

Previously on COMP541

- supervised vs unsupervised learning
- generative modeling
- basic foundations
 - sparse coding
 - -autoencoders
- generative adversarial networks (GANs)

Lecture overview

- autoregressive generative models
- normalizing flow models

Disclaimer: Much of the material and slides for this lecture were borrowed from

- -Bill Freeman, Antonio Torralba and Phillip Isola's MIT 6.869 class
- -Nal Kalchbrenner's talks on "Generative Modelling as Sequence Learning" and "Generative Models of Language and Images"
- -Chin-Wei Huang slides on Normalizing Flows

Autoregressive Generative Models

Texture synthesis by non-parametric sampling

Models P(p|N(p))

[Efros & Leung 1999] 5

Texture synthesis with a deep net

[PixelRNN, PixelCNN, van der Oord et al. 2016] ₆

[PixeIRNN, PixeICNN, van der Oord et al. 2016] 7

Idea: We can represent colors as discrete classes

 $\mathcal{L}(\mathbf{y}, f_{\theta}(\mathbf{x})) = H(\mathbf{y}, \texttt{softmax}(f_{\theta}(\mathbf{x})))$

And we can interpret the learner as modeling P(next pixel | previous pixels):

Softmax regression (a.k.a. multinomial logistic regression)

$$\hat{\mathbf{y}} \equiv [P_{\theta}(Y = 1 | X = \mathbf{x}), \dots, P_{\theta}(Y = K | X = \mathbf{x})] \longleftarrow$$
 predicted probability of each class given input \mathbf{x}

$$H(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{k=1}^{K} y_k \log \hat{y}_k \quad \longleftarrow \quad \text{picks out the -log likelihood} \\ \text{of the ground truth class } \mathbf{y} \\ \text{under the model prediction } \hat{\mathbf{y}}$$

$$f^* = \operatorname*{arg\,min}_{f \in \mathcal{F}} \sum_{i=1}^{N} H(\mathbf{y}_i, \hat{\mathbf{y}}_i) \longleftarrow \max$$
 likelihood learner!

Network output

P(next pixel | previous pixels) $P(p_i|p_1,\cdots,p_{i-1})$ probability

$$p_1 \sim P(p_1)$$

 $p_2 \sim P(p_2|p_1)$
 $p_3 \sim P(p_3|p_1, p_2)$
 $p_4 \sim P(p_4|p_1, p_2, p_3)$

$$p_3$$
 p_4 p_2 p_1

 $\{p_1, p_2, p_3, p_4\} \sim P(p_4|p_1, p_2, p_3) P(p_3|p_1, p_2) P(p_2|p_1) P(p_1)$

$$p_i \sim P(p_i|p_1,\ldots,p_{i-1})$$

$$\mathbf{p} \sim \prod_{i=1}^{N} P(p_i | p_1, \dots, p_{i-1})$$

Autoregressive probability model

$$\mathbf{p} \sim \prod_{i=1}^{N} P(p_i | p_1, \dots, p_{i-1})$$

$$P(\mathbf{p}) = \prod_{i=1}^{N} P(p_i | p_1, \dots, p_{i-1}) \quad \bigstar \quad \mathsf{General product rule}$$

The sampling procedure we defined above takes exact samples from the learned probability distribution (pmf).

Multiplying all conditionals evaluates the probability of a full joint configuration of pixels.

Learning the Distribution of Natural Data

$$p(\mathbf{x}) = \prod_{i} p(x_i | \mathbf{x}_{<})$$

1D sequences such as text or sound

2D tensors such as images

 $p(\mathbf{x}) = \prod \prod p(x_{i,j} | \mathbf{x}_{<})$

l

$$p(\mathbf{x}) = \prod_{k} \prod_{j} \prod_{i} p(x_{i,j,k} | \mathbf{x})$$
3D tensors such as videos

- Fully visible belief networks
- NADE/MADE
- PixelRNN/PixelCNN (Images)
- Video Pixel Nets (Videos)
- ByteNet (Language/seq2seq)
- WaveNet (Audio)

[Frey et al.,1996] [Frey, 1998]

[Larochelle and Murray, 2011] [Germain et al., 2015]

[van den Oord, Kalchbrenner, Kavukcuoglu, 2016] [van den Oord, Kalchbrenner, Vinyals, et al., 2016]

[Kalchbrenner, van den Oord, Simonyan, et al., 2016]

[Kalchbrenner, Espeholt, Simonyan, et al., 2016]

[van den Oord, Dieleman, Zen, et al., 2016]

Slide adapted from Nal Kalchbrenner

- approach the generation process as sequence modeling problem
- an explicit density model

