)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction � of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with � = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (�)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

25% corrupted input 

(Vincent et al., ICML 2008)

Learned Filters 

Non-corrupted 

Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction � of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with � = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (�)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

50% corrupted input 

Extracting and Composing Robust Features with Denoising Autoencoders

Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction � of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with � = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (�)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.

(Vincent et al., ICML 2008)

Non-corrupted                                       50% corrupted input



Predictive Sparse Decomposition

57

PredicAve	Sparse	DecomposiAon	

z=σ(Wx) Dz 

Real-valued Input x 

 Binary Features z 

Decoder 
filters D 
path	

Encoder 
filters W. 

Sigmoid 
function	

L1 Sparsity 

Encoder	Decoder	

At training 
time 
path	

(Kavukcuoglu, Ranzato, Fergus, LeCun, 2009)

Encoder
filters W

Sigmoid
function

Decoder
filters D

(Kavukcuoglu, Ranzato, Fergus, LeCun, 2009) 



Predictive Sparse Decomposition

58

PredicAve	Sparse	DecomposiAon	

z=σ(Wx) Dz 

Real-valued Input x 

 Binary Features z 

Decoder 
filters D 
path	

Encoder 
filters W. 

Sigmoid 
function	

L1 Sparsity 

Encoder	Decoder	

At training 
time 
path	

(Kavukcuoglu, Ranzato, Fergus, LeCun, 2009)

Encoder
filters W

Sigmoid
function

Decoder
filters D

At training 
time

Decoder                      Encoder
(Kavukcuoglu, Ranzato, Fergus, LeCun, 2009) 



Stacked	Autoencoders	

Input x 

Features 

Encoder Decoder 

Class Labels 

Encoder Decoder 

Sparsity 

Features 

Encoder Decoder Sparsity 

Stacked 
Autoencoders

59



Stacked	Autoencoders	

Input x 

Features 

Encoder Decoder 

Class Labels 

Encoder Decoder 

Sparsity 

Features 

Encoder Decoder Sparsity 

Stacked 
Autoencoders

60



Stacked	Autoencoders	

Input x 

Features 

Encoder Decoder 

Class Labels 

Encoder Decoder 

Sparsity 

Features 

Encoder Decoder Sparsity 

Stacked 
Autoencoders

61



Stacked	Autoencoders	

Input x 

Features 

Encoder Decoder 

Class Labels 

Encoder Decoder 

Sparsity 

Features 

Encoder Decoder Sparsity 

Stacked 
Autoencoders

62

Greedy Layer-wise Learning
 



Stacked	Autoencoders	

Input x 

Features 

Encoder 

Features 

Class Labels 

Encoder 

Encoder 
• 	Remove	decoders	and	
use	feed-forward	part.		

• 	Standard,	or	
convoluAonal	neural	
network	architecture.		

• 	Parameters	can	be	
fine-tuned	using	
backpropagaAon.		

• Remove decoders and use 
feed-forward part. 

63

Stacked 
Autoencoders



Stacked	Autoencoders	

Input x 

Features 

Encoder 

Features 

Class Labels 

Encoder 

Encoder 
• 	Remove	decoders	and	
use	feed-forward	part.		

• 	Standard,	or	
convoluAonal	neural	
network	architecture.		

• 	Parameters	can	be	
fine-tuned	using	
backpropagaAon.		

• Remove decoders and use 
feed-forward part. 

• Standard, or convolutional neural 
network architecture. 

• Parameters can be fine-tuned 
using backpropagation. 

64

Stacked 
Autoencoders



Deep 
Autoencoders

65

Deep	Autoencoders	

W

W

W +�

W

W

W

W

W +�

W +�

W +�

W

W +�

W +�

W +�

+�

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine�tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top



Deep Autoencoders
• 25x25 – 2000 – 1000 – 500 – 30 autoencoder to extract 30-D real-

valued codes for Oliver face patches. 

• Top: Random samples from the test dataset.
• Middle: Reconstructions by the 30-dimensional deep autoencoder. 
• Bottom: Reconstructions by the 30-dimensional PCA. 

66(Hinton and Salakhutdinov, Science 2006) 

Deep	Autoencoders	
• 	25x25	–	2000	–	1000	–	500	–	30	autoencoder	to	extract	30-D	real-
valued	codes	for	Oliver	face	patches.			

• 	Top:	Random	samples	from	the	test	dataset.			
• 	Middle:	ReconstrucAons	by	the	30-dimensional	deep	autoencoder.	

• 	BoBom:	ReconstrucAons	by	the	30-dimenAnoal	PCA.		

(Hinton and Salakhutdinov, Science 2006)

Deep	Autoencoders	
• 	25x25	–	2000	–	1000	–	500	–	30	autoencoder	to	extract	30-D	real-
valued	codes	for	Oliver	face	patches.			

• 	Top:	Random	samples	from	the	test	dataset.			
• 	Middle:	ReconstrucAons	by	the	30-dimensional	deep	autoencoder.	

• 	BoBom:	ReconstrucAons	by	the	30-dimenAnoal	PCA.		

(Hinton and Salakhutdinov, Science 2006)

Deep	Autoencoders	
• 	25x25	–	2000	–	1000	–	500	–	30	autoencoder	to	extract	30-D	real-
valued	codes	for	Oliver	face	patches.			

• 	Top:	Random	samples	from	the	test	dataset.			
• 	Middle:	ReconstrucAons	by	the	30-dimensional	deep	autoencoder.	

• 	BoBom:	ReconstrucAons	by	the	30-dimenAnoal	PCA.		

(Hinton and Salakhutdinov, Science 2006)

Deep	Autoencoders	
• 	25x25	–	2000	–	1000	–	500	–	30	autoencoder	to	extract	30-D	real-
valued	codes	for	Oliver	face	patches.			

• 	Top:	Random	samples	from	the	test	dataset.			
• 	Middle:	ReconstrucAons	by	the	30-dimensional	deep	autoencoder.	

• 	BoBom:	ReconstrucAons	by	the	30-dimenAnoal	PCA.		

(Hinton and Salakhutdinov, Science 2006)



InformaAon	Retrieval	
2-D	LSA	space	

Legal/JudicialLeading          
Economic         
Indicators       

European Community 
Monetary/Economic  

Accounts/
Earnings 

Interbank Markets

Government 
Borrowings 

Disasters and 
Accidents     

Energy Markets

• 	The	Reuters	Corpus	Volume	II	contains	804,414	newswire	stories	
(randomly	split	into	402,207	training	and	402,207	test).	

• 	“Bag-of-words”	representaAon:	each	arAcle	is	represented	as	a	vector	
containing	the	counts	of	the	most	frequently	used	2000	words	in	the	
training	set.	 (Hinton and Salakhutdinov, Science 2006)

Information Retrieval

• The Reuters Corpus Volume II contains 804,414 newswire stories (randomly split 
into 402,207 training and 402,207 test). 

• “Bag-of-words” representation: each article is represented as a vector containing 
the counts of the most frequently used 2000 words in the training set. 

67(Hinton and Salakhutdinov, Science 2006) 

2-D LSA space



Semantic Hashing

• Learn to map documents into semantic 20-D binary codes. 
• Retrieve similar documents stored at the nearby addresses with no search at all. 

68(Hinton and Salakhutdinov, Science 2006) 

SemanAc	Hashing	

• 	Learn	to	map	documents	into	semanFc	20-D	binary	codes.	

• 	Retrieve	similar	documents	stored	at	the	nearby	addresses	with	no	
search	at	all.	

Accounts/Earnings

Government 
Borrowing

European Community 
Monetary/Economic

Disasters and 
Accidents

Energy Markets

Semantically
Similar
Documents

Document 

Address Space

Semantic
Hashing
Function

(Salakhutdinov and Hinton, SIGIR 2007)



Searching Large Image Database using 
Binary Codes
• Map images into 

binary codes for 
fast retrieval. 

• Small Codes, Torralba, Fergus, Weiss, CVPR 2008
• Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
• Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 2011 
• Norouzi and Fleet, ICML 2011

69

Searching	Large	Image	Database	
using	Binary	Codes	

• 	Map	images	into	binary	codes	for	fast	retrieval.	

• 	Small Codes, Torralba, Fergus, Weiss, CVPR 2008
•  Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
•  Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 2011
•  Norouzi and Fleet, ICML 2011,



70

Explicit Density p(x) 

Unsupervised Learning

Non-probabilistic Models
• Sparse Coding
• Autoencoders
• Others (e.g. k-means)

Probabilistic 
(Generative) Models

Tractable Models
• Fully observed 

Belief Nets
• NADE
• PixelRNN

Non-Tractable Models
• BoltzmannMachines
• Variational 

Autoencoders
• Helmholtz Machines
• Many others...

Implicit Density

• Generative 
Adversarial 
Networks

• Moment 
Matching 
Networks



71

Generative Adversarial 
Networks



Genetive Adversarial Networks (GANs)

• A game-theoretic 
likelihood free model

Advantages:
• Uses a latent code

• No Markov chains 
needed

• Produces the best 
looking samples

72

Noise 
(random input)

𝑧	~	Uniform!""

Generative
Model

(Goodfellow et al., 2014)

think of this as 
a transformation 



Genetive Adversarial Networks (GANs)

• A game between a generator             and a discriminator      
§Generator tries to fool discriminator (i.e. generate realistic samples)
§Discriminator tries to distinguish fake from real samples

Noise

D!

{x1, . . . ,xn} ⇠ pdata

G✓(z) D!(x)

Generator 

z
G✓

xfake

Discriminator fake

real

(Goodfellow et al., 2014)

73

xreal
Training 

data 



Intuition behind GANs

74

xreal

D!

xfake G✓

: Discriminator (Art Critic)

: Generator (Forger)



Training Procedure
•Use SGD on two minibatches simultaneously:

§A minibatch of training examples 

§A minibatch of generated samples 

76

(Goodfellow et al., 2014)

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:

r✓d

1

m

mX

i=1

h
logD

⇣
x(i)

⌘
+ log

⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘i
.

end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:

r✓g
1

m

mX

i=1

log
⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘
.

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

4

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:

r✓d

1

m

mX

i=1

h
logD

⇣
x(i)

⌘
+ log

⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘i
.

end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:

r✓g
1

m

mX

i=1

log
⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘
.

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

4

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:

r✓d

1

m

mX

i=1

h
logD

⇣
x(i)

⌘
+ log

⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘i
.

end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:

r✓g
1

m

mX

i=1

log
⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘
.

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

4

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:

r✓d

1

m

mX

i=1

h
logD

⇣
x(i)

⌘
+ log

⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘i
.

end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:

r✓g
1

m

mX

i=1

log
⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘
.

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

4



GAN Training: Minimax Game

77

min
✓

max
!

Ex⇠pdata [logD!(x)] + Ez⇠pz [log (1�D!(G✓(z)))]

Real data Noise vector used 
to generate data

(Goodfellow 2016)

Minimax Game

-Equilibrium is a saddle point of the discriminator loss 
-Resembles Jensen-Shannon divergence 
-Generator minimizes the log-probability of the discriminator 
being correct

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

Fully-visible belief net

pmodel(x) = pmodel(x1)
nY

i=2

pmodel(xi | x1, . . . , xi�1)

Change of variables

y = g(x) ) px(x) = py(g(x))

����det
✓
@g(x)

@x

◆����

Variational bound

log p(x) � log p(x)�DKL (q(z)kp(z | x))(1)

=Ez⇠q log p(x, z) +H(q)(2)

Boltzmann Machines

p(x) =
1

Z
exp (�E(x, z))(3)

Z =
X

x

X

z

exp (�E(x, z))(4)

Generator equation
x = G(z;✓(G))

Minimax

J
(D) = �1

2
Ex⇠pdata logD(x)� 1

2
Ez log (1�D (G(z)))(5)

J
(G) = �J

(D)(6)

1

(Goodfellow 2016)

Non-Saturating Game

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

Fully-visible belief net

pmodel(x) = pmodel(x1)
nY

i=2

pmodel(xi | x1, . . . , xi�1)

Change of variables

y = g(x) ) px(x) = py(g(x))

����det
✓
@g(x)

@x

◆����

Variational bound

log p(x) � log p(x)�DKL (q(z)kp(z | x))(1)

=Ez⇠q log p(x, z) +H(q)(2)

Boltzmann Machines

p(x) =
1

Z
exp (�E(x, z))(3)

Z =
X

x

X

z

exp (�E(x, z))(4)

Generator equation
x = G(z;✓(G))

Minimax

J
(D) = �1

2
Ex⇠pdata logD(x)� 1

2
Ez log (1�D (G(z)))(5)

J
(G) = �J

(D)(6)

Non-saturating

J
(D) = �1

2
Ex⇠pdata logD(x)� 1

2
Ez log (1�D (G(z)))(7)

J
(G) = �1

2
Ez logD (G(z))(8)

1

-Equilibrium no longer describable with a single loss 
-Generator maximizes the log-probability of the discriminator 
being mistaken 
-Heuristically motivated; generator can still learn even when 
discriminator successfully rejects all generator samples

(Goodfellow et al., 2014)

Cross-entropy 
loss for binary 
classification

Generator maximizes the log-probability 
of the discriminator being mistaken 

• Equilibrium of the game

• Minimizes the Jensen-Shannon divergence between pdata and px



GAN Training: Minimax Game

78

min
✓

max
!

Ex⇠pdata [logD!(x)] + Ez⇠pz [log (1�D!(G✓(z)))]

Real data Noise vector used 
to generate data

(Goodfellow 2016)

Minimax Game

-Equilibrium is a saddle point of the discriminator loss 
-Resembles Jensen-Shannon divergence 
-Generator minimizes the log-probability of the discriminator 
being correct

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

Fully-visible belief net

pmodel(x) = pmodel(x1)
nY

i=2

pmodel(xi | x1, . . . , xi�1)

Change of variables

y = g(x) ) px(x) = py(g(x))

����det
✓
@g(x)

@x

◆����

Variational bound

log p(x) � log p(x)�DKL (q(z)kp(z | x))(1)

=Ez⇠q log p(x, z) +H(q)(2)

Boltzmann Machines

p(x) =
1

Z
exp (�E(x, z))(3)

Z =
X

x

X

z

exp (�E(x, z))(4)

Generator equation
x = G(z;✓(G))

Minimax

J
(D) = �1

2
Ex⇠pdata logD(x)� 1

2
Ez log (1�D (G(z)))(5)

J
(G) = �J

(D)(6)

1

(Goodfellow 2016)

Non-Saturating Game

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

Fully-visible belief net

pmodel(x) = pmodel(x1)
nY

i=2

pmodel(xi | x1, . . . , xi�1)

Change of variables

y = g(x) ) px(x) = py(g(x))

����det
✓
@g(x)

@x

◆����

Variational bound

log p(x) � log p(x)�DKL (q(z)kp(z | x))(1)

=Ez⇠q log p(x, z) +H(q)(2)

Boltzmann Machines

p(x) =
1

Z
exp (�E(x, z))(3)

Z =
X

x

X

z

exp (�E(x, z))(4)

Generator equation
x = G(z;✓(G))

Minimax

J
(D) = �1

2
Ex⇠pdata logD(x)� 1

2
Ez log (1�D (G(z)))(5)

J
(G) = �J

(D)(6)

Non-saturating

J
(D) = �1

2
Ex⇠pdata logD(x)� 1

2
Ez log (1�D (G(z)))(7)

J
(G) = �1

2
Ez logD (G(z))(8)

1

-Equilibrium no longer describable with a single loss 
-Generator maximizes the log-probability of the discriminator 
being mistaken 
-Heuristically motivated; generator can still learn even when 
discriminator successfully rejects all generator samples

(Goodfellow et al., 2014)

Cross-entropy 
loss for binary 
classification

Generator maximizes the log-probability 
of the discriminator being mistaken 

• Equilibrium of the game

• Minimizes the Jensen-Shannon divergence

Important question is 
“Does this converge??”



Training Procedure

79

Source: Alec Radford

Generating 1D points

(Goodfellow et al., 2014)

Generating images

Source: OpenAI blog



Training Procedure
•Use SGD on two minibatches simultaneously:

§A minibatch of training examples 

§A minibatch of generated samples 

80

(Goodfellow et al., 2014)

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:

r✓d

1

m

mX

i=1

h
logD

⇣
x(i)

⌘
+ log

⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘i
.

end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:

r✓g
1

m

mX

i=1

log
⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘
.

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

4

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:

r✓d

1

m

mX

i=1

h
logD

⇣
x(i)

⌘
+ log

⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘i
.

end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:

r✓g
1

m

mX

i=1

log
⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘
.

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

4

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:

r✓d

1

m

mX

i=1

h
logD

⇣
x(i)

⌘
+ log

⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘i
.

end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:

r✓g
1

m

mX

i=1

log
⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘
.

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

4

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:

r✓d

1

m

mX

i=1

h
logD

⇣
x(i)

⌘
+ log

⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘i
.

end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:

r✓g
1

m

mX

i=1

log
⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘
.

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

4



Training Procedure

81

Noise

D!

{x1, . . . ,xn} ⇠ pdata

Generator 

z
G✓

xfake

Discriminator fake

real

xreal
Training 

data 

• Updating the discriminator: 

update the discriminator weights using 
backprop on the classification objective

OR



Training Procedure

82

Noise D!

Generator 

z
G✓

xfake
Discriminator fake

real

• Updating the generator: 

update the generator weights using 
backprop

flip the sign of 
the derivatives

backprop the derivatives, but don't 
modify the discriminator weights



Results

83

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

Figure 3: Digits obtained by linearly interpolating between coordinates in z space of the full model.

1. A conditional generative model p(x | c) can be obtained by adding c as input to both G and D.
2. Learned approximate inference can be performed by training an auxiliary network to predict z

given x. This is similar to the inference net trained by the wake-sleep algorithm [15] but with
the advantage that the inference net may be trained for a fixed generator net after the generator
net has finished training.

