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Previously on COMP541
• supervised vs unsupervised 

learning

• generative modeling

• basic foundations
– sparse coding
– autoencoders

• generative adversarial networks 
(GANs)
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Artificial faces synthesized by StyleGAN (Nvidia)



Lecture overview
• autoregressive generative models

• normalizing flow models

Disclaimer: Much of the material and slides for this lecture were borrowed from 
—Bill Freeman, Antonio Torralba and Phillip Isola’s MIT 6.869 class
—Nal Kalchbrenner’s talks on “Generative Modelling as Sequence Learning” and “Generative Models of 

Language and Images”
—Chin-Wei Huang slides on Normalizing Flows
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Autoregressive 
Generative Models
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p

Synthesizing a pixel

non-parametric
sampling

Input image 

[Efros & Leung 1999]

Models

Texture synthesis by non-parametric sampling
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[PixelRNN, PixelCNN, van der Oord et al. 2016] 

Input partial 
image

“white”

Predicted color 
of next pixel

Texture synthesis with a deep net
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Input partial 
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Predicted color 
of next pixel

“white”

…
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Idea: We can represent colors as discrete classes
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Softmax regression (a.k.a. multinomial logistic regression)

predicted probability of each 
class given input x

max likelihood learner!

picks out the -log likelihood 
of the ground truth class 
under the model prediction 

And we can interpret the learner as modeling P(next pixel | previous pixels): 
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General product rule

The sampling procedure we defined above takes exact samples from the 
learned probability distribution (pmf).

Multiplying all conditionals evaluates the probability of a full joint configuration 
of pixels.

Autoregressive probability model
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Learning the Distribution of Natural Data

17Slide  adapted from Nal Kalchbrenner

• Fully visible belief networks  [Frey et al.,1996] [Frey, 1998] 

• NADE/MADE    [Larochelle and Murray, 2011] [Germain et al., 2015] 

• PixelRNN/PixelCNN (Images)  [van den Oord, Kalchbrenner, Kavukcuoglu, 2016]
      [van den Oord, Kalchbrenner, Vinyals, et al., 2016]

• Video Pixel Nets (Videos)   [Kalchbrenner, van den Oord, Simonyan, et al., 2016]

• ByteNet (Language/seq2seq)  [Kalchbrenner, Espeholt, Simonyan, et al., 2016]

• WaveNet (Audio)    [van den Oord, Dieleman, Zen, et al., 2016]

p(x) =
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1D sequences such as text or sound 2D tensors such as images 3D tensors such as videos



PixelCNN
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Neural Image Model: Pixel RNN

P(                 )

Slide  adapted from Nal Kalchbrenner

• approach the generation process 
as sequence modeling problem

• an explicit density model



PixelCNN
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Neural Image Model: Pixel RNN

P(                 )

Slide  adapted from Nal Kalchbrenner

Neural Image Model: Pixel RNN

P(                 )

x1

xi

xn

xn2



PixelCNN
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Neural Image Model: Pixel RNN

P(                 )

Slide  adapted from Nal Kalchbrenner

Neural Image Model: Pixel RNN

P(                 )

x1

xi

xn

xn2

By chain rule and using pixels as variables,

PixelCNN

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks.” 
arXiv preprint arXiv:1601.06759 (2016).

Idea: use masked convolutions to enforce the autoregressive relationship 
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p(xi | x<i)
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Figure 1: Left: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for
the next pixel. To generate pixel xi the model can only condition on the previously generated pixels
x1, . . . xi�1. Middle: an example matrix that is used to mask the 5x5 filters to make sure the model
cannot read pixels below (or strictly to the right) of the current pixel to make its predictions. Right:
Top: PixelCNNs have a blind spot in the receptive field that can not be used to make predictions.
Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive field.

combine the strengths of both models by introducing a gated variant of PixelCNN (Gated PixelCNN)
that matches the log-likelihood of PixelRNN on both CIFAR and ImageNet, while requiring less than
half the training time.