Slide adapted from Nal Kalchbrenner

 $n(r \cdot | \mathbf{x}_{<} \cdot)$

DivalCNINI

x_1			16	iT	6
	x_i	(C
		0	O	0	

x_1				x_n
		x_i		
				x_{n^2}

1	1	1	1	1
1	1	1	1	1
1	1	0	0	0
0	0	0	0	0
0	0	0	0	0

te interval [0, 1]), then the 1d discrete models are di- $2n_i$). In our case, we can listribution as a piecewiseit has a constant value for $\dots 256$. This correspondne log-likelihood (on data 1 discrete distribution (on R + X < i) $P(X_{i,G} + X_{i})$

tive log-likelihood in *nats* ature. For CIFAR-10 and Aikelihoods in *bits* per diikelihood is normalized by $32 \times 32 \times 3 = 3072$ activationespfeoablehes the prinformations adout this olor categories of orgyalue ors, the disatibut 2015); 1 and a cadus to natithmetic Also not a statues bability as they are hediscrete distribusuchtbendistributioolbox. Dr Channels dateicilies coedetkinisProp distributions. 1 for all ex-,G, $\mathbf{X}_{\leq i}$) anually set

PixelCNN

Samples from PixelCNN

Conditional Image Generation with PixelC van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, K

Topics: CIFAR-10

• Samples from a class-conditioned PixelCNN

Coral Reef

Samples from PixelCNN

Topics: CIFAR-10

• Samples from a class-conditioned PixelCNN

Sorrel horse

Samples from PixelCNN

Conditional Image Generatives van den Oord, Kalchbrenner, Vinyals, E

• Samples from a class-conditioned PixelCNN

Sandbar

Improving PixelCNN I

There is a problem with this form of masked convolution.

Stacking layers of masked convolution creates a blindspot

Convolutional Long Short-Term Memory

Stollenga et al, 2015 Oord, Kalchbrenner, Kavukcuoglu, 2016

Pixel RNN

x_1				x_n
		x_i		
		x_i		
				x_{n^2}
				x_{n^2}

Oord, Kalchbrenner, Kavukcuoglu, 2016

Samples from PixelRNN

Slide credit: Nal Kalchbrenner

Samples from PixelRNN

Slide credit: Nal Kalchbrenner

Image completions (conditional samples) from PixelRNN

occluded

completions

[PixelRNN, van der Oord et al. 2016]

original

Modeling Audio

1 Second

Architecture for 1D sequences (Bytenet / Wavenet)

Bytenet decoder

• Stack of **dilated**, **masked 1-D convolutions** in the decoder

)

- The architecture is **parallelizable** along the time dimension (during training or scoring)
- Easy access to **many states** from the past

Multiple Stacks

- Improved receptive field with dilated convolutions
- Gated Residual block with skip connections

Output 😑 😑 😑 😑 😑 😑 😑 😑 😑 😑 😑 😑

Hidden			\bigcirc					\bigcirc	\bigcirc			\bigcirc			
Layer	\cup	\cup	\cup	\cup	\cup	\cup	\cup	\cup	\cup	\cup	\cup	\cup	\cup	\cup	\cup

HiddenOO</th

sample

music

Output 🔴 🔴 🔴 🛑 🍯 🔴 🔴 🔴 🔴 🔴 🔴 🍎

Video Pixel Net (VPN)

masked convolution

VPN Samples for Robotic Pushing

Video Pixel Net (VPN)

PixelCNN Decoders

Resolution Preserving CNN Encoders

VPN Samples for Robotic Pushing

Sparse Transformers

Sparse Transformer (fixed)

- Strided attention is roughly equivalent to each position attending to its row and its column
- Fixed attention attends to a fixed column and the elements after the latest column element (especially used for text).

Sparse

Transformer

(strided)

[Child, Gray, Radford, Sutskever, 2019] 76

Autoregressive Models

• Explicitly model conditional probabilities:

$$p_{\text{model}}(\boldsymbol{x}) = p_{\text{model}}(x_1) \prod_{i=2} p_{\text{model}}(x_i \mid x_1, \dots, x_{i-1})$$

n

Advantages:

• $p_{\text{model}}(x)$ is tractable (easy to train and sample

Disadvantages:

- Generation can be too costly
- Generation can not be controlled by a latent code

PixelCNN elephants (van den Ord et al. 2016)

Flow-Based Models

Invertible Neural Networks

Normalizing Flows: Translating Probability Distributions

80

Change of Variable Density Needs to Be Normalized

 $p_X(x) = egin{cases} 1 & ext{for } 0 \leq x \leq 1 \ 0 & ext{else} \end{cases}$

 $X\sim p_X$

$$Y := 2X$$

$${ ilde p}_Y(y)=p_X(y/2) \qquad p_Y(y)=$$

$$p_Y(y)=p_X(y/2)/2$$

Change of Variable Density (m-Dimensional)

For a multivariable invertible mapping $f: \mathbb{R}^m o \mathbb{R}^m \quad X \sim p_X \quad Y := f(X)$

$$p_Y(y) = p_X(f^{-1}(y)) \left| \det rac{\partial f^{-1}(y)}{\partial y}
ight|$$

Change of Variable Density (m-Dimensional)