3. One can approximately model all conditionals p(xS | x 6S) where S is a subset of the indices
of x by training a family of conditional models that share parameters. Essentially, one can use
adversarial nets to implement a stochastic extension of the deterministic MP-DBM [10].

4. Semi-supervised learning: features from the discriminator or inference net could improve perfor-
mance of classifiers when limited labeled data is available.

5. Efficiency improvements: training could be accelerated greatly by devising better methods for
coordinating G and D or determining better distributions to sample z from during training.

This paper has demonstrated the viability of the adversarial modeling framework, suggesting that
these research directions could prove useful.

7

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

Figure 3: Digits obtained by linearly interpolating between coordinates in z space of the full model.

1. A conditional generative model p(x | c) can be obtained by adding c as input to both G and D.
2. Learned approximate inference can be performed by training an auxiliary network to predict z

given x. This is similar to the inference net trained by the wake-sleep algorithm [15] but with
the advantage that the inference net may be trained for a fixed generator net after the generator
net has finished training.

3. One can approximately model all conditionals p(xS | x 6S) where S is a subset of the indices
of x by training a family of conditional models that share parameters. Essentially, one can use
adversarial nets to implement a stochastic extension of the deterministic MP-DBM [10].

4. Semi-supervised learning: features from the discriminator or inference net could improve perfor-
mance of classifiers when limited labeled data is available.

5. Efficiency improvements: training could be accelerated greatly by devising better methods for
coordinating G and D or determining better distributions to sample z from during training.

This paper has demonstrated the viability of the adversarial modeling framework, suggesting that
these research directions could prove useful.

7

MNIST samples TFD samples

CIFAR10 samples CIFAR10 samples
(fully-connected model) (convolutional discriminator, 

deconvolutional generator)

(Goodfellow et al., 2014)

• The generator uses 
a mixture of 
rectifier linear 
activations and/or 
sigmoid activations

• The discriminator 
net used maxout 
activations. 



Deep Convolutional GANs (DCGAN)

84

• No fully connected layers

• Batch Normalization 
(Ioffe and Szegedy, 2015)

• Leaky Rectifier in D

• Use Adam (Kingma and Ba, 2015)

• Tweak Adam hyperparameters a bit 
(lr=0.0002, b1=0.5)

• Idea: Tricks to make GAN training more stable
(Radford et al., 2015)



DCGAN for LSUN Bedrooms

85

(Radford et al., 
2015)

64×64 pixels 
~3M images



Walking 
over the 
latent space

86

(Radford et al., 2015)

• Interpolation 
suggests 
non-overfitting 
behavior



Walking over the latent space

87

(Radford et al., 2015)



Vector Space Arithmetic

88

(Radford et al., 2015)

man 
with glasses

man 
without glasses

woman 
without glasses woman with glasses



Vector Space Arithmetic

89

(Radford et al., 2015)

smiling 
woman

neutral 
woman

neutral 
man smiling man



Cartoon of the Image manifold

90

Cartoon of the Image manifold

x1

x2

 13



What makes GANs special?

91

What makes GANs special?

x1

x2

x1

x2

more traditional max-likelihood approach GAN  14



GAN Failures: Mode Collapse

•D in inner loop: convergence to correct distribution

•G in inner loop: place all mass on most likely point

Under review as a conference paper at ICLR 2017

Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel

5

Under review as a conference paper at ICLR 2017

Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel

5

(Metz et al., 2016) 92



Mode Collapse: Solutions
• Unrolled GANs (Metz et al 2016): Prevents mode collapse by 

backproping through a set of (k) updates of the discriminator to update 
generator parameters

• VEEGAN (Srivastava et al 2017): Introduce a reconstructor network 
which is learned both to map the true data distribution p(x) to a 
Gaussian and to approximately invert the generator network.

93

Mode Collapse: Solutions

(Goodfellow 2016)

Unrolled GANs
Under review as a conference paper at ICLR 2017

Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel

5

(Metz et al 2016)

• Backprop through k updates of the discriminator to 
prevent mode collapse:

Under review as a conference paper at ICLR 2017

Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel

5

• Unrolled GANs (Metz et al 2016): Prevents mode collapse by 
backproping through a set of (k) updates of the discriminator to 
update generator parameters. 

• VEEGAN (Srivastava et al 2017): Introduce a reconstructor network 
which is learned both to map the true data distribution p(x) to a 
Gaussian and to approximately invert the generator network.



Mode Collapse: Solutions
• Minibatch Discrimination (Salimans et al 2016): Add minibatch 

features that classify each example by comparing it to other members 
of the minibatch (Salimans et al 2016)

• PacGAN: The power of two samples in generative adversarial 
networks (Lin et al 2017): Also uses multisample discrimination.

94

Mode Collapse: Solutions
• Minibatch Discrimination (Salimans et al 2016): Add minibatch 

features that classify each example by comparing it to other 
members of the minibatch (Salimans et al 2016)  

• PacGAN: The power of two samples in generative adversarial 
networks (Lin et al 2017): Also uses multisample discrimination.

Figure 1: PacGAN(m) augments the input layer by a factor of m. The number of edges between
the first two layers are increased accordingly to preserve the connectivity of the mother architecture
(typically fully-connected). Packed samples are fed to the input layer in a concatenated fashion;
the grid-patterned nodes represent input nodes for the second input sample.

in the mother architecture. The grid-patterned nodes in Figure 1 represent input nodes for the
second sample.

Similarly, when packing a DCGAN, which uses convolutional neural networks for both the
generator and the discriminator, we simply stack the images into a tensor of depth m. For instance,
the discriminator for PacDCGAN5 on the MNIST dataset of handwritten images [24] would take
an input of size 28⇥ 28⇥ 5, since each individual black-and-white MNIST image is 28⇥ 28 pixels.
Only the input layer and the number of weights in the corresponding first convolutional layer will
increase in depth by a factor of five. By modifying only the input dimension and fixing the number
of hidden and output nodes in the discriminator, we can focus purely on the e↵ects of packing in
our numerical experiments in Section 3.

How to train a packed discriminator. Just as in standard GANs, we train the packed dis-
criminator with a bag of samples from the real data and the generator. However, each minibatch
in the stochastic gradient descent now consists of packed samples. Each packed sample is of the
form (X1, X2, . . . , Xm, Y ), where the label is Y = 1 for real data and Y = 0 for generated data,
and the m independent samples from either class are jointly treated as a single, higher-dimensional
feature (X1, . . . , Xm). The discriminator learns to classify m packed samples jointly. Intuitively,
packing helps the discriminator detect mode collapse because lack of diversity is more obvious in a
set of samples than in a single sample. Fundamentally, packing allows the discriminator to observe
samples from product distributions, which highlight mode collapse more clearly than unmodified
data and generator distributions. We make this statement precise in Section 4.

Notice that the computational overhead of PacGAN training is marginal, since only the input
layer of the discriminator gains new parameters. Furthermore, we keep all training hyperparame-
ters identical to the mother architecture, including the stochastic gradient descent minibatch size,
weight decay, learning rate, and the number of training epochs. This is in contrast with other
approaches for mitigating mode collapse that require significant computational overhead and/or
delicate hyperparameter selection [11, 10, 37, 40, 30].

Computational complexity. The exact computational complexity overhead of PacGAN (com-
pared to GANs) is architecture-dependent, but can be computed in a straightforward manner. For
example, consider a discriminator with w fully-connected layers, each containing g nodes. Since the
discriminator has a binary output, the (w + 1)th layer has a single node, and is fully connected to

5



Mode Collapse: Solutions
• PacGAN: The power of two samples in generative adversarial 

networks (Lin et al 2017): Also uses multisample discrimination.

95

Mode Collapse: Solutions
• PacGAN: The power of two samples in generative adversarial 

networks (Lin et al 2017)

To examine real data, we use the MNIST dataset [24], which consists of 70,000 images of
handwritten digits, each 28⇥ 28 pixels. Unmodified, this dataset has 10 modes, one for each digit.
As done in Mode-regularized GANs [6], Unrolled GANs [30] and VEEGAN [40], we augment the
number of modes by stacking the images. That is, we generate a new dataset of 128,000 images,
in which each image consists of three randomly-selected MNIST images that are stacked into a
28⇥28⇥3 image in RGB. This new dataset has (with high probability) 1000 = 10⇥10⇥10 modes.
We refer to this as the stacked MNIST dataset.

3.1 Synthetic data experiments from VEEGAN [40]

Our first experiment evaluates the number of modes and the number of high-quality samples for
the 2D-ring and the 2D-grid. Results are reported in Table 1. The first four rows are copied
directly from Table 1 in [40]. The last three rows contain our own implementation of PacGANs.
We do not make any choices in the hyper-parameters, the generator architecture, the discriminator
architecture, and the loss. Our implementation attempts to reproduce the VEEGAN architecture
to the best of our knowledge, as described below.

Target distribution GAN PacGAN2

Figure 2: Scatter plot of the 2D samples from the true distribution (left) of 2D-grid and the learned
generators using GAN (middle) and PacGAN2 (right). PacGAN2 captures all of the 25 modes.

Architecture and hyper-parameters. All of the GANs we implemented in this experiment
use the same overall architecture, which is chosen to match the architecture in VEEGAN’s code
[40]. The generators have two hidden layers, 128 units per layer with ReLU activation, trained
with batch normalization [16]. The input noise is a two dimensional spherical Gaussian with zero
mean and unit variance. The discriminator has one hidden layer, 128 units on that layer. The
hidden layer uses LinearMaxout with 5 maxout pieces, and no batch normalization is used in the
discriminator.

We train each GAN with 100,000 total samples, and a mini-batch size of 100 samples; training
is run for 200 epochs. The discriminator’s loss function is log(1 + exp(�D(real data))) + log(1 +
exp(D(generated data))), except for VEEGAN which has an additional regularization term. The
generator’s loss function is log(1 + exp(D(real data))) + log(1 + exp(�D(generated data))). Adam
[21] stochastic gradient descent is applied with the generator weights and the discriminator weights

7



GAN Evaluation
• Quantitatively evaluating GANs is not straightforward:
• Max Likelihood is a poor indication of sample quality

• Some evaluation metrics

96

GAN Evaluation
• Quantitatively evaluating GANs is not straightforward: 

- Max Likelihood is a poor indication of sample quality. 

• Evaluation metrics (selected) 
- Inception Score (IS): 

y = labels given gen. image. p(y|x) is from classifier - InceptionNet 

- Fréchet inception distance (FID): (Currently most popular)  
Estimate mean m and covariance C from classifier output - InceptionNet

- Kernel MMD (Maximum Mean Discrepancy):

Under review as a conference paper at ICLR 2018

The Inception Score is arguably the most widely adopted metric in the literature. It uses a image
classification model M, the Google Inception network (Szegedy et al., 2016), pre-trained on the
ImageNet (Deng et al., 2009) dataset, to compute

IS(Pg) = e
Ex⇠Pg [KL(pM(y|x)||pM(y))]

, (2)

where pM(y|x) denotes the label distribution of x as predicted by M, and pM(y) =
R
x pM(y|x) dPg ,

i.e. the marginal of pM(y|x) over the probability measure Pg. The expectation and the integral in
pM(y|x) can be approximated with i.i.d. samples from Pg. A higher IS has pM(y|x) close to a
point mass, which happens when the Inception network is very confident that the image belongs
to a particular ImageNet category, and has pM(y) close to uniform, i.e. all categories are equally
represented. This suggests that the generative model has both high quality and diversity. Salimans
et al. (2016) show that the Inception Score has a reasonable correlation with human judgment of
image quality. We would like to highlight two specific properties: 1) the distributions on both sides
of the KL are dependent on M, and 2) the distribution of the real data Pr, or even samples thereof,
are not used anywhere.

The Mode Score is an improved version of the Inception Score. Formally, it is given by

MS(Pg) = e
Ex⇠Pg [KL(pM(y|x)||pM(y))]�KL(pM(y)||pM(y⇤))

, (3)

where pM(y⇤) =
R
x pM(y|x) dPr is the marginal label distribution for the samples from the real

data distribution. Unlike the Inception Score, it is able to measure the dissimilarity between the real
distribution Pr and generated distribution Pg through the term KL(pM(y)||pM(y⇤)).

The Kernel MMD (Maximum Mean Discrepancy), defined as

MMD(Pr,Pg) =

 
Exr,x

0
r⇠Pr,

xg,x
0
g⇠Pg


k(xr,x

0
r)� 2k(xr,xg) + k(xg,x

0
g)

�! 1
2

, (4)

measures the dissimilarity between Pr and Pg for some fixed kernel function k. Given two sets of
samples from Pr and Pg, the empirical MMD between the two distributions can be computed with
finite sample approximation of the expectation. A lower MMD means that Pg is closer to Pr. The
Parzen window estimate (Gretton et al., 2007) can be viewed as a specialization of Kernel MMD.

The Wasserstein distance between Pr and Pg is defined as

WD(Pr,Pg) = inf
�2�(Pr,Pg)

E(xr,xg)⇠� [d(x
r
,xg)] , (5)

where �(Pr,Pg) denotes the set of all joint distributions (i.e. probabilistic couplings) whose marginals
are respectively Pr and Pg, and d(xr

,xg) denotes the base distance between the two samples. For
discrete distributions with densities pr and pg, the Wasserstein distance is often referred to as the
Earth Mover’s Distance (EMD), and corresponds to the solution to the optimal transport problem

WD(pr, pg) = min
w2Rn⇥m

nX

i=1

mX

j=1

wijd(x
r
i ,x

g
j ) s.t.

mX

j=1

wi,j = pr(x
r
i ) 8i,

nX

i=1

wi,j = pg(x
g
j ) 8j.

(6)
This is the finite sample approximation of WD(Pr,Pg) used in practice. Similar to MMD, the
Wasserstein distance is lower when two distributions are more similar.

The Fréchet Inception Distance (FID) was recently introduced by Heusel et al. (2017) to evaluate
GANs. Formally, it is given by

FID(Pr,Pg) = kµr � µgk+ Tr(Cr +Cg � 2(CrCg)
1/2), (7)

where µr (µg) and Cr (Cg) are the mean and covariance of the real (generated) distribution, respec-
tively. Note that under the Gaussian assumption on both Pr and Pg , the Fréchet distance is equivalent
to the Wasserstein-2 distance.

The 1-Nearest Neighbor classifier is used in two-sample tests to assess whether two distributions
are identical. Given two sets of samples Sr ⇠ Pn

r and Sg ⇠ Pm
g , with |Sr| = |Sg|, one can compute

the leave-one-out (LOO) accuracy of a 1-NN classifier trained on Sr and Sg with positive labels
for Sr and negative labels for Sg. Different from the most common use of accuracy, here the 1-NN

3

Under review as a conference paper at ICLR 2018

The Inception Score is arguably the most widely adopted metric in the literature. It uses a image
classification model M, the Google Inception network (Szegedy et al., 2016), pre-trained on the
ImageNet (Deng et al., 2009) dataset, to compute

IS(Pg) = e
Ex⇠Pg [KL(pM(y|x)||pM(y))]

, (2)

where pM(y|x) denotes the label distribution of x as predicted by M, and pM(y) =
R
x pM(y|x) dPg ,

i.e. the marginal of pM(y|x) over the probability measure Pg. The expectation and the integral in
pM(y|x) can be approximated with i.i.d. samples from Pg. A higher IS has pM(y|x) close to a
point mass, which happens when the Inception network is very confident that the image belongs
to a particular ImageNet category, and has pM(y) close to uniform, i.e. all categories are equally
represented. This suggests that the generative model has both high quality and diversity. Salimans
et al. (2016) show that the Inception Score has a reasonable correlation with human judgment of
image quality. We would like to highlight two specific properties: 1) the distributions on both sides
of the KL are dependent on M, and 2) the distribution of the real data Pr, or even samples thereof,
are not used anywhere.

The Mode Score is an improved version of the Inception Score. Formally, it is given by

MS(Pg) = e
Ex⇠Pg [KL(pM(y|x)||pM(y))]�KL(pM(y)||pM(y⇤))

, (3)

where pM(y⇤) =
R
x pM(y|x) dPr is the marginal label distribution for the samples from the real

data distribution. Unlike the Inception Score, it is able to measure the dissimilarity between the real
distribution Pr and generated distribution Pg through the term KL(pM(y)||pM(y⇤)).

The Kernel MMD (Maximum Mean Discrepancy), defined as

MMD(Pr,Pg) =

 
Exr,x

0
r⇠Pr,

xg,x
0
g⇠Pg


k(xr,x

0
r)� 2k(xr,xg) + k(xg,x

0
g)

�! 1
2

, (4)

measures the dissimilarity between Pr and Pg for some fixed kernel function k. Given two sets of
samples from Pr and Pg, the empirical MMD between the two distributions can be computed with
finite sample approximation of the expectation. A lower MMD means that Pg is closer to Pr. The
Parzen window estimate (Gretton et al., 2007) can be viewed as a specialization of Kernel MMD.

The Wasserstein distance between Pr and Pg is defined as

WD(Pr,Pg) = inf
�2�(Pr,Pg)

E(xr,xg)⇠� [d(x
r
,xg)] , (5)

where �(Pr,Pg) denotes the set of all joint distributions (i.e. probabilistic couplings) whose marginals
are respectively Pr and Pg, and d(xr

,xg) denotes the base distance between the two samples. For
discrete distributions with densities pr and pg, the Wasserstein distance is often referred to as the
Earth Mover’s Distance (EMD), and corresponds to the solution to the optimal transport problem

WD(pr, pg) = min
w2Rn⇥m

nX

i=1

mX

j=1

wijd(x
r
i ,x

g
j ) s.t.

mX

j=1

wi,j = pr(x
r
i ) 8i,

nX

i=1

wi,j = pg(x
g
j ) 8j.