We also introduce a conditional variant of the Gated PixelCNN (Conditional PixelCNN) that allows
us to model the complex conditional distributions of natural images given a latent vector embedding.
We show that a single Conditional PixelCNN model can be used to generate images from diverse
classes such as dogs, lawn mowers and coral reefs, by simply conditioning on a one-hot encoding
of the class. Similarly one can use embeddings that capture high level information of an image to
generate a large variety of images with similar features. This gives us insight into the invariances
encoded in the embeddings — e.g., we can generate different poses of the same person based on a
single image. The same framework can also be used to analyse and interpret different layers and
activations in deep neural networks.

2 Gated PixelCNN

PixelCNNs (and PixelRNNs) [30] model the joint distribution of pixels over an image x as the
following product of conditional distributions, where xi is a single pixel:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1). (1)

The ordering of the pixel dependencies is in raster scan order: row by row and pixel by pixel within
every row. Every pixel therefore depends on all the pixels above and to the left of it, and not on any
of other pixels. The dependency field of a pixel is visualized in Figure 1 (left).

A similar setup has been used by other autoregressive models such as NADE [14] and RIDE [26].
The difference lies in the way the conditional distributions p(xi|x1, ..., xi�1) are constructed. In
PixelCNN every conditional distribution is modelled by a convolutional neural network. To make
sure the CNN can only use information about pixels above and to the left of the current pixel, the
filters of the convolution are masked as shown in Figure 1 (middle). For each pixel the three colour
channels (R, G, B) are modelled successively, with B conditioned on (R, G), and G conditioned on R.
This is achieved by splitting the feature maps at every layer of the network into three and adjusting the
centre values of the mask tensors. The 256 possible values for each colour channel are then modelled
using a softmax.

PixelCNN typically consists of a stack of masked convolutional layers that takes an N x N x 3 image
as input and produces N x N x 3 x 256 predictions as output. The use of convolutions allows the
predictions for all the pixels to be made in parallel during training (all conditional distributions from
Equation 1). During sampling the predictions are sequential: every time a pixel is predicted, it is
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PixelCNN – Softmax Sampling
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PixelCNN – Softmax Sampling
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PixelCNN – Softmax Sampling
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PixelCNN – Softmax Sampling
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PixelCNN

van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.” 
Advances in Neural Information Processing Systems. 2016.
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Neural Image Model: Pixel RNN
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Mask B

Mask A

Pixel Recurrent Neural Networks

In the literature it is currently best practice to add real-
valued noise to the pixel values to dequantize the data when
using density functions (Uria et al., 2013). When uniform
noise is added (with values in the interval [0, 1]), then the
log-likelihoods of continuous and discrete models are di-
rectly comparable (Theis et al., 2015). In our case, we can
use the values from the discrete distribution as a piecewise-
uniform continuous function that has a constant value for
every interval [i, i + 1], i = 1, 2, . . . 256. This correspond-
ing distribution will have the same log-likelihood (on data
with added noise) as the original discrete distribution (on
discrete data).

For MNIST we report the negative log-likelihood in nats
as it is common practice in literature. For CIFAR-10 and
ImageNet we report negative log-likelihoods in bits per di-
mension. The total discrete log-likelihood is normalized by
the dimensionality of the images (e.g., 32⇥ 32⇥ 3 = 3072
for CIFAR-10). These numbers are interpretable as the
number of bits that a compression scheme based on this
model would need to compress every RGB color value
(van den Oord & Schrauwen, 2014b; Theis et al., 2015);
in practice there is also a small overhead due to arithmetic
coding.

5.2. Training Details

Our models are trained on GPUs using the Torch toolbox.
From the different parameter update rules tried, RMSProp
gives best convergence performance and is used for all ex-
periments. The learning rate schedules were manually set
for every dataset to the highest values that allowed fast con-
vergence. The batch sizes also vary for different datasets.
For smaller datasets such as MNIST and CIFAR-10 we use
smaller batch sizes of 16 images as this seems to regularize
the models. For ImageNet we use as large a batch size as
allowed by the GPU memory; this corresponds to 64 im-
ages/batch for 32⇥ 32 ImageNet, and 32 images/batch for
64 ⇥ 64 ImageNet. Apart from scaling and centering the
images at the input of the network, we don’t use any other
preprocessing or augmentation. For the multinomial loss
function we use the raw pixel color values as categories.
For all the PixelRNN models, we learn the initial recurrent
state of the network.