(6)
This is the finite sample approximation of WD(Pr,Pg) used in practice. Similar to MMD, the
Wasserstein distance is lower when two distributions are more similar.

The Fréchet Inception Distance (FID) was recently introduced by Heusel et al. (2017) to evaluate
GANs. Formally, it is given by

FID(Pr,Pg) = kµr � µgk+ Tr(Cr +Cg � 2(CrCg)
1/2), (7)

where µr (µg) and Cr (Cg) are the mean and covariance of the real (generated) distribution, respec-
tively. Note that under the Gaussian assumption on both Pr and Pg , the Fréchet distance is equivalent
to the Wasserstein-2 distance.

The 1-Nearest Neighbor classifier is used in two-sample tests to assess whether two distributions
are identical. Given two sets of samples Sr ⇠ Pn

r and Sg ⇠ Pm
g , with |Sr| = |Sg|, one can compute

the leave-one-out (LOO) accuracy of a 1-NN classifier trained on Sr and Sg with positive labels
for Sr and negative labels for Sg. Different from the most common use of accuracy, here the 1-NN

3

Figure 3: FID is evaluated for upper left: Gaussian noise, upper middle: Gaussian blur, upper
right: implanted black rectangles, lower left: swirled images, lower middle: salt and pepper noise,
and lower right: CelebA dataset contaminated by ImageNet images. The disturbance level rises
from zero and increases to the highest level. The FID captures the disturbance level very well by
monotonically increasing.

is difficult [55]. The best known measure is the likelihood, which can be estimated by annealed
importance sampling [59]. However, the likelihood heavily depends on the noise assumptions for
the real data and can be dominated by single samples [55]. Other approaches like density estimates
have drawbacks, too [55]. A well-performing approach to measure the performance of GANs is the
“Inception Score” which correlates with human judgment [53]. Generated samples are fed into an
inception model that was trained on ImageNet. Images with meaningful objects are supposed to
have low label (output) entropy, that is, they belong to few object classes. On the other hand, the
entropy across images should be high, that is, the variance over the images should be large. Drawback
of the Inception Score is that the statistics of real world samples are not used and compared to the
statistics of synthetic samples. Next, we improve the Inception Score. The equality p(.) = pw(.)

holds except for a non-measurable set if and only if
R
p(.)f(x)dx =

R
pw(.)f(x)dx for a basis f(.)

spanning the function space in which p(.) and pw(.) live. These equalities of expectations are used
to describe distributions by moments or cumulants, where f(x) are polynomials of the data x. We
generalize these polynomials by replacing x by the coding layer of an inception model in order to
obtain vision-relevant features. For practical reasons we only consider the first two polynomials, that
is, the first two moments: mean and covariance. The Gaussian is the maximum entropy distribution
for given mean and covariance, therefore we assume the coding units to follow a multidimensional
Gaussian. The difference of two Gaussians (synthetic and real-world images) is measured by the
Fréchet distance [16] also known as Wasserstein-2 distance [58]. We call the Fréchet distance d(., .)

between the Gaussian with mean (m,C) obtained from p(.) and the Gaussian with mean (mw,Cw)

obtained from pw(.) the “Fréchet Inception Distance” (FID), which is given by [15]:

d
2
((m,C), (mw,Cw)) = km�mwk22 +Tr

�
C +Cw � 2

�
CCw

�1/2�
. (6)

Next we show that the FID is consistent with increasing disturbances and human judgment. Fig. 3
evaluates the FID for Gaussian noise, Gaussian blur, implanted black rectangles, swirled images,
salt and pepper noise, and CelebA dataset contaminated by ImageNet images. The FID captures the
disturbance level very well. In the experiments we used the FID to evaluate the performance of GANs.
For more details and a comparison between FID and Inception Score see Appendix Section A1,
where we show that FID is more consistent with the noise level than the Inception Score.

Model Selection and Evaluation. We compare the two time-scale update rule (TTUR) for GANs
with the original GAN training to see whether TTUR improves the convergence speed and per-
formance of GANs. We have selected Adam stochastic optimization to reduce the risk of mode
collapsing. The advantage of Adam has been confirmed by MNIST experiments, where Adam indeed

6



Subclasses of GANs

97Image: Christopher Olah



Vanilla GAN

98

(Goodfellow et al., 2014)

DCGAN (Radford et al., 2015)



Conditional GAN
• Add conditional variables y into G and D

99

(Mirza and Osindero, 2014)

In the generator the prior input noise pz(z), and y are combined in joint hidden representation, and
the adversarial training framework allows for considerable flexibility in how this hidden representa-
tion is composed. 1

In the discriminator x and y are presented as inputs and to a discriminative function (embodied
again by a MLP in this case).

The objective function of a two-player minimax game would be as Eq 2

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x|y)] + Ez⇠pz(z)[log(1�D(G(z|y)))]. (2)

Fig 1 illustrates the structure of a simple conditional adversarial net.

Figure 1: Conditional adversarial net

4 Experimental Results

4.1 Unimodal

We trained a conditional adversarial net on MNIST images conditioned on their class labels, encoded
as one-hot vectors.

In the generator net, a noise prior z with dimensionality 100 was drawn from a uniform distribution
within the unit hypercube. Both z and y are mapped to hidden layers with Rectified Linear Unit
(ReLu) activation [4, 11], with layer sizes 200 and 1000 respectively, before both being mapped to
second, combined hidden ReLu layer of dimensionality 1200. We then have a final sigmoid unit
layer as our output for generating the 784-dimensional MNIST samples.

1For now we simply have the conditioning input and prior noise as inputs to a single hidden layer of a MLP,
but one could imagine using higher order interactions allowing for complex generation mechanisms that would
be extremely difficult to work with in a traditional generative framework.

3

Conditional GAN 

 

Mirza and Osindero 2016 

0 1 0 0 0 0 0 0 0 0 



Auxiliary Classifier GAN
• Every generated sample has a corresponding 

class label

•D is trained to maximize LS + LC
•G is trained to maximize LC − LS

• Learns a representation for z that is 
independent of class label 

100

(Odena et al., 2016)

Under review as a conference paper at ICLR 2017

Figure 2: A comparison of several GAN architectures with the proposed AC-GAN architecture.

3 AC-GANS

We propose a variant of the GAN architecture which we call an auxiliary classifier GAN (or AC-
GAN - see Figure 2). In the AC-GAN, every generated sample has a corresponding class label, c ⇠
pc in addition to the noise z. G uses both to generate images Xfake = G(c, z). The discriminator
gives both a probability distribution over sources and a probability distribution over the class labels,
P (S | X), P (C | X) = D(X). The objective function has two parts: the log-likelihood of the
correct source, LS , and the log-likelihood of the correct class, LC .

LS = E[logP (S = real | Xreal)] + E[logP (S = fake | Xfake)]
LC = E[logP (C = c | Xreal)] + E[logP (C = c | Xfake)]

D is trained to maximize LS + LC while G is trained to maximize LC � LS . AC-GANs learn a
representation for z that is independent of class label (e.g. Kingma et al. (2014)).

Early experiments demonstrated that increasing the number of classes trained on while holding the
model fixed decreased the quality of the model outputs (Appendix D). The structure of the AC-
GAN model permits separating large datasets into subsets by class and training a generator and
discriminator for each subset. We exploit this property in our experiments to train across the entire
ImageNet data set.

4 RESULTS

We train several AC-GAN models on the ImageNet data set (Russakovsky et al., 2015). Broadly
speaking, the architecture of the generator G is a series of ‘deconvolution’ layers that transform the
noise z and class c into an image (Odena et al., 2016). We train two variants of the model architecture
for generating images at 128 ⇥ 128 and 64 ⇥ 64 spatial resolutions. The discriminator D is a deep
convolutional neural network with a Leaky ReLU nonlinearity (Maas et al., 2013). See Appendix A
for more details. As mentioned earlier, we find that reducing the variability introduced by all 1000
classes of ImageNet significantly improves the quality of training. We train 100 AC-GAN models –
each on images from just 10 classes – for 50000 mini-batches of size 100.

Evaluating the quality of image synthesis models is challenging due to the variety of probabilis-
tic criteria (Theis et al., 2015) and the lack of a perceptually meaningful image similarity metric.
Nonetheless, in subsequent sections we attempt to measure the quality of the AC-GAN by building
several ad-hoc measures for image sample discriminability and diversity. Our hope is that this work
might provide quantitative measures that may be used to aid training and subsequent development
of image synthesis models.

1 Alternatively, one can force the discriminator to work with the joint distribution (X, z) and train a separate
inference network that computes q(z|X) (Dumoulin et al., 2016; Donahue et al., 2016).

3

Under review as a conference paper at ICLR 2017

Figure 2: A comparison of several GAN architectures with the proposed AC-GAN architecture.

3 AC-GANS

We propose a variant of the GAN architecture which we call an auxiliary classifier GAN (or AC-
GAN - see Figure 2). In the AC-GAN, every generated sample has a corresponding class label, c ⇠
pc in addition to the noise z. G uses both to generate images Xfake = G(c, z). The discriminator
gives both a probability distribution over sources and a probability distribution over the class labels,
P (S | X), P (C | X) = D(X). The objective function has two parts: the log-likelihood of the
correct source, LS , and the log-likelihood of the correct class, LC .

LS = E[logP (S = real | Xreal)] + E[logP (S = fake | Xfake)]
LC = E[logP (C = c | Xreal)] + E[logP (C = c | Xfake)]

D is trained to maximize LS + LC while G is trained to maximize LC � LS . AC-GANs learn a
representation for z that is independent of class label (e.g. Kingma et al. (2014)).

Early experiments demonstrated that increasing the number of classes trained on while holding the
model fixed decreased the quality of the model outputs (Appendix D). The structure of the AC-
GAN model permits separating large datasets into subsets by class and training a generator and
discriminator for each subset. We exploit this property in our experiments to train across the entire
ImageNet data set.

4 RESULTS

We train several AC-GAN models on the ImageNet data set (Russakovsky et al., 2015). Broadly
speaking, the architecture of the generator G is a series of ‘deconvolution’ layers that transform the
noise z and class c into an image (Odena et al., 2016). We train two variants of the model architecture
for generating images at 128 ⇥ 128 and 64 ⇥ 64 spatial resolutions. The discriminator D is a deep
convolutional neural network with a Leaky ReLU nonlinearity (Maas et al., 2013). See Appendix A
for more details. As mentioned earlier, we find that reducing the variability introduced by all 1000
classes of ImageNet significantly improves the quality of training. We train 100 AC-GAN models –
each on images from just 10 classes – for 50000 mini-batches of size 100.

Evaluating the quality of image synthesis models is challenging due to the variety of probabilis-
tic criteria (Theis et al., 2015) and the lack of a perceptually meaningful image similarity metric.
Nonetheless, in subsequent sections we attempt to measure the quality of the AC-GAN by building
several ad-hoc measures for image sample discriminability and diversity. Our hope is that this work
might provide quantitative measures that may be used to aid training and subsequent development
of image synthesis models.

1 Alternatively, one can force the discriminator to work with the joint distribution (X, z) and train a separate
inference network that computes q(z|X) (Dumoulin et al., 2016; Donahue et al., 2016).

3



Auxiliary Classifier GAN

101

(Odena et al., 2016)Under review as a conference paper at ICLR 2017

monarch butterfly goldfinch daisy grey whaleredshank

Figure 1: 128⇥128 resolution samples from 5 classes taken from an AC-GAN trained on the ImageNet dataset.
Note that the classes shown have been selected to highlight the success of the model and are not representative.
Samples from all ImageNet classes are in the Appendix.

In this work we demonstrate that that adding more structure to the GAN latent space along with
a specialized cost function results in higher quality samples. We exhibit 128 ⇥ 128 pixel samples
from all classes of the ImageNet dataset (Russakovsky et al., 2015) with increased global coherence
(Figure 1). Importantly, we demonstrate quantitatively that our high resolution samples are not just
naive resizings of low resolution samples. In particular, downsampling our 128 ⇥ 128 samples
to 32 ⇥ 32 leads to a 50% decrease in visual discriminability. We also introduce a new metric
for assessing the variability across image samples and employ this metric to demonstrate that our
synthesized images exhibit diversity comparable to training data for a large fraction (84.7%) of
ImageNet classes.

2 BACKGROUND

A generative adversarial network (GAN) consists of two neural networks trained in opposition to
one another. The generator G takes as input a random noise vector z and outputs an image Xfake =
G(z). The discriminator D receives as input either a training image or a synthesized image from
the generator and outputs a probability distribution P (S |X) = D(X) over possible image sources.
The discriminator is trained to maximize the log-likelihood it assigns to the correct source:

L = E[logP (S = real | Xreal)] + E[logP (S = fake | Xfake)]

The generator is trained to minimize that same quantity.

The basic GAN framework can be augmented using side information. One strategy is to supply
both the generator and discriminator with class labels in order to produce class conditional samples
(Mirza & Osindero, 2014). Class conditional synthesis can significantly improve the quality of
generated samples (van den Oord et al., 2016b). Richer side information such as image captions and
bounding box localizations may improve sample quality further (Reed et al., 2016a;b).

Instead of feeding side information to the discriminator, one can task the discriminator with re-
constructing side information. This is done by modifying the discriminator to contain an auxiliary
decoder network1 that outputs the class label for the training data (Odena, 2016; Salimans et al.,
2016) or a subset of the latent variables from which the samples are generated (Chen et al., 2016).
Forcing a model to perform additional tasks is known to improve performance on the original task
(e.g. Sutskever et al. (2014); Szegedy et al. (2014); Ramsundar et al. (2016)). In addition, an auxil-
iary decoder could leverage pre-trained discriminators (e.g. image classifiers) for further improving
the synthesized images (Nguyen et al., 2016). Motivated by these considerations, we introduce a
model that combines both strategies for leveraging side information. That is, the model proposed
below is class conditional, but with an auxiliary decoder that is tasked with reconstructing class
labels.

2

128×128 resolution samples from 5 classes taken from an AC-GAN 
trained on the ImageNet



Bidirectional GAN
• Jointly learns a generator network and an inference 

network using an adversarial process.

102

(Donahue et al., 2016; Dumoulin et al., 2016)

Published as a conference paper at ICLR 2017

x ⇠ q(x)

ẑ ⇠ q(z | x)

D(x, z)

x̃ ⇠ p(x | z)

z ⇠ p(z)

G
z
(x

) G
x
(z

)

(x, ẑ) (x̃, z)

Figure 1: The adversarially learned inference (ALI) game.

2015; Lamb et al., 2016; Dosovitskiy & Brox, 2016). While this is certainly a promising research
direction, VAE-GAN hybrids tend to manifest a compromise of the strengths and weaknesses of both
approaches.

In this paper, we propose a novel approach to integrate efficient inference within the GAN framework.
Our approach, called Adversarially Learned Inference (ALI), casts the learning of both an inference
machine (or encoder) and a deep directed generative model (or decoder) in an GAN-like adversarial
framework. A discriminator is trained to discriminate joint samples of the data and the corresponding
latent variable from the encoder (or approximate posterior) from joint samples from the decoder while
in opposition, the encoder and the decoder are trained together to fool the discriminator. Not only are
we asking the discriminator to distinguish synthetic samples from real data, but we are requiring it to
distinguish between two joint distributions over the data space and the latent variables.

With experiments on the Street View House Numbers (SVHN) dataset (Netzer et al., 2011), the
CIFAR-10 object recognition dataset (Krizhevsky & Hinton, 2009), the CelebA face dataset (Liu
et al., 2015) and a downsampled version of the ImageNet dataset (Russakovsky et al., 2015), we show
qualitatively that we maintain the high sample fidelity associated with the GAN framework, while
gaining the ability to perform efficient inference. We show that the learned representation is useful
for auxiliary tasks by achieving results competitive with the state-of-the-art on the semi-supervised
SVHN and CIFAR10 tasks.

2 ADVERSARIALLY LEARNED INFERENCE

Consider the two following probability distributions over x and z:

• the encoder joint distribution q(x, z) = q(x)q(z | x),
• the decoder joint distribution p(x, z) = p(z)p(x | z).

These two distributions have marginals that are known to us: the encoder marginal q(x) is the
empirical data distribution and the decoder marginal p(z) is usually defined to be a simple, factorized
distribution, such as the standard Normal distribution p(z) = N (0, I). As such, the generative
process between q(x, z) and p(x, z) is reversed.

ALI’s objective is to match the two joint distributions. If this is achieved, then we are ensured that all
marginals match and all conditional distributions also match. In particular, we are assured that the
conditional q(z | x) matches the posterior p(z | x).
In order to match the joint distributions, an adversarial game is played. Joint pairs (x, z) are drawn
either from q(x, z) or p(x, z), and a discriminator network learns to discriminate between the two,
while the encoder and decoder networks are trained to fool the discriminator.

The value function describing the game is given by:
min
G

max
D

V (D,G) = Eq(x)[log(D(x, Gz(x)))] + Ep(z)[log(1�D(Gx(z), z))]

=

ZZ
q(x)q(z | x) log(D(x, z))dxdz

+

ZZ
p(z)p(x | z) log(1�D(x, z))dxdz.

(1)

2

Published as a conference paper at ICLR 2017

(a) SVHN samples. (b) SVHN reconstructions.

Figure 2: Samples and reconstructions on the SVHN dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions (e.g.,
second column contains reconstructions of the first column’s validation set samples).

(a) CelebA samples. (b) CelebA reconstructions.

Figure 3: Samples and reconstructions on the CelebA dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions.

(a) CIFAR10 samples. (b) CIFAR10 reconstructions.