5.3. Discrete Softmax Distribution

Apart from being intuitive and easy to implement, we find
that using a softmax on discrete pixel values instead of a
mixture density approach on continuous pixel values gives
better results. For the Row LSTM model with a softmax
output distribution we obtain 3.06 bits/dim on the CIFAR-
10 validation set. For the same model with a Mixture of
Conditional Gaussian Scale Mixtures (MCGSM) (Theis &
Bethge, 2015) we obtain 3.22 bits/dim.

In Figure 6 we show a few softmax activations from the
model. Although we don’t embed prior information about
the meaning or relations of the 256 color categories, e.g.
that pixel values 51 and 52 are neighbors, the distributions
predicted by the model are meaningful and can be multi-
modal, skewed, peaked or long tailed. Also note that values
0 and 255 often get a much higher probability as they are
more frequent. Another advantage of the discrete distribu-
tion is that we do not worry about parts of the distribution
mass lying outside the interval [0, 255], which is something
that typically happens with continuous distributions.

 0  50  100  150  200  250  0  50  100  150  200  250

 0  50  100  150  200  250  0  50  100  150  200  250

 0                                                                               255

0                                                                            255 0                                                                               255  0                                                                               255

 0                                                                               255

Figure 6. Example softmax activations from the model. The top
left shows the distribution of the first pixel red value (first value
to sample).

5.4. Residual Connections

Another core component of the networks is residual con-
nections. In Table 2 we show the results of having residual
connections, having standard skip connections or having
both, in the 12-layer CIFAR-10 Row LSTM model. We
see that using residual connections is as effective as using
skip connections; using both is also effective and preserves
the advantage.

No skip Skip

No residual: 3.22 3.09
Residual: 3.07 3.06

Table 2. Effect of residual and skip connections in the Row LSTM
network evaluated on the Cifar-10 validation set in bits/dim.

When using both the residual and skip connections, we see
in Table 3 that performance of the Row LSTM improves
with increased depth. This holds for up to the 12 LSTM
layers that we tried.

PixelCNN

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks.”arXiv preprint arXiv:1601.06759 (2016).

p(xi | x<i) = p(xi,R | x<i)p(xi,G | xi,R,x<i)p(xi,B | xi,R, xi,G,x<i)

autoregressive over color channels
R G B

R G B

R G B
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PixelCNN

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks.” 
arXiv preprint arXiv:1601.06759 (2016).

PixelCNN Row LSTM Diagonal BiLSTMmasked convolution

only depends on pixel 
above and to the left

composing multiple 
layers increases the 

context size
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composing multiple 
layers increases the 
context size

only depends on pixel
above and to the left

masked convolution

Multiple layers of masked convolutions



Topics: CIFAR-10

• Samples from a class-conditioned PixelCNN

Samples from PixelCNNEXPERIMENTAL RESULTS
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Topics: CIFAR-10
• Samples from a class-conditional PixelCNN

Conditional Image Generation with PixelCNN Decoders 
van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016

African elephant Coral Reef

Sandbar Sorrel horse

Lhasa Apso (dog) Lawn mower

Brown bear Robin (bird)

Figure 3: Class-Conditional samples from the Conditional PixelCNN.

Figure 4: Left: source image. Right: new portraits generated from high-level latent representation.

Figure 5: Linear interpolations in the embedding space decoded by the PixelCNN. Embeddings from
leftmost and rightmost images are used for endpoints of the interpolation.
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Topics: CIFAR-10

• Samples from a class-conditioned PixelCNN

Samples from PixelCNN
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Topics: CIFAR-10

• Samples from a class-conditioned PixelCNN

Samples from PixelCNNEXPERIMENTAL RESULTS
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Topics: CIFAR-10
• Samples from a class-conditional PixelCNN

Conditional Image Generation with PixelCNN Decoders 
van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016

African elephant Coral Reef

Sandbar Sorrel horse

Lhasa Apso (dog) Lawn mower

Brown bear Robin (bird)

Figure 3: Class-Conditional samples from the Conditional PixelCNN.

Figure 4: Left: source image. Right: new portraits generated from high-level latent representation.

Figure 5: Linear interpolations in the embedding space decoded by the PixelCNN. Embeddings from
leftmost and rightmost images are used for endpoints of the interpolation.
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Improving PixelCNN
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van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.” 
Advances in Neural Information Processing Systems. 2016.
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 Improving PixelCNN

Stacking layers of masked 
convolution creates a blindspot

Solution: use two stacks of 
convolution, a vertical stack and 
a horizontal stack

van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.” 
Advances in Neural Information Processing Systems. 2016.

Blind spot

Stacking layers of masked 
convolution creates a blindspot 

Horizontal stack

Vertical stack

Solution: use two stacks of convolution, 
a vertical stack and a horizontal stack

 Improving PixelCNN I



Improving PixelCNN I
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PixelCNN

van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.” 
Advances in Neural Information Processing Systems. 2016.
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van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.” 
Advances in Neural Information Processing Systems. 2016.
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Improving PixelCNN II
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Use more expressive nonlinearity:

2p

pp

p

p

pp

2p

p
Split feature maps

p = #feature maps

van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.” NIPS 2016.

Use more expressive nonlinearity: hk+1 = tanh(Wk,f ⇤ hk)� �(Wk,g ⇤ hk)

 Improving PixelCNN II

Vertical stack (in) Horizontal stack (in)

Vertical stack (out) Horizontal stack (out)

This information flow (between 
vertical and horizontal stacks) 
preserves the correct pixel 
dependencies

This information flow (between 
vertical and horizontal stacks) 
preserves the correct pixel 
dependencies 



Convolutional Long Short-Term Memory
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Neural Image Model: Pixel RNN

P(                 )
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Stollenga et al, 2015
Oord, Kalchbrenner, Kavukcuoglu, 2016
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Pixel RNN
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Neural Image Model: Pixel RNN

P(                 )
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Stollenga et al, 2015
Oord, Kalchbrenner, Kavukcuoglu, 2016
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Pixel RNN
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Multiple layers of convolutional LSTM



Samples from PixelRNN
Samples from Image Model

Slide  credit: 
Nal Kalchbrenner 55



Samples from 
PixelRNN

Samples from Image Model
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[PixelRNN, van der Oord et al. 2016] 

Image completions (conditional samples) 
from PixelRNN
occluded completions original
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Modeling Audio
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Architecture for 1D sequences (Bytenet / Wavenet)

• Stack of dilated, masked 1-D 
convolutions in the decoder

• The architecture is parallelizable
along the time dimension (during 
training or scoring)

• Easy access to many states from the 
past

59

Deep RNN

Bytenet decoder
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Causal Dilated Convolution
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Causal Dilated Convolution
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Causal Dilated Convolution
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Causal Dilated Convolution
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Causal Dilated Convolution
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Causal Dilated Convolution
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Multiple Stacks
• Improved receptive field with 

dilated convolutions

• Gated Residual block with 
skip connections
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Sampling
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Sampling
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Video Pixel Net (VPN)

74

masked convolution
VPN Samples for Robotic Pushing



Video Pixel Net (VPN)
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VPN Samples for Robotic Pushing

PixelCNN
Decoders

Resolution Preserving
CNN Encoders



Sparse Transformers

• Strided attention is roughly equivalent to each 
position attending to its row and its column 

• Fixed attention attends to a fixed column and the 
elements after the latest column element 
(especially used for text).

76

Generating Long Sequences with Sparse Transformers

Figure 2. Learned attention patterns from a 128-layer network on CIFAR-10 trained with full attention. White highlights denote attention
weights for a head while generating a given pixel, and black denotes the autoregressive mask. Layers are able to learn a variety of
specialized sparse structures, which may explain their ability to adapt to different domains. a) Many early layers in the network learn
locally connected patterns, which resemble convolution. b) In layers 19 and 20, the network learned to split the attention across a
row attention and column attention, effectively factorizing the global attention calculation. c) Several attention layers showed global,
data-dependent access patterns. d) Typical layers in layers 64-128 exhibited high sparsity, with positions activating rarely and only for
specific input patterns.