Figure 4: Samples and reconstructions on the CIFAR10 dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions.

5

CelebA reconstructions

Published as a conference paper at ICLR 2017

(a) SVHN samples. (b) SVHN reconstructions.

Figure 2: Samples and reconstructions on the SVHN dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions (e.g.,
second column contains reconstructions of the first column’s validation set samples).

(a) CelebA samples. (b) CelebA reconstructions.

Figure 3: Samples and reconstructions on the CelebA dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions.

(a) CIFAR10 samples. (b) CIFAR10 reconstructions.

Figure 4: Samples and reconstructions on the CIFAR10 dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions.

5

SVNH reconstructions



Bidirectional GAN

103

(Donahue et al., 2016; 
 Dumoulin et al., 2016)

PixelVAE: not so bad!

LSUN bedroom scenes ImageNet (small)

LSUN bedrooms Tiny ImageNet



Wasserstein GAN
• Objective based on Earth-Mover or Wassertein distance:

• Provides nice gradients over real and fake samples

(Arjovsky et al., 2016)

W
G

A
N

D
C

G
A

N

104

min
✓

max
!

Ex⇠pdata [D!(x)]� Ez⇠pz [D!(G✓(z))]



Wasserstein GAN
• Wasserstein loss seems to correlate well with image quality.

(Arjovsky et al., 2016)

Figure 3: Training curves and samples at di↵erent stages of training. We can see a clear

correlation between lower error and better sample quality. Upper left: the generator is an

MLP with 4 hidden layers and 512 units at each layer. The loss decreases constistently as

training progresses and sample quality increases. Upper right: the generator is a standard

DCGAN. The loss decreases quickly and sample quality increases as well. In both upper

plots the critic is a DCGAN without the sigmoid so losses can be subjected to comparison.

Lower half: both the generator and the discriminator are MLPs with substantially high

learning rates (so training failed). Loss is constant and samples are constant as well. The

training curves were passed through a median filter for visualization purposes.

4.2 Meaningful loss metric

Because the WGAN algorithm attempts to train the critic f (lines 2–8 in Algo-
rithm 1) relatively well before each generator update (line 10 in Algorithm 1), the
loss function at this point is an estimate of the EM distance, up to constant factors
related to the way we constrain the Lipschitz constant of f .

Our first experiment illustrates how this estimate correlates well with the quality
of the generated samples. Besides the convolutional DCGAN architecture, we also
ran experiments where we replace the generator or both the generator and the critic
by 4-layer ReLU-MLP with 512 hidden units.

Figure 3 plots the evolution of the WGAN estimate (3) of the EM distance
during WGAN training for all three architectures. The plots clearly show that
these curves correlate well with the visual quality of the generated samples.

To our knowledge, this is the first time in GAN literature that such a property is
shown, where the loss of the GAN shows properties of convergence. This property is
extremely useful when doing research in adversarial networks as one does not need

10

105



WGAN with gradient penalty 

• Faster convergence and higher-
quality samples than WGAN 
with weight clipping 

• Train a wide variety of GAN 
architectures with almost no 
hyperparameter tuning, 
including discrete models

106

(Gulraani et al., 2017)

Samples from a character-level GAN 
language model on Google Billion Word



Least Squares GAN (LSGAN)
• Use a loss function that provides smooth and non-saturating gradient in 

discriminator D

107

(Mao et al., 2017)

Decision boundaries of Sigmoid & 
Least Squares loss functions

Sigmoid decision boundary Least Squares decision boundary



Least Squares GAN (LSGAN)

108

(Mao et al., 2017)

Church Kitchen



Boundary Equilibrium GAN (BEGAN) 
• A loss derived from the Wasserstein 

distance for training auto-encoder based 
GANs

• Wasserstein distance btw. the reconstruction 
losses of real and generated data 

• Convergence measure:

• Objective:

109

(a) Generator/Decoder (b) Encoder

Figure 1: Network architecture for the generator and discriminator.

cube of processed data is mapped via fully connected layers, not followed by any non-linearities,
to and from an embedding state h 2 RNh where Nh is the dimension of the auto-encoder’s hidden
state.

The generator G : RNz 7! RNx uses the same architecture (though not the same weights) as the
discriminator decoder. We made this choice only for simplicity. The input state is z 2 [�1, 1]Nz

sampled uniformly.

We chose a standard, simple, architecture to illustrate the effect of the new equilibrium principle and
loss. Our model is easier to train and simpler than other GANs architectures: no batch normalization,
no dropout, no transpose convolutions and no exponential growth for convolution filters. It might be
possible to further improve our results by using those techniques but this is beyond the scope of this
paper.

4 Experiments

4.1 Setup

We trained our model using Adam with an initial learning rate in [5 ⇥ 10�5
, 10�4], decaying by

a factor of 2 when the measure of convergence stalls. Modal collapses or visual artifacts were
observed sporadically with high initial learning rates, however simply reducing the learning rate
was sufficient to avoid them. We trained models for varied resolutions from 32 to 256, adding or
removing convolution layers to adjust for the image size, keeping a constant final down-sampled
image size of 8x8. We used Nh = Nz = 64 in most of our experiments with this dataset.

The network is initialized using vanishing residuals. This is inspired from deep residual networks
[7]. For successive same sized layers, the layer’s input is combined with its output: inx+1 =
carry ⇥ inx + (1� carry)⇥ outx. In our experiments, we start with carry = 1 and progressively
decrease it to 0 over 16000 steps. We do this to facilitate gradient propagation early in training; it
improves convergence and image fidelity but is not strictly necessary.

We use a dataset of 360K celebrity face images for training in place of CelebA [10]. This dataset has
a larger variety of facial poses, including rotations around the camera axis. These are more varied
and potentially more difficult to model than the aligned faces from CelebA, presenting an interesting
challenge. We preferred the use of faces as a visual estimator since humans excel at identifying flaws
in faces.

5

lower image diversity because the discriminator focuses more heavily on auto-encoding real images.
We will refer to � as the diversity ratio. There is a natural boundary for which images are sharp and
have details.

3.4 Boundary Equilibrium GAN

The BEGAN objective is:

8
<

:

LD = L(x)� kt.L(G(zD)) for ✓D
LG = L(G(zG)) for ✓G
kt+1 = kt + �k(�L(x)� L(G(zG))) for each training step t

We use Proportional Control Theory to maintain the equilibrium E [L(G(z))] = �E [L(x)]. This is
implemented using a variable kt 2 [0, 1] to control how much emphasis is put on L(G(zD)) during
gradient descent. We initialize k0 = 0. �k is the proportional gain for k; in machine learning terms,
it is the learning rate for k. We used 0.001 in our experiments. In essence, this can be thought of as
a form of closed-loop feedback control in which kt is adjusted at each step to maintain equation 5.

In early training stages, G tends to generate easy-to-reconstruct data for the auto-encoder since
generated data is close to 0 and the real data distribution has not been learned accurately yet. This
yields to L(x) > L(G(z)) early on and this is maintained for the whole training process by the
equilibrium constraint.

The introductions of the approximation in equation 2 and � in equation 5 have an impact on our
modeling of the Wasserstein distance. Consequently, examination of samples generated from various
� values is of primary interest as will be shown in the results section.

In contrast to traditional GANs which require alternating training D and G, or pretraining D, our
proposed method BEGAN requires neither to train stably. Adam [8] was used during training with
the default hyper-parameters. ✓D and ✓G are updated independently based on their respective losses
with separate Adam optimizers. We typically used a batch size of n = 16.

3.4.1 Convergence measure

Determining the convergence of GANs is generally a difficult task since the original formulation is
defined as a zero-sum game. As a consequence, one loss goes up when the other goes down. The
number of epochs or visual inspection are typically the only practical ways to get a sense of how
training has progressed.

We derive a global measure of convergence by using the equilibrium concept: we can frame the
convergence process as finding the closest reconstruction L(x) with the lowest absolute value of the
instantaneous process error for the proportion control algorithm |�L(x)�L(G(zG))|. This measure
is formulated as the sum of these two terms:

Mglobal = L(x) + |�L(x)� L(G(zG))|

This measure can be used to determine when the network has reached its final state or if the model
has collapsed.

3.5 Model architecture

The discriminator D : RNx 7! RNx is a convolutional deep neural network architectured as an auto-
encoder. Nx = H ⇥ W ⇥ C is shorthand for the dimensions of x where H,W,C are the height,
width and colors. We use an auto-encoder with both a deep encoder and decoder. The intent is to be
as simple as possible to avoid typical GAN tricks.

The structure is shown in figure 1. We used 3x3 convolutions with exponential linear units [3]
(ELUs) applied at their outputs. Each layer is repeated a number of times (typically 2). We observed
that more repetitions led to even better visual results. The convolution filters are increased linearly
with each down-sampling. Down-sampling is implemented as sub-sampling with stride 2 and up-
sampling is done by nearest neighbor. At the boundary between the encoder and the decoder, the

4

as a class of GANs that aims to model the discriminator D(x) as an energy function. This variant
converges more stably and is both easy to train and robust to hyper-parameter variations. The authors
attribute some of these benefits to the larger number of targets in the discriminator. EBGAN likewise
implements its discriminator as an auto-encoder with a per-pixel error.

While earlier GAN variants lacked a measure of convergence, Wasserstein GANs [1] (WGANs)
recently introduced a loss that also acts as a measure of convergence. In their implementation it
comes at the expense of slow training, but with the benefit of stability and better mode coverage.

3 Proposed method

We use an auto-encoder as a discriminator as was first proposed in EBGAN [17]. While typical
GANs try to match data distributions directly, our method aims to match auto-encoder loss distribu-
tions using a loss derived from the Wasserstein distance. This is done using a typical GAN objective
with the addition of an equilibrium term to balance the discriminator and the generator. Our method
has an easier training procedure and uses a simpler neural network architecture compared to typical
GAN techniques.

3.1 Wasserstein distance for auto-encoders

We wish to study the effect of matching the distribution of the errors instead of matching the dis-
tribution of the samples directly. We first show that an auto-encoder loss approximates a normal
distribution, then we compute the Wasserstein distance between the auto-encoder loss distributions
of real and generated samples.

We first introduce L : RNx 7! R+the loss for training a pixel-wise autoencoder as:

L(v) = |v �D(v)|⌘ where

8
<

:

D : RNx 7! RNx is the autoencoder function.
⌘ 2 {1, 2} is the target norm.

v 2 RNx is a sample of dimension Nx.

For a sufficient large number of pixels, if we assume that the losses at the pixel level are independent
and identically distributed, then the Central Limit Theorem applies and the overall distribution of
image-wise losses follows an approximate normal distribution. In our model, we use the L1 norm
between an image and its reconstruction as our loss. We found experimentally, for the datasets we
tried, the loss distribution is, in fact, approximately normal.

Given two normal distributions µ1 = N (m1, C1) and µ2 = N (m2, C2) with the means m1,2 2 Rp

and the covariances C1,2 2 Rp⇥p, their squared Wasserstein distance is defined as:

W (µ1, µ2)
2 = ||m1 �m2||22 + trace(C1 + C2 � 2(C

1/2
2 C1C

1/2
2 )

1/2)

We are interested in the case where p = 1. The squared Wasserstein distance then simplifies to:

W (µ1, µ2)
2 = ||m1 �m2||22 + (c1 + c2 � 2

p
c1c2)

We wish to study experimentally whether optimizing ||m1 � m2||22 alone is sufficient to optimize
W

2. This is true when

c1 + c2 � 2
p
c1c2

||m1 �m2||22
is constant or monotonically increasing w.r.t W (1)

This allows us to simplify the problem to:

W (µ1, µ2)
2 _ ||m1 �m2||22 under condition 1 (2)

It is important to note that we are aiming to optimize the Wasserstein distance between loss distri-
butions, not between sample distributions. As explained in the next section, our discriminator is an

2

(a) ALI interpolation (64x64)

(b) PixelCNN interpolation (32x32)

(c) Our results (128x128 with 128 filters)

(d) Mirror interpolations (our results 128x128 with 128 filters)

Figure 4: Interpolations of real images in latent space

Sample diversity, while not perfect, is convincing; the generated images look relatively close to the
real ones. The interpolations show good continuity. On the first row, the hair transitions in a natural
way and intermediate hairstyles are believable, showing good generalization. It is also worth noting
that some features are not represented such as the cigarette in the left image. The second and last
rows show simple rotations. While the rotations are smooth, we can see that profile pictures are not
captured as well as camera facing ones. We assume this is due to profiles being less common in
our dataset. Finally the mirror example demonstrates separation between identity and rotation. A
surprisingly realistic camera-facing image is derived from a single profile image.

4.4 Convergence measure and image quality

The convergence measure Mglobal was conjectured earlier to measure the convergence of the BE-
GAN model. As can be seen in figure 5 this measure correlates well with image fidelity. We can also

Figure 5: Quality of the results w.r.t. the measure of convergence (128x128 with 128 filters)

7

lower image diversity because the discriminator focuses more heavily on auto-encoding real images.
We will refer to � as the diversity ratio. There is a natural boundary for which images are sharp and
have details.

3.4 Boundary Equilibrium GAN

The BEGAN objective is:

8
<

:

LD = L(x)� kt.L(G(zD)) for ✓D
LG = L(G(zG)) for ✓G
kt+1 = kt + �k(�L(x)� L(G(zG))) for each training step t

We use Proportional Control Theory to maintain the equilibrium E [L(G(z))] = �E [L(x)]. This is
implemented using a variable kt 2 [0, 1] to control how much emphasis is put on L(G(zD)) during
gradient descent. We initialize k0 = 0. �k is the proportional gain for k; in machine learning terms,
it is the learning rate for k. We used 0.001 in our experiments. In essence, this can be thought of as
a form of closed-loop feedback control in which kt is adjusted at each step to maintain equation 5.

In early training stages, G tends to generate easy-to-reconstruct data for the auto-encoder since
generated data is close to 0 and the real data distribution has not been learned accurately yet. This
yields to L(x) > L(G(z)) early on and this is maintained for the whole training process by the
equilibrium constraint.

The introductions of the approximation in equation 2 and � in equation 5 have an impact on our
modeling of the Wasserstein distance. Consequently, examination of samples generated from various
� values is of primary interest as will be shown in the results section.

In contrast to traditional GANs which require alternating training D and G, or pretraining D, our
proposed method BEGAN requires neither to train stably. Adam [8] was used during training with
the default hyper-parameters. ✓D and ✓G are updated independently based on their respective losses
with separate Adam optimizers. We typically used a batch size of n = 16.

3.4.1 Convergence measure

Determining the convergence of GANs is generally a difficult task since the original formulation is
defined as a zero-sum game. As a consequence, one loss goes up when the other goes down. The
number of epochs or visual inspection are typically the only practical ways to get a sense of how
training has progressed.

We derive a global measure of convergence by using the equilibrium concept: we can frame the
convergence process as finding the closest reconstruction L(x) with the lowest absolute value of the
instantaneous process error for the proportion control algorithm |�L(x)�L(G(zG))|. This measure
is formulated as the sum of these two terms:

Mglobal = L(x) + |�L(x)� L(G(zG))|

This measure can be used to determine when the network has reached its final state or if the model
has collapsed.

3.5 Model architecture

The discriminator D : RNx 7! RNx is a convolutional deep neural network architectured as an auto-
encoder. Nx = H ⇥ W ⇥ C is shorthand for the dimensions of x where H,W,C are the height,
width and colors. We use an auto-encoder with both a deep encoder and decoder. The intent is to be
as simple as possible to avoid typical GAN tricks.

The structure is shown in figure 1. We used 3x3 convolutions with exponential linear units [3]
(ELUs) applied at their outputs. Each layer is repeated a number of times (typically 2). We observed
that more repetitions led to even better visual results. The convolution filters are increased linearly
with each down-sampling. Down-sampling is implemented as sub-sampling with stride 2 and up-
sampling is done by nearest neighbor. At the boundary between the encoder and the decoder, the

4

(Berthelot et al., 2017)



BEGANs for CelebA

110

(Berthelot et al., 2017)

(a) ALI interpolation (64x64)

(b) PixelCNN interpolation (32x32)

(c) Our results (128x128 with 128 filters)

(d) Mirror interpolations (our results 128x128 with 128 filters)

Figure 4: Interpolations of real images in latent space

Sample diversity, while not perfect, is convincing; the generated images look relatively close to the
real ones. The interpolations show good continuity. On the first row, the hair transitions in a natural
way and intermediate hairstyles are believable, showing good generalization. It is also worth noting
that some features are not represented such as the cigarette in the left image. The second and last
rows show simple rotations. While the rotations are smooth, we can see that profile pictures are not
captured as well as camera facing ones. We assume this is due to profiles being less common in
our dataset. Finally the mirror example demonstrates separation between identity and rotation. A
surprisingly realistic camera-facing image is derived from a single profile image.

4.4 Convergence measure and image quality

The convergence measure Mglobal was conjectured earlier to measure the convergence of the BE-
GAN model. As can be seen in figure 5 this measure correlates well with image fidelity. We can also

Figure 5: Quality of the results w.r.t. the measure of convergence (128x128 with 128 filters)

7

(a) ALI interpolation (64x64)

(b) PixelCNN interpolation (32x32)

(c) Our results (128x128 with 128 filters)

(d) Mirror interpolations (our results 128x128 with 128 filters)

Figure 4: Interpolations of real images in latent space

Sample diversity, while not perfect, is convincing; the generated images look relatively close to the
real ones. The interpolations show good continuity. On the first row, the hair transitions in a natural
way and intermediate hairstyles are believable, showing good generalization. It is also worth noting
that some features are not represented such as the cigarette in the left image. The second and last
rows show simple rotations. While the rotations are smooth, we can see that profile pictures are not
captured as well as camera facing ones. We assume this is due to profiles being less common in
our dataset. Finally the mirror example demonstrates separation between identity and rotation. A
surprisingly realistic camera-facing image is derived from a single profile image.