(a) Transformer (b) Sparse Transformer (strided) (c) Sparse Transformer (fixed)

Figure 3. Two 2d factorized attention schemes we evaluated in comparison to the full attention of a standard Transformer (a). The top
row indicates, for an example 6x6 image, which positions two attention heads receive as input when computing a given output. The
bottom row shows the connectivity matrix (not to scale) between all such outputs (rows) and inputs (columns). Sparsity in the connectivity
matrix can lead to significantly faster computation. In (b) and (c), full connectivity between elements is preserved when the two heads are
computed sequentially. We tested whether such factorizations could match in performance the rich connectivity patterns of Figure 2.

[Child, Gray, Radford, Sutskever, 2019]

Normal 
Transformer

Sparse 
Transformer 

(strided)

Sparse 
Transformer 

(fixed)



Autoregressive Models
• Explicitly model conditional probabilities:

Advantages:
• pmodel(x) is tractable (easy to train and sample)

Disadvantages:
• Generation can be too costly
• Generation can not be controlled 

by a latent code PixelCNN elephants
(van den Ord et al. 2016)

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

Fully-visible belief net

pmodel(x) = pmodel(x1)
nY

i=2

pmodel(xi | x1, . . . , xi�1)

1

77Slide adapted from Ian Goodfellow

Each conditional can be 
a complicated neural net

Neural Image Model: Pixel RNN

P(                 )

x1

xi

xn

xn2



Flow-Based Models
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Invertible Neural Networks
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Normalizing Flows: Translating Probability 
Distributions

80



Change of Variable Density Needs to Be 
Normalized
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Change of Variable Density (m-Dimensional)

For a multivariable invertible mapping 

Local change 
of volume

mass = density 
* volume
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Change of Variable Density (m-Dimensional)

Figures from blog post: Normalizing Flows Tutorial, Part 1: Distributions and Determinants by Eric Jang

1-D 2-D

For a multivariable invertible mapping 
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Chaining Invertible Mappings (Composition)

Chain rule

Determinant of 
matrix product

Figure from blog post: Flow-based Deep Generative Models by Lilian Weng, 2018 84



Training with Maximum Likelihood 
Principle

Regularizes the entropy

Inference
Generatio

n
Figures from Density Estimation Using Real NVP by Dinh et al., 2017

Higher likelihood
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Pathways to Designing a Normalizing Flow

86

1. Require an invertible architecture.
• Coupling layers, autoregressive, etc.

2. Require efficient computation of a change of variables equation.

Slide by Ricky Chen

Model distribution      Base distribution

(or a continuous version)
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Coupling Law - NICE
• General form

• Invertibility

• Jacobian determinant

no constraint

=1 (volume preserving)
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Coupling Law - RealNVP
• General form

• Invertibility

• Jacobian determinant

s>0 (or simply non-zero)

product of s

Real-valued
Non-Volume 
Preserving



Real NVP via Masked Convolution

Partitioning can be implemented using a binary mask b, and using the 
functional form for y

91

f(x) = b� x+ (1� b)� (x� exp(s (b� x)) +m(b� x))
<latexit sha1_base64="wz6HpnzLC+ZgddBLt/xDGxRBAes="></latexit><latexit sha1_base64="wz6HpnzLC+ZgddBLt/xDGxRBAes="></latexit><latexit sha1_base64="wz6HpnzLC+ZgddBLt/xDGxRBAes="></latexit><latexit sha1_base64="wz6HpnzLC+ZgddBLt/xDGxRBAes="></latexit>



Real NVP via Masked Convolution

Partitioning can be implemented using a binary mask b, and using the 
functional form for y

Figures from Density Estimation Using Real NVP by Dinh et al., 2017

After a “squeeze” operation
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f(x) = b� x+ (1� b)� (x� exp(s (b� x)) +m(b� x))
<latexit sha1_base64="wz6HpnzLC+ZgddBLt/xDGxRBAes="></latexit><latexit sha1_base64="wz6HpnzLC+ZgddBLt/xDGxRBAes="></latexit><latexit sha1_base64="wz6HpnzLC+ZgddBLt/xDGxRBAes="></latexit><latexit sha1_base64="wz6HpnzLC+ZgddBLt/xDGxRBAes="></latexit>

The spatial
checkerboard pattern
mask has value 1 
where the sum of 
spatial coordinates is 
odd, and 0 otherwise. 

The channel-wise mask
b is 1 for the first half of 
the channel dimensions
and 0 for the second half. 



Celeba-64 (left) and LSUN bedroom (right)
Figures from Density Estimation Using Real NVP by Dinh et al., 2017 93



Glow: Generative Flow with 1x1 
Convolutions
Replacing permutation with 1x1 convolution (soft permutation)

Figure from Density Estimation Using Real NVP by Dinh et al., 2017

Unchanged in the first transform
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Glow: Generative Flow with 1x1 
Convolutions
Replacing permutation with 1x1 convolution (soft permutation)

Figure from Density Estimation Using Real NVP by Dinh et al., 2017

Alternating masks

95



Glow: Generative Flow with 1x1 
Convolutions
Replacing permutation with 1x1 convolution (soft permutation)

Figure from Density Estimation Using Real NVP by Dinh et al., 2017

Alternating masks

Replace with a general 
invertible matrix W

Represent W as a 1x1 
convolutional kernel of shape 
[c, c, 1, 1]; c being # channels

96



Ablation: Permutation vs 1x1 Convolution

Bits-per-dim on CIFAR: left: additive, right: affine
Results from Glow: Generative Flow with Invertible 1×1 Convolutions by Kingma and Dhariwal, 2018 97



Figure from Glow: Generative Flow with Invertible 1×1 Convolutions by Kingma and Dhariwal, 2018 98



Figure from Glow: Generative Flow with Invertible 1×1 Convolutions by Kingma and Dhariwal, 2018
Video from Durk Kingma’s youtube channel

Interpolation with 
Generative Flows

99
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Context vector for conditioning

Inverse (Affine) Autoregressive Flows

101

• General form

• Invertibility

• Jacobian determinant

s>0 (or simply non-zero)

product of s



Context vector for conditioning

Inverse Autoregressive Flows

102

Autoregressive NN

• General form

• Invertibility

• Jacobian determinant

s>0 (or simply non-zero)

product of s



Trade-off between Expressivity and 
Inversion Cost
Block autoregressive

● Limited capacity
● Inverse takes constant time

Autoregressive

● Higher capacity
● Inverse takes linear time (dimensionality)

(Block triangular) (Triangular)

Ja
co

b
ia

n

Figures from Ricky Chen 103



Neural Autoregressive Flows

104

monotonic activation and positive weight in 

product of derivatives (elementwise)

• General form

• Invertibility

• Jacobian determinant

P
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Determinant Identity – Planar Flows

112

• General form

• Invertibility

• Jacobian determinant

VAE on binary MNIST



Determinant Identity – Sylvester Flows

113

• General form

• Invertibility

• Jacobian determinant

Similar to planar flows

Using Sylvester’s Thm:
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Jacobi’s formula

Stochastic Estimation for General Residual 
Form

116

• General form

• Invertibility

• Jacobian determinant



Jacobi’s formula

Stochastic Estimation for General Residual 
Form
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Power series expansion

• General form

• Invertibility

• Jacobian determinant



Jacobi’s formula

Stochastic Estimation for General Residual 
Form
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Power series expansion

Truncation & 
Hutchinson trace estimator

• General form

• Invertibility

• Jacobian determinant



Jacobi’s formula

Stochastic Estimation for General Residual 
Form
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Power series expansion

Truncation & 
Hutchinson trace estimator

Bias

• General form

• Invertibility

• Jacobian determinant



Jacobi’s formula

Stochastic Estimation for General Residual 
Form
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Power series expansion

Russian roulette estimator & 
Hutchinson trace estimator

• General form

• Invertibility

• Jacobian determinant



Effect of bias

CelebA samples

Cifar10 samples

Imagenet-32 samples

Figures from Residual Flows for Invertible Generative Modeling by Chen et al., 2019 121



Next lecture: 
Variational Autoencoders

and Denoising Diffusion Models
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