4.4 Convergence measure and image quality

The convergence measure Mglobal was conjectured earlier to measure the convergence of the BE-
GAN model. As can be seen in figure 5 this measure correlates well with image fidelity. We can also

Figure 5: Quality of the results w.r.t. the measure of convergence (128x128 with 128 filters)

7

360K celebrity face images
128x128 with 128 filters 

Interpolations in the latent space

Mirror interpolation example



Progressive GANs
• Progressively generate high-

res images

• Multi-step training from low
to high resolutions

111

(Karras et al., 2018)



Progressive GANs

112

(Karras et al., 2018)

• Training 
process



113

CelebA-HQ
random interpolations

Progressive GANs (Karras et al., 2018)



BigGANs
High resolution, class-conditional samples generated by the model

• BigGANs trained with 2-4x as many parameters and 8x the batch size compared to prior art.

• Uses Gaussian truncation to sample z (avoid sampling from the tail of the Gaussian distribution)

• Uses multiple other tricks including multiple regularizations including a Gradient penalty 
regularization and an Orthogonal Regularization:

114

(Brock et al., 2019)BigGAN:

 62

Andrew Brock , Jeff Donahue, Karen Simonyan, ICLR 2019

LARGE SCALE GAN TRAINING FOR HIGH FIDELITY 
NATURAL IMAGE SYNTHESIS

Published as a conference paper at ICLR 2019

LARGE SCALE GAN TRAINING FOR
HIGH FIDELITY NATURAL IMAGE SYNTHESIS

Andrew Brock⇤†

Heriot-Watt University
ajb5@hw.ac.uk

Jeff Donahue†
DeepMind
jeffdonahue@google.com

Karen Simonyan†

DeepMind
simonyan@google.com

ABSTRACT

Despite recent progress in generative image modeling, successfully generating
high-resolution, diverse samples from complex datasets such as ImageNet remains
an elusive goal. To this end, we train Generative Adversarial Networks at the
largest scale yet attempted, and study the instabilities specific to such scale. We
find that applying orthogonal regularization to the generator renders it amenable
to a simple “truncation trick,” allowing fine control over the trade-off between
sample fidelity and variety by reducing the variance of the Generator’s input. Our
modifications lead to models which set the new state of the art in class-conditional
image synthesis. When trained on ImageNet at 128⇥128 resolution, our models
(BigGANs) achieve an Inception Score (IS) of 166.5 and Fréchet Inception Dis-
tance (FID) of 7.4, improving over the previous best IS of 52.52 and FID of 18.65.

1 INTRODUCTION

Figure 1: Class-conditional samples generated by our model.

The state of generative image modeling has advanced dramatically in recent years, with Generative
Adversarial Networks (GANs, Goodfellow et al. (2014)) at the forefront of efforts to generate high-
fidelity, diverse images with models learned directly from data. GAN training is dynamic, and
sensitive to nearly every aspect of its setup (from optimization parameters to model architecture),
but a torrent of research has yielded empirical and theoretical insights enabling stable training in
a variety of settings. Despite this progress, the current state of the art in conditional ImageNet
modeling (Zhang et al., 2018) achieves an Inception Score (Salimans et al., 2016) of 52.5, compared
to 233 for real data.

In this work, we set out to close the gap in fidelity and variety between images generated by GANs
and real-world images from the ImageNet dataset. We make the following three contributions to-
wards this goal:

• We demonstrate that GANs benefit dramatically from scaling, and train models with two
to four times as many parameters and eight times the batch size compared to prior art. We
introduce two simple, general architectural changes that improve scalability, and modify a
regularization scheme to improve conditioning, demonstrably boosting performance.

⇤Work done at DeepMind
†Equal contribution

1

ar
X

iv
:1

80
9.

11
09

6v
2 

 [
cs

.L
G

] 
 2

5 
Fe

b 
20

19

• Big GANs trained with 2-4x as many parameters and 8x the batch size compared to prior art.  
• Uses Gaussian truncation to sample z (avoid sampling from the tail of the Gaussian distribution)  
• Uses multiple other tricks including multiple reguralizations including a Gradient penalty 

regularization and an Othogonal Regularization: 

High resolution, class-conditional samples generated by the model
Published as a conference paper at ICLR 2019

R�(W ) = �kW>W � Ik2F, (2)

where W is a weight matrix and � a hyperparameter. This regularization is known to often be too
limiting (Miyato et al., 2018), so we explore several variants designed to relax the constraint while
still imparting the desired smoothness to our models. The version we find to work best removes the
diagonal terms from the regularization, and aims to minimize the pairwise cosine similarity between
filters but does not constrain their norm:

R�(W ) = �kW>W � (1� I)k2F, (3)

where 1 denotes a matrix with all elements set to 1. We sweep � values and select 10�4, finding
this small added penalty sufficient to improve the likelihood that our models will be amenable to
truncation. Across runs in Table 1, we observe that without Orthogonal Regularization, only 16% of
models are amenable to truncation, compared to 60% when trained with Orthogonal Regularization.

3.2 SUMMARY

We find that current GAN techniques are sufficient to enable scaling to large models and distributed,
large-batch training. We find that we can dramatically improve the state of the art and train models
up to 512⇥512 resolution without need for explicit multiscale methods like Karras et al. (2018).
Despite these improvements, our models undergo training collapse, necessitating early stopping in
practice. In the next two sections we investigate why settings which were stable in previous works
become unstable when applied at scale.

4 ANALYSIS

(a) G (b) D

Figure 3: A typical plot of the first singular value �0 in the layers of G (a) and D (b) before Spectral
Normalization. Most layers in G have well-behaved spectra, but without constraints a small sub-
set grow throughout training and explode at collapse. D’s spectra are noisier but otherwise better-
behaved. Colors from red to violet indicate increasing depth.

4.1 CHARACTERIZING INSTABILITY: THE GENERATOR

Much previous work has investigated GAN stability from a variety of analytical angles and on
toy problems, but the instabilities we observe occur for settings which are stable at small scale,
necessitating direct analysis at large scale. We monitor a range of weight, gradient, and loss statistics
during training, in search of a metric which might presage the onset of training collapse, similar to
(Odena et al., 2018). We found the top three singular values �0,�1,�2 of each weight matrix to be
the most informative. They can be efficiently computed using the Alrnoldi iteration method (Golub
& der Vorst, 2000), which extends the power iteration method, used in Miyato et al. (2018), to
estimation of additional singular vectors and values. A clear pattern emerges, as can be seen in
Figure 3(a) and Appendix F: most G layers have well-behaved spectral norms, but some layers

5

BigGAN:

 62

Andrew Brock , Jeff Donahue, Karen Simonyan, ICLR 2019

LARGE SCALE GAN TRAINING FOR HIGH FIDELITY 
NATURAL IMAGE SYNTHESIS

Published as a conference paper at ICLR 2019

LARGE SCALE GAN TRAINING FOR
HIGH FIDELITY NATURAL IMAGE SYNTHESIS

Andrew Brock⇤†

Heriot-Watt University
ajb5@hw.ac.uk

Jeff Donahue†
DeepMind
jeffdonahue@google.com

Karen Simonyan†

DeepMind
simonyan@google.com

ABSTRACT

Despite recent progress in generative image modeling, successfully generating
high-resolution, diverse samples from complex datasets such as ImageNet remains
an elusive goal. To this end, we train Generative Adversarial Networks at the
largest scale yet attempted, and study the instabilities specific to such scale. We
find that applying orthogonal regularization to the generator renders it amenable
to a simple “truncation trick,” allowing fine control over the trade-off between
sample fidelity and variety by reducing the variance of the Generator’s input. Our
modifications lead to models which set the new state of the art in class-conditional
image synthesis. When trained on ImageNet at 128⇥128 resolution, our models
(BigGANs) achieve an Inception Score (IS) of 166.5 and Fréchet Inception Dis-
tance (FID) of 7.4, improving over the previous best IS of 52.52 and FID of 18.65.

1 INTRODUCTION

Figure 1: Class-conditional samples generated by our model.

The state of generative image modeling has advanced dramatically in recent years, with Generative
Adversarial Networks (GANs, Goodfellow et al. (2014)) at the forefront of efforts to generate high-
fidelity, diverse images with models learned directly from data. GAN training is dynamic, and
sensitive to nearly every aspect of its setup (from optimization parameters to model architecture),
but a torrent of research has yielded empirical and theoretical insights enabling stable training in
a variety of settings. Despite this progress, the current state of the art in conditional ImageNet
modeling (Zhang et al., 2018) achieves an Inception Score (Salimans et al., 2016) of 52.5, compared
to 233 for real data.

In this work, we set out to close the gap in fidelity and variety between images generated by GANs
and real-world images from the ImageNet dataset. We make the following three contributions to-
wards this goal:

• We demonstrate that GANs benefit dramatically from scaling, and train models with two
to four times as many parameters and eight times the batch size compared to prior art. We
introduce two simple, general architectural changes that improve scalability, and modify a
regularization scheme to improve conditioning, demonstrably boosting performance.

⇤Work done at DeepMind
†Equal contribution

1

ar
X

iv
:1

80
9.

11
09

6v
2 

 [
cs

.L
G

] 
 2

5 
Fe

b 
20

19

• Big GANs trained with 2-4x as many parameters and 8x the batch size compared to prior art.  
• Uses Gaussian truncation to sample z (avoid sampling from the tail of the Gaussian distribution)  
• Uses multiple other tricks including multiple reguralizations including a Gradient penalty 

regularization and an Othogonal Regularization: 

High resolution, class-conditional samples generated by the model
Published as a conference paper at ICLR 2019

R�(W ) = �kW>W � Ik2F, (2)

where W is a weight matrix and � a hyperparameter. This regularization is known to often be too
limiting (Miyato et al., 2018), so we explore several variants designed to relax the constraint while
still imparting the desired smoothness to our models. The version we find to work best removes the
diagonal terms from the regularization, and aims to minimize the pairwise cosine similarity between
filters but does not constrain their norm:

R�(W ) = �kW>W � (1� I)k2F, (3)

where 1 denotes a matrix with all elements set to 1. We sweep � values and select 10�4, finding
this small added penalty sufficient to improve the likelihood that our models will be amenable to
truncation. Across runs in Table 1, we observe that without Orthogonal Regularization, only 16% of
models are amenable to truncation, compared to 60% when trained with Orthogonal Regularization.

3.2 SUMMARY

We find that current GAN techniques are sufficient to enable scaling to large models and distributed,
large-batch training. We find that we can dramatically improve the state of the art and train models
up to 512⇥512 resolution without need for explicit multiscale methods like Karras et al. (2018).
Despite these improvements, our models undergo training collapse, necessitating early stopping in
practice. In the next two sections we investigate why settings which were stable in previous works
become unstable when applied at scale.

4 ANALYSIS

(a) G (b) D

Figure 3: A typical plot of the first singular value �0 in the layers of G (a) and D (b) before Spectral
Normalization. Most layers in G have well-behaved spectra, but without constraints a small sub-
set grow throughout training and explode at collapse. D’s spectra are noisier but otherwise better-
behaved. Colors from red to violet indicate increasing depth.

4.1 CHARACTERIZING INSTABILITY: THE GENERATOR

Much previous work has investigated GAN stability from a variety of analytical angles and on
toy problems, but the instabilities we observe occur for settings which are stable at small scale,
necessitating direct analysis at large scale. We monitor a range of weight, gradient, and loss statistics
during training, in search of a metric which might presage the onset of training collapse, similar to
(Odena et al., 2018). We found the top three singular values �0,�1,�2 of each weight matrix to be
the most informative. They can be efficiently computed using the Alrnoldi iteration method (Golub
& der Vorst, 2000), which extends the power iteration method, used in Miyato et al. (2018), to
estimation of additional singular vectors and values. A clear pattern emerges, as can be seen in
Figure 3(a) and Appendix F: most G layers have well-behaved spectral norms, but some layers

5



BigGAN:

 63

Andrew Brock , Jeff Donahue, Karen Simonyan, ICLR 2019

LARGE SCALE GAN TRAINING FOR HIGH FIDELITY 
NATURAL IMAGE SYNTHESIS

Published as a conference paper at ICLR 2019

(a) (b)

Figure 7: Comparing easy classes (a) with difficult classes (b) at 512⇥512. Classes such as dogs
which are largely textural, and common in the dataset, are far easier to model than classes involving
unaligned human faces or crowds. Such classes are more dynamic and structured, and often have
details to which human observers are more sensitive. The difficulty of modeling global structure is
further exacerbated when producing high-resolution images, even with non-local blocks.

Figure 8: Interpolations between z, c pairs.

13

Easy classes Hard classes

Resolution: 512x512
BigGANs

115

(Brock et al., 2019)



StyleGAN:
Tero Karras, Samuli Laine, Timo Aila, arXiv Dec.2018

A Style-Based Generator Architecture for 
Generative Adversarial Networks 

Normalize

Fully-connected

PixelNorm

PixelNorm

Conv 3×3

Conv 3×3

Conv 3×3

PixelNorm

PixelNorm

Upsample

Normalize

FC
FC
FC
FC
FC
FC
FC
FC

A

A

A

A
B

B

B

B
Const 4×4×512

AdaIN

AdaIN

AdaIN

AdaIN

Upsample

Conv 3×3

Conv 3×3

Conv 3×3

4×4

8×8

4×4

8×8

style

style

style

style

NoiseLatent Latent

Mapping
network

Synthesis network

(a) Traditional (b) Style-based generator

Figure 1. While a traditional generator [29] feeds the latent code
though the input layer only, we first map the input to an in-
termediate latent space W , which then controls the generator
through adaptive instance normalization (AdaIN) at each convo-
lution layer. Gaussian noise is added after each convolution, be-
fore evaluating the nonlinearity. Here “A” stands for a learned
affine transform, and “B” applies learned per-channel scaling fac-
tors to the noise input. The mapping network f consists of 8 lay-
ers and the synthesis network g consists of 18 layers — two for
each resolution (42 � 10242). The output of the last layer is con-
verted to RGB using a separate 1⇥ 1 convolution, similar to Kar-
ras et al. [29]. Our generator has a total of 26.2M trainable param-
eters, compared to 23.1M in the traditional generator.

spaces to 512, and the mapping f is implemented using
an 8-layer MLP, a decision we will analyze in Section 4.1.
Learned affine transformations then specialize w to styles
y = (ys,yb) that control adaptive instance normalization
(AdaIN) [26, 16, 20, 15] operations after each convolution
layer of the synthesis network g. The AdaIN operation is
defined as

AdaIN(xi,y) = ys,i
xi � µ(xi)

�(xi)
+ yb,i, (1)

where each feature map xi is normalized separately, and
then scaled and biased using the corresponding scalar com-
ponents from style y. Thus the dimensionality of y is twice
the number of feature maps on that layer.

Comparing our approach to style transfer, we compute
the spatially invariant style y from vector w instead of an
example image. We choose to reuse the word “style” for
y because similar network architectures are already used
for feedforward style transfer [26], unsupervised image-to-
image translation [27], and domain mixtures [22]. Com-
pared to more general feature transforms [36, 55], AdaIN is
particularly well suited for our purposes due to its efficiency
and compact representation.

Method CelebA-HQ FFHQ
A Baseline Progressive GAN [29] 7.79 8.04
B + Tuning (incl. bilinear up/down) 6.11 5.25
C + Add mapping and styles 5.34 4.85
D + Remove traditional input 5.07 4.88
E + Add noise inputs 5.06 4.42
F + Mixing regularization 5.17 4.40

Table 1. Fréchet inception distance (FID) for various generator de-
signs (lower is better). In this paper we calculate the FIDs using
50,000 images drawn randomly from the training set, and report
the lowest distance encountered over the course of training.

Finally, we provide our generator with a direct means
to generate stochastic detail by introducing explicit noise
inputs. These are single-channel images consisting of un-
correlated Gaussian noise, and we feed a dedicated noise
image to each layer of the synthesis network. The noise
image is broadcasted to all feature maps using learned per-
feature scaling factors and then added to the output of the
corresponding convolution, as illustrated in Figure 1b. The
implications of adding the noise inputs are discussed in Sec-
tions 3.2 and 3.3.

2.1. Quality of generated images
Before studying the properties of our generator, we

demonstrate experimentally that the redesign does not com-
promise image quality but, in fact, improves it considerably.
Table 1 gives Fréchet inception distances (FID) [24] for var-
ious generator architectures in CELEBA-HQ [29] and our
new FFHQ dataset (Appendix A). Results for other datasets
are given in Appendix E. Our baseline configuration (A)
is the Progressive GAN setup of Karras et al. [29], from
which we inherit the networks and all hyperparameters ex-
cept where stated otherwise. We first switch to an improved
baseline (B) by using bilinear up/downsampling operations
[62], longer training, and tuned hyperparameters. A de-
tailed description of training setups and hyperparameters is
included in Appendix C. We then improve this new base-
line further by adding the mapping network and AdaIN op-
erations (C), and make a surprising observation that the net-
work no longer benefits from feeding the latent code into the
first convolution layer. We therefore simplify the architec-
ture by removing the traditional input layer and starting the
image synthesis from a learned 4⇥ 4⇥ 512 constant tensor
(D). We find it quite remarkable that the synthesis network
is able to produce meaningful results even though it receives
input only through the styles that control the AdaIN opera-
tions.

Finally, we introduce the noise inputs (E) that improve
the results further, as well as novel mixing regularization (F)
that decorrelates neighboring styles and enables more fine-
grained control over the generated imagery (Section 3.1).

We evaluate our methods using two different loss func-
tions: for CELEBA-HQ we rely on WGAN-GP [23],

2

Figure 2. Uncurated set of images produced by our style-based
generator (config F) with the FFHQ dataset. Here we used a varia-
tion of the truncation trick [40, 5, 32] with  = 0.7 for resolutions
42 � 322. Please see the accompanying video for more results.

while FFHQ uses WGAN-GP for configuration A and non-
saturating loss [21] with R1 regularization [42, 49, 13] for
configurations B–F. We found these choices to give the best
results. Our contributions do not modify the loss function.

We observe that the style-based generator (E) improves
FIDs quite significantly over the traditional generator (B),
almost 20%, corroborating the large-scale ImageNet mea-
surements made in parallel work [6, 5]. Figure 2 shows an
uncurated set of novel images generated from the FFHQ
dataset using our generator. As confirmed by the FIDs,
the average quality is high, and even accessories such
as eyeglasses and hats get successfully synthesized. For
this figure, we avoided sampling from the extreme regions
of W using the so-called truncation trick [40, 5, 32] —
Appendix B details how the trick can be performed in W
instead of Z . Note that our generator allows applying the
truncation selectively to low resolutions only, so that high-
resolution details are not affected.

All FIDs in this paper are computed without the trun-
cation trick, and we only use it for illustrative purposes in
Figure 2 and the video. All images are generated in 1024

2

resolution.

2.2. Prior art
Much of the work on GAN architectures has focused on

improving the discriminator by, e.g., using multiple dis-
criminators [17, 45], multiresolution discrimination [58,
53], or self-attention [61]. The work on generator side has
mostly focused on the exact distribution in the input latent
space [5] or shaping the input latent space via Gaussian
mixture models [4], clustering [46], or encouraging convex-
ity [50].

Recent conditional generators feed the class identifier
through a separate embedding network to a large number
of layers in the generator [44], while the latent is still pro-
vided though the input layer. A few authors have considered
feeding parts of the latent code to multiple generator layers
[9, 5]. In parallel work, Chen et al. [6] “self modulate” the
generator using AdaINs, similarly to our work, but do not
consider an intermediate latent space or noise inputs.

3. Properties of the style-based generator
Our generator architecture makes it possible to control

the image synthesis via scale-specific modifications to the
styles. We can view the mapping network and affine trans-
formations as a way to draw samples for each style from a
learned distribution, and the synthesis network as a way to
generate a novel image based on a collection of styles. The
effects of each style are localized in the network, i.e., modi-
fying a specific subset of the styles can be expected to affect
only certain aspects of the image.

To see the reason for this localization, let us consider
how the AdaIN operation (Eq. 1) first normalizes each chan-
nel to zero mean and unit variance, and only then applies
scales and biases based on the style. The new per-channel
statistics, as dictated by the style, modify the relative impor-
tance of features for the subsequent convolution operation,
but they do not depend on the original statistics because of
the normalization. Thus each style controls only one convo-
lution before being overridden by the next AdaIN operation.

3.1. Style mixing
To further encourage the styles to localize, we employ

mixing regularization, where a given percentage of images
are generated using two random latent codes instead of one
during training. When generating such an image, we sim-
ply switch from one latent code to another — an operation
we refer to as style mixing — at a randomly selected point
in the synthesis network. To be specific, we run two latent
codes z1, z2 through the mapping network, and have the
corresponding w1,w2 control the styles so that w1 applies
before the crossover point and w2 after it. This regular-
ization technique prevents the network from assuming that
adjacent styles are correlated.

Table 2 shows how enabling mixing regularization dur-

3

Samples (trained on the FFHQ dataset)

(a) Traditional (b) Style-based generator

Figure 1. While a traditional generator [29] feeds the latent code
though the input layer only, we first map the input to an in-
termediate latent space W , which then controls the generator
through adaptive instance normalization (AdaIN) at each convo-
lution layer. Gaussian noise is added after each convolution, be-
fore evaluating the nonlinearity. Here “A” stands for a learned
affine transform, and “B” applies learned per-channel scaling fac-
tors to the noise input. The mapping network f consists of 8 lay-
ers and the synthesis network g consists of 18 layers — two for
each resolution (42 � 10242). The output of the last layer is con-
verted to RGB using a separate 1⇥ 1 convolution, similar to Kar-
ras et al. [29]. Our generator has a total of 26.2M trainable param-
eters, compared to 23.1M in the traditional generator.

spaces to 512, and the mapping f is implemented using
an 8-layer MLP, a decision we will analyze in Section 4.1.
Learned affine transformations then specialize w to styles
y = (ys,yb) that control adaptive instance normalization
(AdaIN) [26, 16, 20, 15] operations after each convolution
layer of the synthesis network g. The AdaIN operation is
defined as

AdaIN(xi,y) = ys,i
xi � µ(xi)

�(xi)
+ yb,i, (1)

where each feature map xi is normalized separately, and
then scaled and biased using the corresponding scalar com-
ponents from style y. Thus the dimensionality of y is twice
the number of feature maps on that layer.

Comparing our approach to style transfer, we compute
the spatially invariant style y from vector w instead of an
example image. We choose to reuse the word “style” for
y because similar network architectures are already used
for feedforward style transfer [26], unsupervised image-to-
image translation [27], and domain mixtures [22]. Com-
pared to more general feature transforms [36, 55], AdaIN is
particularly well suited for our purposes due to its efficiency
and compact representation.

Method CelebA-HQ FFHQ
A Baseline Progressive GAN [29] 7.79 8.04
B + Tuning (incl. bilinear up/down) 6.11 5.25
C + Add mapping and styles 5.34 4.85
D + Remove traditional input 5.07 4.88
E + Add noise inputs 5.06 4.42
F + Mixing regularization 5.17 4.40

Table 1. Fréchet inception distance (FID) for various generator de-
signs (lower is better). In this paper we calculate the FIDs using
50,000 images drawn randomly from the training set, and report
the lowest distance encountered over the course of training.

Finally, we provide our generator with a direct means
to generate stochastic detail by introducing explicit noise
inputs. These are single-channel images consisting of un-
correlated Gaussian noise, and we feed a dedicated noise
image to each layer of the synthesis network. The noise
image is broadcasted to all feature maps using learned per-
feature scaling factors and then added to the output of the
corresponding convolution, as illustrated in Figure 1b. The
implications of adding the noise inputs are discussed in Sec-
tions 3.2 and 3.3.

2.1. Quality of generated images
Before studying the properties of our generator, we

demonstrate experimentally that the redesign does not com-
promise image quality but, in fact, improves it considerably.
Table 1 gives Fréchet inception distances (FID) [24] for var-
ious generator architectures in CELEBA-HQ [29] and our
new FFHQ dataset (Appendix A). Results for other datasets
are given in Appendix E. Our baseline configuration (A)
is the Progressive GAN setup of Karras et al. [29], from
which we inherit the networks and all hyperparameters ex-
cept where stated otherwise. We first switch to an improved
baseline (B) by using bilinear up/downsampling operations
[62], longer training, and tuned hyperparameters. A de-
tailed description of training setups and hyperparameters is
included in Appendix C. We then improve this new base-
line further by adding the mapping network and AdaIN op-
erations (C), and make a surprising observation that the net-
work no longer benefits from feeding the latent code into the
first convolution layer. We therefore simplify the architec-
ture by removing the traditional input layer and starting the
image synthesis from a learned 4⇥ 4⇥ 512 constant tensor
(D). We find it quite remarkable that the synthesis network
is able to produce meaningful results even though it receives
input only through the styles that control the AdaIN opera-
tions.

Finally, we introduce the noise inputs (E) that improve
the results further, as well as novel mixing regularization (F)
that decorrelates neighboring styles and enables more fine-
grained control over the generated imagery (Section 3.1).

We evaluate our methods using two different loss func-
tions: for CELEBA-HQ we rely on WGAN-GP [23],

2

Feature map affine transformation:

StyleGAN

116

(Karras et al., 2019)



StyleGAN:
Tero Karras, Samuli Laine, Timo Aila, arXiv Dec.2018

A Style-Based Generator Architecture for 
Generative Adversarial Networks 

destination

so
ur

ce

C
oa

rs
e

st
yl

es
co

pi
ed

M
id

dl
e

st
yl

es
co

pi
ed

Fi
ne

st
yl

es

Figure 3. Visualizing the effect of styles in the generator by having the styles produced by one latent code (source) override a subset of the
styles of another one (destination). Overriding the styles of layers corresponding to coarse spatial resolutions (42 – 82), high-level aspects
such as pose, general hair style, face shape, and eyeglasses get copied from the source, while all colors (eyes, hair, lighting) and finer facial
features of the destination are retained. If we instead copy the styles of middle layers (162 – 322), we inherit smaller scale facial features,
hair style, eyes open/closed from the source, while the pose, general face shape, and eyeglasses from the destination are preserved. Finally,
copying the styles corresponding to fine resolutions (642 – 10242) brings mainly the color scheme and microstructure from the source.

4

Normalize

FC
FC
FC
FC
FC
FC
FC
FC

A

A

A

A
B

B

B

B
Const 4×4×512

AdaIN

AdaIN

AdaIN

AdaIN

Upsample

Conv 3×3

Conv 3×3

Conv 3×3

4×4

8×8

style

style

style

style

NoiseLatent

Mapping
network

Synthesis network

(a) Traditional (b) Style-based generator

Figure 1. While a traditional generator [29] feeds the latent code
though the input layer only, we first map the input to an in-
termediate latent space W , which then controls the generator
through adaptive instance normalization (AdaIN) at each convo-
lution layer. Gaussian noise is added after each convolution, be-
fore evaluating the nonlinearity. Here “A” stands for a learned
affine transform, and “B” applies learned per-channel scaling fac-
tors to the noise input. The mapping network f consists of 8 lay-
ers and the synthesis network g consists of 18 layers — two for
each resolution (42 � 10242). The output of the last layer is con-
verted to RGB using a separate 1⇥ 1 convolution, similar to Kar-
ras et al. [29]. Our generator has a total of 26.2M trainable param-
eters, compared to 23.1M in the traditional generator.

spaces to 512, and the mapping f is implemented using
an 8-layer MLP, a decision we will analyze in Section 4.1.
Learned affine transformations then specialize w to styles
y = (ys,yb) that control adaptive instance normalization
(AdaIN) [26, 16, 20, 15] operations after each convolution
layer of the synthesis network g. The AdaIN operation is
defined as

AdaIN(xi,y) = ys,i
xi � µ(xi)

�(xi)
+ yb,i, (1)

where each feature map xi is normalized separately, and
then scaled and biased using the corresponding scalar com-
ponents from style y. Thus the dimensionality of y is twice
the number of feature maps on that layer.

Comparing our approach to style transfer, we compute
the spatially invariant style y from vector w instead of an
example image. We choose to reuse the word “style” for
y because similar network architectures are already used
for feedforward style transfer [26], unsupervised image-to-
image translation [27], and domain mixtures [22]. Com-
pared to more general feature transforms [36, 55], AdaIN is
particularly well suited for our purposes due to its efficiency
and compact representation.

Method CelebA-HQ FFHQ
A Baseline Progressive GAN [29] 7.79 8.04
B + Tuning (incl. bilinear up/down) 6.11 5.25
C + Add mapping and styles 5.34 4.85
D + Remove traditional input 5.07 4.88
E + Add noise inputs 5.06 4.42
F + Mixing regularization 5.17 4.40

Table 1. Fréchet inception distance (FID) for various generator de-
signs (lower is better). In this paper we calculate the FIDs using
50,000 images drawn randomly from the training set, and report
the lowest distance encountered over the course of training.

Finally, we provide our generator with a direct means
to generate stochastic detail by introducing explicit noise
inputs. These are single-channel images consisting of un-
correlated Gaussian noise, and we feed a dedicated noise
image to each layer of the synthesis network. The noise
image is broadcasted to all feature maps using learned per-
feature scaling factors and then added to the output of the
corresponding convolution, as illustrated in Figure 1b. The
implications of adding the noise inputs are discussed in Sec-
tions 3.2 and 3.3.

2.1. Quality of generated images
Before studying the properties of our generator, we

demonstrate experimentally that the redesign does not com-
promise image quality but, in fact, improves it considerably.
Table 1 gives Fréchet inception distances (FID) [24] for var-
ious generator architectures in CELEBA-HQ [29] and our
new FFHQ dataset (Appendix A). Results for other datasets
are given in Appendix E. Our baseline configuration (A)
is the Progressive GAN setup of Karras et al. [29], from
which we inherit the networks and all hyperparameters ex-
cept where stated otherwise. We first switch to an improved
baseline (B) by using bilinear up/downsampling operations
[62], longer training, and tuned hyperparameters. A de-
tailed description of training setups and hyperparameters is
included in Appendix C. We then improve this new base-
line further by adding the mapping network and AdaIN op-
erations (C), and make a surprising observation that the net-
work no longer benefits from feeding the latent code into the
first convolution layer. We therefore simplify the architec-
ture by removing the traditional input layer and starting the
image synthesis from a learned 4⇥ 4⇥ 512 constant tensor
(D). We find it quite remarkable that the synthesis network
is able to produce meaningful results even though it receives
input only through the styles that control the AdaIN opera-
tions.

Finally, we introduce the noise inputs (E) that improve
the results further, as well as novel mixing regularization (F)
that decorrelates neighboring styles and enables more fine-
grained control over the generated imagery (Section 3.1).

We evaluate our methods using two different loss func-
tions: for CELEBA-HQ we rely on WGAN-GP [23],

2

• Swapping out the destination 
style for the source style

StyleGAN
• Swapping out the destination

style for the source style

117

(Karras et al., 2019)



Some Applications of GANs

118



Semi-supervised Classification

119

(Salimans et al., 2016;
 Dumoulin et al., 2016)

Published as a conference paper at ICLR 2017

Figure 6: Latent space interpolations on the CelebA validation set. Left and right columns corre-
spond to the original pairs x1 and x2, and the columns in between correspond to the decoding of
latent representations interpolated linearly from z1 to z2. Unlike other adversarial approaches like
DCGAN (Radford et al., 2015), ALI allows one to interpolate between actual data points.

Using ALI’s inference network as opposed to the discriminator to extract features, we achieve a
misclassification rate that is roughly 3.00 ± 0.50% lower than reported in Radford et al. (2015)
(Table 1), which suggests that ALI’s inference mechanism is beneficial to the semi-supervised
learning task.

We then investigate ALI’s performance when label information is taken into account during training.
We adapt the discriminative model proposed in Salimans et al. (2016). The discriminator takes x and
z as input and outputs a distribution over K + 1 classes, where K is the number of categories. When
label information is available for q(x, z) samples, the discriminator is expected to predict the label.
When no label information is available, the discriminator is expected to predict K + 1 for p(x, z)
samples and k 2 {1, . . . ,K} for q(x, z) samples.

Interestingly, Salimans et al. (2016) found that they required an alternative training strategy for the
generator where it tries to match first-order statistics in the discriminator’s intermediate activations
with respect to the data distribution (they refer to this as feature matching). We found that ALI did
not require feature matching to obtain comparable results. We achieve results competitive with the
state-of-the-art, as shown in Tables 1 and 2. Table 2 shows that ALI offers a modest improvement
over Salimans et al. (2016), more specifically for 1000 and 2000 labeled examples.

Table 1: SVHN test set missclassification rate

.

Model Misclassification rate

VAE (M1 + M2) (Kingma et al., 2014) 36.02

SWWAE with dropout (Zhao et al., 2015) 23.56

DCGAN + L2-SVM (Radford et al., 2015) 22.18

SDGM (Maaløe et al., 2016) 16.61

GAN (feature matching) (Salimans et al., 2016) 8.11± 1.3

ALI (ours, L2-SVM) 19.14± 0.50

ALI (ours, no feature matching) 7.42± 0.65

Table 2: CIFAR10 test set missclassification rate for semi-supervised learning using different numbers
of trained labeled examples. For ALI, error bars correspond to 3 times the standard deviation.

Number of labeled examples 1000 2000 4000 8000
Model Misclassification rate

Ladder network (Rasmus et al., 2015) 20.40

CatGAN (Springenberg, 2015) 19.58

GAN (feature matching) (Salimans et al., 2016) 21.83± 2.01 19.61± 2.09 18.63± 2.32 17.72± 1.82

ALI (ours, no feature matching) 19.98± 0.89 19.09± 0.44 17.99± 1.62 17.05± 1.49

8

SVNH



Plug & Play Generative Networks:

Conditional Iterative Generation of Images in Latent Space

Anh Nguyen
University of Wyoming†

anh.ng8@gmail.com

Jeff Clune
Uber AI Labs†, University of Wyoming

jeffclune@uwyo.edu

Yoshua Bengio
Montreal Institute for Learning Algorithms

yoshua.umontreal@gmail.com

Alexey Dosovitskiy
University of Freiburg

dosovits@cs.uni-freiburg.de

Jason Yosinski
Uber AI Labs†

yosinski@uber.com

Abstract

Generating high-resolution, photo-realistic images has

been a long-standing goal in machine learning. Recently,

Nguyen et al. [37] showed one interesting way to synthesize

novel images by performing gradient ascent in the latent

space of a generator network to maximize the activations

of one or multiple neurons in a separate classifier network.

In this paper we extend this method by introducing an addi-

tional prior on the latent code, improving both sample qual-

ity and sample diversity, leading to a state-of-the-art gen-

erative model that produces high quality images at higher

resolutions (227 × 227) than previous generative models,

and does so for all 1000 ImageNet categories. In addition,

we provide a unified probabilistic interpretation of related

activation maximization methods and call the general class

of models “Plug and Play Generative Networks.” PPGNs

are composed of 1) a generator network G that is capable

of drawing a wide range of image types and 2) a replace-

able “condition” network C that tells the generator what

to draw. We demonstrate the generation of images condi-

tioned on a class (when C is an ImageNet or MIT Places

classification network) and also conditioned on a caption

(when C is an image captioning network). Our method also

improves the state of the art of Multifaceted Feature Visual-

ization [40], which generates the set of synthetic inputs that

activate a neuron in order to better understand how deep

neural networks operate. Finally, we show that our model

performs reasonably well at the task of image inpainting.

While image models are used in this paper, the approach is

modality-agnostic and can be applied to many types of data.

†This work was mostly performed at Geometric Intelligence, which
Uber acquired to create Uber AI Labs.

Figure 1: Images synthetically generated by Plug and Play
Generative Networks at high-resolution (227x227) for four
ImageNet classes. Not only are many images nearly photo-
realistic, but samples within a class are diverse.

1. Introduction

Recent years have seen generative models that are in-
creasingly capable of synthesizing diverse, realistic images
that capture both the fine-grained details and global coher-
ence of natural images [54, 27, 9, 15, 43, 24]. However,
many important open challenges remain, including (1) pro-
ducing photo-realistic images at high resolutions [30], (2)
training generators that can produce a wide variety of im-

1

Plug & Play Generative Networks:

Conditional Iterative Generation of Images in Latent Space

Anh Nguyen
University of Wyoming†

anh.ng8@gmail.com

Jeff Clune
Uber AI Labs†, University of Wyoming

jeffclune@uwyo.edu

Yoshua Bengio
Montreal Institute for Learning Algorithms

yoshua.umontreal@gmail.com

Alexey Dosovitskiy
University of Freiburg

dosovits@cs.uni-freiburg.de

Jason Yosinski
Uber AI Labs†

yosinski@uber.com

Abstract

Generating high-resolution, photo-realistic images has

been a long-standing goal in machine learning. Recently,

Nguyen et al. [37] showed one interesting way to synthesize

novel images by performing gradient ascent in the latent

space of a generator network to maximize the activations

of one or multiple neurons in a separate classifier network.

In this paper we extend this method by introducing an addi-

tional prior on the latent code, improving both sample qual-

ity and sample diversity, leading to a state-of-the-art gen-

erative model that produces high quality images at higher

resolutions (227 × 227) than previous generative models,

and does so for all 1000 ImageNet categories. In addition,

we provide a unified probabilistic interpretation of related

activation maximization methods and call the general class

of models “Plug and Play Generative Networks.” PPGNs

are composed of 1) a generator network G that is capable

of drawing a wide range of image types and 2) a replace-

able “condition” network C that tells the generator what

to draw. We demonstrate the generation of images condi-

tioned on a class (when C is an ImageNet or MIT Places

classification network) and also conditioned on a caption

(when C is an image captioning network). Our method also

improves the state of the art of Multifaceted Feature Visual-

ization [40], which generates the set of synthetic inputs that

activate a neuron in order to better understand how deep

neural networks operate. Finally, we show that our model

performs reasonably well at the task of image inpainting.

While image models are used in this paper, the approach is

modality-agnostic and can be applied to many types of data.

†This work was mostly performed at Geometric Intelligence, which
Uber acquired to create Uber AI Labs.

Figure 1: Images synthetically generated by Plug and Play
Generative Networks at high-resolution (227x227) for four
ImageNet classes. Not only are many images nearly photo-
realistic, but samples within a class are diverse.

1. Introduction

Recent years have seen generative models that are in-
creasingly capable of synthesizing diverse, realistic images
that capture both the fine-grained details and global coher-
ence of natural images [54, 27, 9, 15, 43, 24]. However,
many important open challenges remain, including (1) pro-
ducing photo-realistic images at high resolutions [30], (2)
training generators that can produce a wide variety of im-

1

Class-specific Image Generation
• Generates 227x227 realistic images from all 

ImageNet classes

• Combines adversarial training, moment matching, 
denoising autoencoders, and Langevin sampling

120

(Nguyen et al., 2016) 

PPGN$with%different%learned%prior%networks%(i.e.%different%DAEs)

Sampling%conditioning%on%classes Sampling%conditioning%on%captions

features

a red car END

Image=captioning%network

CGℎ

ℎ$E2

#

E1

g

a
Image%classifier

classes

C# + %

DAE

a red carSTART

1000
labels

Pre=trained%convnet for%image%classification

pool5

ℎ$# E1 E2 ℎ
f c6image

Encoder%network%E

f
c

Gℎ + % #

DAE

Image%classifier

classes

C

Gℎ

ℎ$E2

#

E1

e Image%classifier

classes

CGℎ + %

ℎ$ + %E2

# + %

E1

d Image%classifier

classes

C

b

Gℎ #

Image%classifier

classes

C

PPGN=#

Joint%PPGN=ℎ Noiseless%joint%PPGN=ℎ

DGN=AM PPGN=ℎ

(no%learned%p(h)%prior)

Figure 3: Different variants of PPGN models we tested. The Noiseless Joint PPGN-h (e), which we found empirically
produces the best images, generated the results shown in Figs. 1 & 2 & Sections 3.5 & 4. In all variants, we perform iterative
sampling following the gradients of two terms: the condition (red arrows) and the prior (black arrows). (a) PPGN-x (Sec. 3.1):
To avoid fooling examples [38] when sampling in the high-dimensional image space, we incorporate a p(x) prior modeled
via a denoising autoencoder (DAE) for images, and sample images conditioned on the output classes of a condition network
C (or, to visualize hidden neurons, conditioned upon the activation of a hidden neuron in C). (b) DGN-AM (Sec. 3.2):
Instead of sampling in the image space (i.e. in the space of individual pixels), Nguyen et al. [37] sample in the abstract,
high-level feature space h of a generator G trained to reconstruct images x from compressed features h extracted from a
pre-trained encoder E (f). Because the generator network was trained to produce realistic images, it serves as a prior on p(x)
since it ideally can only generate real images. However, this model has no learned prior on p(h) (save for a simple Gaussian
assumption). (c) PPGN-h (Sec. 3.3): We attempt to improve the mixing speed and image quality by incorporating a learned
p(h) prior modeled via a multi-layer perceptron DAE for h. (d) Joint PPGN-h (Sec. 3.4): To improve upon the poor data
modeling of the DAE in PPGN-h, we experiment with treating G + E1 + E2 as a DAE that models h via x. In addition, to
possibly improve the robustness of G, we also add a small amount of noise to h1 and x during training and sampling, treating
the entire system as being composed of 4 interleaved models that share parameters: a GAN and 3 interleaved DAEs for x,
h1 and h, respectively. This model mixes substantially faster and produces better image quality than DGN-AM and PPGN-h
(Fig. S14). (e) Noiseless Joint PPGN-h (Sec. 3.5): We perform an ablation study on the Joint PPGN-h, sweeping across noise
levels or loss combinations, and found a Noiseless Joint PPGN-h variant trained with one less loss (Sec. S9.4) to produce the
best image quality. (f) A pre-trained image classification network (here, AlexNet trained on ImageNet) serves as the encoder
network E component of our model by mapping an image x to a useful, abstract, high-level feature space h (here, AlexNet’s
fc6 layer). (g) Instead of conditioning on classes, we can generate images conditioned on a caption by attaching a recurrent,
image-captioning network to the output layer of G, and performing similar iterative sampling.

prior, yielding adversarial or fooling examples [51, 38] as
setting (ϵ1, ϵ2, ϵ3) = (0, 1, 0); and methods that use L2 de-
cay during sampling as using a Gaussian p(x) prior with
(ϵ1, ϵ2, ϵ3) = (λ, 1, 0). Both lack a noise term and thus
sacrifice sample diversity.

3. Plug and Play Generative Networks

Previous models are often limited in that they use hand-
engineered priors when sampling in either image space or
the latent space of a generator network (see Sec. S7). In
this paper, we experiment with 4 different explicitly learned
priors modeled by a denoising autoencoder (DAE) [57].

We choose a DAE because, although it does not allow
evaluation of p(x) directly, it does allow approximation of
the gradient of the log probability when trained with Gaus-
sian noise with variance σ2 [1]; with sufficient capacity and

training time, the approximation is perfect in the limit as
σ → 0:

∂ log p(x)

∂x
≈

Rx(x)− x

σ2
(6)

where Rx is the reconstruction function in x-space repre-
senting the DAE, i.e. Rx(x) is a “denoised” output of the
autoencoder Rx (an encoder followed by a decoder) when
the encoder is fed input x. This term approximates exactly
the ϵ1 term required by our sampler, so we can use it to
define the steps of a sampler for an image x from class c.
Pulling the σ2 term into ϵ1, the update is:

xt+1 = xt+ϵ1
(

Rx(xt)−xt

)

+ϵ2
∂ log p(y = yc|xt)

∂xt
+N(0, ϵ23)

(7)

4



Video Generation (Vondrick et al., 2016)

121

Beach Golf Train Station



Generative Shape Modeling

122

(Wu et al., 2016)

z G(z) in 3D Voxel Space
64×64×64

512×4×4×4
256×8×8×8

128×16×16×16 64×32×32×32

Figure 1: The generator in 3D-GAN. The discriminator mostly mirrors the generator.

developed a recurrent adversarial network for image generation. While previous approaches focus on
modeling 2D images, we discuss the use of an adversarial component in modeling 3D objects.

3 Models

In this section we introduce our model for 3D object generation. We first discuss how we build
our framework, 3D Generative Adversarial Network (3D-GAN), by leveraging previous advances
on volumetric convolutional networks and generative adversarial nets. We then show how to train
a variational autoencoder [Kingma and Welling, 2014] simultaneously so that our framework can
capture a mapping from a 2D image to a 3D object.

3.1 3D Generative Adversarial Network (3D-GAN)

As proposed in Goodfellow et al. [2014], the Generative Adversarial Network (GAN) consists of
a generator and a discriminator, where the discriminator tries to classify real objects and objects
synthesized by the generator, and the generator attempts to confuse the discriminator. In our 3D
Generative Adversarial Network (3D-GAN), the generator G maps a 200-dimensional latent vector z,
randomly sampled from a probabilistic latent space, to a 64⇥ 64⇥ 64 cube, representing an object
G(z) in 3D voxel space. The discriminator D outputs a confidence value D(x) of whether a 3D
object input x is real or synthetic.

Following Goodfellow et al. [2014], we use binary cross entropy as the classification loss, and present
our overall adversarial loss function as

L3D-GAN = logD(x) + log(1�D(G(z))), (1)

where x is a real object in a 64⇥ 64⇥ 64 space, and z is a randomly sampled noise vector from a
distribution p(z). In this work, each dimension of z is an i.i.d. uniform distribution over [0, 1].
Network structure Inspired by Radford et al. [2016], we design an all-convolutional neural
network to generate 3D objects. As shown in Figure 1, the generator consists of five volumetric fully
convolutional layers of kernel sizes 4 ⇥ 4 ⇥ 4 and strides 2, with batch normalization and ReLU
layers added in between and a Sigmoid layer at the end. The discriminator basically mirrors the
generator, except that it uses Leaky ReLU [Maas et al., 2013] instead of ReLU layers. There are no
pooling or linear layers in our network. More details can be found in the supplementary material.
Training details A straightforward training procedure is to update both the generator and the
discriminator in every batch. However, the discriminator usually learns much faster than the generator,
possibly because generating objects in a 3D voxel space is more difficult than differentiating between
real and synthetic objects [Goodfellow et al., 2014, Radford et al., 2016]. It then becomes hard
for the generator to extract signals for improvement from a discriminator that is way ahead, as all
examples it generated would be correctly identified as synthetic with high confidence. Therefore,
to keep the training of both networks in pace, we employ an adaptive training strategy: for each
batch, the discriminator only gets updated if its accuracy in the last batch is not higher than 80%. We
observe this helps to stabilize the training and to produce better results. We set the learning rate of
G to 0.0025, D to 10�5, and use a batch size of 100. We use ADAM [Kingma and Ba, 2015] for
optimization, with � = 0.5.

3.2 3D-VAE-GAN

We have discussed how to generate 3D objects by sampling a latent vector z and mapping it to the
object space. In practice, it would also be helpful to infer these latent vectors from observations. For
example, if there exists a mapping from a 2D image to the latent representation, we can then recover
the 3D object corresponding to that 2D image.

3



Text-to-Image Synthesis

123

(Zhang et al., 2016)

Failure Cases

The main reason for failure cases is that Stage-I GAN fails to generate plausible rough shapes or colors of the objects.

CUB failure cases:

Oxford-102 failure cases:

Stage-I 
images 

Stage-II 
images 

Text 
description 

The flower 
have large 
petals that are 
pink with 
yellow on some 
of the petals 

A flower that 
has white petals 
with some 
tones of yellow 
and green 
filaments 

This flower 
is yellow 
and green in 
color, with 
petals that 
are ruffled 

This flower is 
pink and yellow 
in color, with 
petals that are 
oddly shaped 

The petals of 
this flower are 
white with a 
large stigma 

A unique yellow 
flower with no 
visible pistils 
protruding from 
the center 

This is a light 
colored flower 
with many 
different petals 
on a green stem 

Failure Cases

The main reason for failure cases is that Stage-I GAN fails to generate plausible rough shapes or colors of the objects.

CUB failure cases:

Oxford-102 failure cases:

Stage-I 
images 

Stage-II 
images 

Text 
description 

The flower 
have large 
petals that are 
pink with 
yellow on some 
of the petals 

A flower that 
has white petals 
with some 
tones of yellow 
and green 
filaments 

This flower 
is yellow 
and green in 
color, with 
petals that 
are ruffled 

This flower is 
pink and yellow 
in color, with 
petals that are 
oddly shaped 

The petals of 
this flower are 
white with a 
large stigma 

A unique yellow 
flower with no 
visible pistils 
protruding from 
the center 

This is a light 
colored flower 
with many 
different petals 
on a green stem 

A cardinal looking bird, but fatter with gray wings, an orange head, and black eyerings 

Stage-I  
images 

Stage-II  
images 

The small bird has a red head with feathers that fade from red to gray from head to tail 

Stage-I  
images 

Stage-II  
images 

This bird is black with green and has a very short beak 

Stage-I  
images 

Stage-II  
images 

A small bird with orange crown and pointy bill and the bird has mixed color breast and side 

Stage-I  
images 

Stage-II  
images 

A cardinal looking bird, but fatter with gray wings, an orange head, and black eyerings 

Stage-I  
images 

Stage-II  
images 

The small bird has a red head with feathers that fade from red to gray from head to tail 

Stage-I  
images 

Stage-II  
images 

This bird is black with green and has a very short beak 

Stage-I  
images 

Stage-II  
images 

A small bird with orange crown and pointy bill and the bird has mixed color breast and side 

Stage-I  
images 

Stage-II  
images 



Single Image Super-Resolution
• Combine content loss with adversarial loss

124

(Ledig et al., 2016)

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4⇥ upscaling]

perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [16].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [49, 33, 5]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4⇥ upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [43] or Yang et al. [61]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [4, 15].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [14] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 39].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [18, 17]. Related ap-
proaches to the SR problem originate in compressed sensing
[62, 12, 69]. In Glasner et al. [21] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [31], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [25] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [52] combine an edge-directed SR
algorithm based on a gradient profile prior [50] with the
benefits of learning-based detail synthesis. Zhang et al. [70]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [67] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [54, 55]. In Kim and Kwon
[35] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [27], trees [46] or Random Forests [47]. In Dai et al.
[6] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4⇥ upscaling]

perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [16].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [49, 33, 5]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4⇥ upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [43] or Yang et al. [61]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [4, 15].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [14] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 39].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [18, 17]. Related ap-
proaches to the SR problem originate in compressed sensing
[62, 12, 69]. In Glasner et al. [21] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [31], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [25] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [52] combine an edge-directed SR
algorithm based on a gradient profile prior [50] with the
benefits of learning-based detail synthesis. Zhang et al. [70]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [67] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [54, 55]. In Kim and Kwon
[35] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [27], trees [46] or Random Forests [47]. In Dai et al.
[6] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR

4× upscaling 



Image Inpainting

125

(Pathak et al., 2016)



Unsupervised Domain Adaptation

126

(Bousmalis et al., 2016)
xfxs

Discriminator D

Generator G

D

real

fake

xf (fake)

xs (synthetic)

G

z (noise)

xt (real)

T

real

fake

z
fc

Residual Block

R
es

id
ua

l B
lo

ck

R
es

id
ua

l B
lo

ck

re
lu

n3
s1

n6
4s

1

ta
nh

B
N

fc
:s

ig
m

oi
d

lre
lu

n1
28

s2

n256s2

B
N

lre
lu

co
nv

n5
12

s2

n1
02

4s
2

n6
4s

1

ŷ

n6
4s

1

n6
4s

1
re

lu
B

N

B
N

Figure 2. An overview of the model architecture. On the left, we depict the overall model architecture following the style in [34]. On the
right, we expand the details of the generator and the discriminator components. The generator G generates an image conditioned on a
synthetic image xs and a noise vector z. The discriminator D discriminates between real and fake images. The task–specific classifier T
assigns task–specific labels y to an image. A convolution with stride 1 and 64 channels is indicated as n64s1 in the image. lrelu stands for
leaky ReLU nonlinearity. BN stands for a batch normalization layer and FC for a fully connected layer. Note that we are not displaying
the specifics of T as those are different for each task and decoupled from the domain adaptation process.

and non-adapted source images. When training T only
on adapted images, it’s possible to achieve similar perfor-
mance, but doing so may require many runs with different
initializations due to the instability of the model. Indeed,
without training on source as well, the model is free to shift
class assignments (e.g. class 1 becomes 2, class 2 becomes
3 etc) while still being successful at optimizing the training
objective. We have found that training classifier T on both

source and adapted images avoids this scenario and greatly
stabilizes training (See Table 5). Finally, it’s important to
reiterate that once trained, we are free to adapt other images
from the source domain which might use a different label
space (See Table 4).

In our implementation, G is a convolutional neural net-
work with residual connections that maintains the resolu-
tion of the original image as illustrated in figure 2. Our dis-
criminator D is also a convolutional neural network. The
minimax optimization of Equation 1 is achieved by alter-
nating between two steps. During the first step, we up-
date the discriminator and task-specific parameters ✓D,✓T ,
while keeping the generator parameters ✓G fixed. During
the second step we fix ✓D,✓T and update ✓G.

3.2. Content–similarity loss
In certain cases, we have prior knowledge regarding the

low-level image adaptation process. For example, we may
expect the hues of the source and adapted images to be the
same. In our case, we render single objects on black back-

grounds and consequently we expect images adapted from
these renderings to have similar foregrounds and different
backgrounds from the equivalent source images. Render-
ers typically provide access to z-buffer masks that allow us
to differentiate between foreground and background pixels.
This prior knowledge can be formalized via the use of an ad-
ditional loss that penalizes large differences between source
and generated images for foreground pixels only. Such a
similarity loss grounds the generation process to the origi-
nal image and helps stabilize the minimax optimization, as
shown in Sect. 4.4 and Table 5. Our optimization objective
then becomes:

min
✓G,✓T

max
✓D

↵Ld(D,G) + �Lt(T,G) + �Lc(G) (4)

where ↵, �, and � are weights that control the interaction of
the losses, and Lc is the content–similarity loss.

We use a masked pairwise mean squared error, which
is a variation of the pairwise mean squared error (PMSE)
[11]. This loss penalizes differences between pairs of pix-
els rather than absolute differences between inputs and out-
puts. Our masked version calculates the PMSE between the
generated foreground and the source foreground. Formally,
given a binary mask m 2 Rk, our masked-PMSE loss is:

Lc(G) = Exs,z

h1
k
k(xs �G(xs

, z;✓G)) �mk22

� 1

k2

�
(xs �G(xs

, z;✓G))
>m

�2 i
(5)

4

Unsupervised Pixel–Level Domain Adaptation
with Generative Adversarial Networks

Konstantinos Bousmalis
Google Brain

San Francisco, CA
konstantinos@google.com

Nathan Silberman
Google Research
New York, NY

nsilberman@google.com

David Dohan
Google Brain

Mountain View, CA
ddohan@google.com

Dumitru Erhan
Google Brain

San Francisco, CA
dumitru@google.com

Dilip Krishnan
Google Research
Cambridge, MA

dilipkay@google.com

Abstract

Collecting well-annotated image datasets to train mod-

ern machine learning algorithms is prohibitively expensive

for many tasks. One appealing alternative is rendering syn-

thetic data where ground-truth annotations are generated

automatically. Unfortunately, models trained purely on ren-

dered images often fail to generalize to real images. To ad-

dress this shortcoming, prior work introduced unsupervised

domain adaptation algorithms that attempt to map repre-

sentations between the two domains or learn to extract fea-

tures that are domain–invariant. In this work, we present

a new approach that learns, in an unsupervised manner, a

transformation in the pixel space from one domain to the

other. Our generative adversarial network (GAN)–based

method adapts source-domain images to appear as if drawn

from the target domain. Our approach not only produces

plausible samples, but also outperforms the state-of-the-art

on a number of unsupervised domain adaptation scenarios

by large margins. Finally, we demonstrate that the adap-

tation process generalizes to object classes unseen during

training.

1. Introduction
Large and well–annotated datasets such as ImageNet [9],

COCO [29] and Pascal VOC [12] are considered crucial
to advancing computer vision research. However, creat-
ing such datasets is prohibitively expensive. One alterna-
tive is the use of synthetic data for model training. It has
been a long-standing goal in computer vision to use game
engines or renderers to produce virtually unlimited quan-
tities of labeled data. Indeed, certain areas of research,

(a) Image examples from the Linemod dataset.

(b) Examples generated by our model, trained on Linemod.

Figure 1. RGBD samples generated with our model vs real RGBD
samples from the Linemod dataset [22, 46]. In each subfigure the
top row is the RGB part of the image, and the bottom row is the
corresponding depth channel. Each column corresponds to a spe-
cific object in the dataset. See Sect. 4 for more details.

such as deep reinforcement learning for robotics tasks, ef-
fectively require that models be trained in synthetic do-
mains as training in real–world environments can be ex-
cessively expensive and time–consuming [38, 43]. Conse-
quently, there has been a renewed interest in training mod-
els in the synthetic domain and applying them in real–world
settings [8, 48, 38, 43, 25, 32, 35, 37]. Unfortunately, mod-
els naively trained on synthetic data do not typically gener-
alize to real images.

A common solution to this problem is using unsuper-

1

ar
X

iv
:1

61
2.

05
42

4v
1 

 [
cs

.C
V

] 
 1

6 
D

ec
 2

01
6

Unsupervised Pixel–Level Domain Adaptation
with Generative Adversarial Networks

Konstantinos Bousmalis
Google Brain

San Francisco, CA
konstantinos@google.com

Nathan Silberman
Google Research
New York, NY

nsilberman@google.com

David Dohan
Google Brain

Mountain View, CA
ddohan@google.com

Dumitru Erhan
Google Brain

San Francisco, CA
dumitru@google.com

Dilip Krishnan
Google Research
Cambridge, MA

dilipkay@google.com

Abstract

Collecting well-annotated image datasets to train mod-

ern machine learning algorithms is prohibitively expensive

for many tasks. One appealing alternative is rendering syn-

thetic data where ground-truth annotations are generated

automatically. Unfortunately, models trained purely on ren-

dered images often fail to generalize to real images. To ad-

dress this shortcoming, prior work introduced unsupervised

domain adaptation algorithms that attempt to map repre-

sentations between the two domains or learn to extract fea-

tures that are domain–invariant. In this work, we present

a new approach that learns, in an unsupervised manner, a

transformation in the pixel space from one domain to the

other. Our generative adversarial network (GAN)–based

method adapts source-domain images to appear as if drawn

from the target domain. Our approach not only produces

plausible samples, but also outperforms the state-of-the-art

on a number of unsupervised domain adaptation scenarios

by large margins. Finally, we demonstrate that the adap-

tation process generalizes to object classes unseen during

training.

1. Introduction
Large and well–annotated datasets such as ImageNet [9],

COCO [29] and Pascal VOC [12] are considered crucial
to advancing computer vision research. However, creat-
ing such datasets is prohibitively expensive. One alterna-
tive is the use of synthetic data for model training. It has
been a long-standing goal in computer vision to use game
engines or renderers to produce virtually unlimited quan-
tities of labeled data. Indeed, certain areas of research,

(a) Image examples from the Linemod dataset.

(b) Examples generated by our model, trained on Linemod.

Figure 1. RGBD samples generated with our model vs real RGBD
samples from the Linemod dataset [22, 46]. In each subfigure the
top row is the RGB part of the image, and the bottom row is the
corresponding depth channel. Each column corresponds to a spe-
cific object in the dataset. See Sect. 4 for more details.

such as deep reinforcement learning for robotics tasks, ef-
fectively require that models be trained in synthetic do-
mains as training in real–world environments can be ex-
cessively expensive and time–consuming [38, 43]. Conse-
quently, there has been a renewed interest in training mod-
els in the synthetic domain and applying them in real–world
settings [8, 48, 38, 43, 25, 32, 35, 37]. Unfortunately, mod-
els naively trained on synthetic data do not typically gener-
alize to real images.

A common solution to this problem is using unsuper-

1

ar
X

iv
:1

61
2.

05
42

4v
1 

 [
cs

.C
V

] 
 1

6 
D

ec
 2

01
6

Image examples from the Linemod dataset 
RGDB image samples 

(conditioned on a synthetic image)



Image to Image Translation (Pix2Pix)

(Isola et al. 2016) 127



real or fake pair ?



real or fake pair ?



fake pair



real pair



real or fake pair ?



Input Output Input Output Input Output

Data from [Russakovsky et al. 2015]

BW → Color



#edges2cats [Chris Hesse]



Ivy Tasi @ivymyt

Vitaly Vidmirov @vvid



1/0

N
 p

ix
el

s

N pixels

Rather than penalizing if output image 
looks fake, penalize if each overlapping 
patch in output looks fake 

[Li & Wand 2016]
[Shrivastava et al. 2017]

[Isola et al. 2017]

Shrinking the capacity: Patch Discriminator

• Faster, fewer parameters
• More supervised observations
• Applies to arbitrarily large images



Input 1x1 Discriminator

Data from [Tylecek, 2013]

Labels → Facades



Input 16x16 Discriminator

Data from [Tylecek, 2013]

Labels → Facades



Input 70x70 Discriminator

Data from [Tylecek, 2013]

Labels → Facades



Input Full image Discriminator

Data from [Tylecek, 2013]

Labels → Facades



Pix2Pix w/o input-output pairs

141(Zhu et al. 2017)



Paired data



Unpaired dataPaired data



real or fake pair ?



real or fake pair ?

No input-output pairs!



real or fake?

Usually loss functions check if output matches a target instance

GAN loss checks if output is part of an admissible set



Gaussian Target distribution



Horses Zebras



Real!



Real too!

Nothing to force output to correspond to input



[Zhu et al. 2017], [Yi et al. 2017], [Kim et al. 2017]

Cycle-Consistent Adversarial Networks



Cycle-Consistent Adversarial Networks



Cycle Consistency Loss



Cycle Consistency Loss







Collection Style Transfer

Photograph
@ Alexei Efros

Monet Van Gogh

Cezanne Ukiyo-e



Cezanne Ukiyo-eMonetInput Van Gogh



Monet's paintings → photos



Monet's paintings → photos



Failure case



Failure case



Semantic Image Synthesis (SPADE)
• Image generation conditioned on semantic layouts

163

(Park et al., 2019)

Semantic Image Synthesis with Spatially-Adaptive Normalization

Taesung Park1,2⇤ Ming-Yu Liu2 Ting-Chun Wang2 Jun-Yan Zhu2,3

1UC Berkeley 2NVIDIA 2,3MIT CSAIL

sky

sea

tree

cloud

mountain

grass

Figure 1: Our model allows user control over both semantic and style as synthesizing an image. The semantic (e.g., the
existence of a tree) is controlled via a label map (the top row), while the style is controlled via the reference style image (the
leftmost column). Please visit our website for interactive image synthesis demos.

Abstract

We propose spatially-adaptive normalization, a simple
but effective layer for synthesizing photorealistic images
given an input semantic layout. Previous methods directly
feed the semantic layout as input to the deep network, which
is then processed through stacks of convolution, normaliza-
tion, and nonlinearity layers. We show that this is subop-
timal as the normalization layers tend to “wash away” se-
mantic information. To address the issue, we propose using
the input layout for modulating the activations in normal-
ization layers through a spatially-adaptive, learned trans-
formation. Experiments on several challenging datasets
demonstrate the advantage of the proposed method over ex-
isting approaches, regarding both visual fidelity and align-
ment with input layouts. Finally, our model allows user
control over both semantic and style. Code is available at

⇤Taesung Park contributed to the work during his NVIDIA internship.

https://github.com/NVlabs/SPADE.

1. Introduction
Conditional image synthesis refers to the task of gen-

erating photorealistic images conditioning on certain in-
put data. Seminal work computes the output image by
stitching pieces from a single image (e.g., Image Analo-
gies [16]) or using an image collection [7, 14, 23, 30, 35].
Recent methods directly learn the mapping using neural net-
works [3, 6, 22, 47, 48, 54, 55, 56]. The latter methods are
faster and require no external database of images.

We are interested in a specific form of conditional im-
age synthesis, which is converting a semantic segmentation
mask to a photorealistic image. This form has a wide range
of applications such as content generation and image edit-
ing [6, 22, 48]. We refer to this form as semantic image
synthesis. In this paper, we show that the conventional net-
work architecture [22, 48], which is built by stacking con-
volutional, normalization, and nonlinearity layers, is at best

1

ar
X

iv
:1

90
3.

07
29

1v
2 

 [
cs

.C
V

] 
 5

 N
ov

 2
01

9



164(Karacan vd., 2019)

4�$
7KDQN�\RX�

&RGH��KWWS���KXFYO�JLWKXE�LR�SUQ

0��6HUFDQ�$PDF��6HPLK�<DJFLRJOX��$\NXW�(UGHP��(UNXW�(UGHP

��

Manipulating Attributes of Natural Scenes via Hallucination.
Levent Karacan, Zeynep Akata, Aykut Erdem & Erkut Erdem.
ACM Trans. on Graphics, Vol. 39, Issue 1, Article 7, February 2020.

4�$
7KDQN�\RX�

&RGH��KWWS���KXFYO�JLWKXE�LR�SUQ

0��6HUFDQ�$PDF��6HPLK�<DJFLRJOX��$\NXW�(UGHP��(UNXW�(UGHP

��



165
165

snow



166

prediction

night



prediction

167

Spring 
+ 

Clouds



168

CLIP-Guided StyleGAN Inversion for Text-Driven
Real Image Editing. 
Canberk Baykal, Abdul Basit Anees, Duygu Ceylan,   
Aykut Erdem, Erkut Erdem, Deniz Yuret
ACM Transactions on Graphics, 2023

4�$
7KDQN�\RX�

&RGH��KWWS���KXFYO�JLWKXE�LR�SUQ

0��6HUFDQ�$PDF��6HPLK�<DJFLRJOX��$\NXW�(UGHP��(UNXW�(UGHP

��

4�$
7KDQN�\RX�

&RGH��KWWS���KXFYO�JLWKXE�LR�SUQ

0��6HUFDQ�$PDF��6HPLK�<DJFLRJOX��$\NXW�(UGHP��(UNXW�(UGHP

��

A young woman 
with bangs 
wearing lipstick



169

CLIP-Guided StyleGAN Inversion for Text-Driven
Real Image Editing. 
Canberk Baykal, Abdul Basit Anees, Duygu Ceylan,   
Aykut Erdem, Erkut Erdem, Deniz Yuret
ACM Transactions on Graphics, 2023

4�$
7KDQN�\RX�

&RGH��KWWS���KXFYO�JLWKXE�LR�SUQ

0��6HUFDQ�$PDF��6HPLK�<DJFLRJOX��$\NXW�(UGHP��(UNXW�(UGHP

��

4�$
7KDQN�\RX�

&RGH��KWWS���KXFYO�JLWKXE�LR�SUQ

0��6HUFDQ�$PDF��6HPLK�<DJFLRJOX��$\NXW�(UGHP��(UNXW�(UGHP

��

An old and 
grumpy British 
shorthair



VidStyleODE: Disentangled Video Editing via StyleGAN and NeuralODE.
Moayed Haji Ali, Andrew Bond, Tolga Birdal, Duygu Ceylan, Levent Karacan, Erkut Erdem, 
Aykut Erdem. ICCV 2023

4�$
7KDQN�\RX�

&RGH��KWWS���KXFYO�JLWKXE�LR�SUQ

0��6HUFDQ�$PDF��6HPLK�<DJFLRJOX��$\NXW�(UGHP��(UNXW�(UGHP

��

4�$
7KDQN�\RX�

&RGH��KWWS���KXFYO�JLWKXE�LR�SUQ

0��6HUFDQ�$PDF��6HPLK�<DJFLRJOX��$\NXW�(UGHP��(UNXW�(UGHP

��

green jacket Sleeveless blue blouse black short

170



Audio-based Image Editing and Generation
using Latent Diffusion Models
Burak Can Biner, Farrin Marouf Sofian, 
Umur Berkay Karakaş, Duygu Ceylan, Erkut Erdem, 
Aykut Erdem. In progress

4�$
7KDQN�\RX�

&RGH��KWWS���KXFYO�JLWKXE�LR�SUQ

0��6HUFDQ�$PDF��6HPLK�<DJFLRJOX��$\NXW�(UGHP��(UNXW�(UGHP

��

4�$
7KDQN�\RX�

&RGH��KWWS���KXFYO�JLWKXE�LR�SUQ

0��6HUFDQ�$PDF��6HPLK�<DJFLRJOX��$\NXW�(UGHP��(UNXW�(UGHP

��

171



Audio-based Image Editing and Generation
using Latent Diffusion Models
Burak Can Biner, Farrin Marouf Sofian, 
Umur Berkay Karakaş, Duygu Ceylan, Erkut Erdem, 
Aykut Erdem. In progress

4�$
7KDQN�\RX�

&RGH��KWWS���KXFYO�JLWKXE�LR�SUQ

0��6HUFDQ�$PDF��6HPLK�<DJFLRJOX��$\NXW�(UGHP��(UNXW�(UGHP

��

4�$
7KDQN�\RX�

&RGH��KWWS���KXFYO�JLWKXE�LR�SUQ

0��6HUFDQ�$PDF��6HPLK�<DJFLRJOX��$\NXW�(UGHP��(UNXW�(UGHP

��

172



Audio-based Image Editing and Generation
using Latent Diffusion Models
Burak Can Biner, Farrin Marouf Sofian, 
Umur Berkay Karakaş, Duygu Ceylan, Erkut Erdem, 
Aykut Erdem. In progress

4�$
7KDQN�\RX�

&RGH��KWWS���KXFYO�JLWKXE�LR�SUQ

0��6HUFDQ�$PDF��6HPLK�<DJFLRJOX��$\NXW�(UGHP��(UNXW�(UGHP

��

4�$
7KDQN�\RX�

&RGH��KWWS���KXFYO�JLWKXE�LR�SUQ

0��6HUFDQ�$PDF��6HPLK�<DJFLRJOX��$\NXW�(UGHP��(UNXW�(UGHP

��

173



Next lecture: 
Autoregressive and Flow Models

174