For a multivariable invertible mapping $f:\mathbb{R}^m o\mathbb{R}^m$ $X\sim p_X$ Y:=f(X)

.

$$p_Y(y) = p_X(f^{-1}(y)) \left| \det rac{\partial f^{-1}(y)}{\partial y}
ight|$$

Figures from blog post: Normalizing Flows Tutorial, Part 1: Distributions and Determinants by Eric Jang 83

Chaining Invertible Mappings (Composition)

$$f=f_S\circ\cdots\circ f_2\circ f_1 \qquad \qquad f(x)=f_S(\cdots f_2(f_1(x)))$$

$$egin{aligned} rac{\partial f(x)}{\partial x} &= rac{f_S(x_{S-1})}{\partial x_{S-1}} \cdots rac{f_2(x_1)}{\partial x_1} rac{f_1(x_0)}{\partial x_0} & x_s = f_s(x_{s-1}) \ x_0 &= x \end{aligned}$$
 Chain rule $\det\left(rac{\partial f(x)}{\partial x}
ight) &= \det\left(rac{f_S(x_{S-1})}{\partial x_{S-1}}
ight) \cdots \det\left(rac{f_2(x_1)}{\partial x_1}
ight) \det\left(rac{f_1(x_0)}{\partial x_0}
ight) \end{aligned}$ Determinant of matrix product

Figure from blog post: Flow-based Deep Generative Models by Lilian Weng, 2018

Training with Maximum Likelihood Principle

Pathways to Designing a Normalizing Flow

- 1. Require an invertible architecture.
 - Coupling layers, autoregressive, etc.
- 2. Require efficient computation of a change of variables equation.

$$\log p(x) = \log p(f(x)) + \log \left| \det \frac{df(x)}{dx} \right|$$
Model distribution Base distribution
$$(\text{or a continuous version}) \log p(x(t_N)) = \log p(x(t_0)) + \int_{t_0}^{t_N} \operatorname{tr} \left(\frac{\partial f(x(t), t)}{\partial x(t)} \right) dt$$

86

Architectural Taxonomy

Sparse connection

 $\begin{array}{ll} f({\boldsymbol{x}})_t = g({\boldsymbol{x}}_{1:t}) \\ \text{1. Block} \\ \text{coupling} \end{array} \quad \begin{array}{ll} \text{2. Autoregressive} \end{array}$

NICE/RealNVP/Glow Cubic Spline Flow Neural Spline Flow IAF/MAF/NAF SOS polynomial UMNN

(Lower triangular + structured)

(Lower triangular)

			_		_	_	
	_				_		
					-		
	_				-	-	
	_	_	_	_	_	_	
					-		
	_				-		
_	_		_		_	_	
			_		-		
					-	-	

Planar/Sylvester

flows

Radial flow

(Low rank)

Residual Connection f(x) = x + g(x)3. Det identity 4. Stochastic

estimation

Residual Flow FFJORD

(Arbitrary)

Architectural Taxonomy

Residual Connection $f(\boldsymbol{x}) = \boldsymbol{x} + g(\boldsymbol{x})$ 3. Det identity 4. Stochastic estimation

Planar/Sylvester flows Radial flow

(Low rank)

Residual Flow FFJORD

(Arbitrary)

Coupling Law - NICE

General form

$$f(x)_1 = x_1, \ f(x)_2 = x_2 + \mathcal{F}(x_1)$$

- Invertibility no constraint
- Jacobian determinant =1 (volume preserving)

m

90

Dinh et al. 2016

Coupling Law - RealNVP Real-valued Non-Volume Preserving

• General form

$$egin{aligned} f(oldsymbol{x})_1 &= oldsymbol{x}_1, \ f(oldsymbol{x})_2 &= s(oldsymbol{x}_1) \odot oldsymbol{x}_2 + m(oldsymbol{x}_1) \end{aligned}$$

- Invertibility s>0 (or simply non-zero)
- Jacobian determinant product of s

Real NVP via Masked Convolution

Partitioning can be implemented using a binary mask b, and using the functional form for y

$$f(x) = b \odot x + (1 - b) \odot (x \odot \exp(s_{-}(b \odot x)) + m(b \odot x))$$

Real NVP via Masked Convolution

Partitioning can be implemented using a binary mask b, and using the functional form for y

$$f(x) = b \odot x + (1 - b) \odot (x \odot \exp(s_{-}(b \odot x)) + m(b \odot x))$$

The **spatial checkerboard pattern mask** has value 1 where the sum of spatial coordinates is odd, and 0 otherwise.

92

Celeba-64 (left) and LSUN bedroom (right)

93

Glow: Generative Flow with 1x1 Convolutions

Replacing permutation with 1x1 convolution (soft permutation)

Glow: Generative Flow with 1x1 Convolutions

Replacing permutation with 1x1 convolution (soft permutation)

Alternating masks

Glow: Generative Flow with 1x1 Convolutions

Replacing permutation with 1x1 convolution (soft permutation)

Ablation: Permutation vs 1x1 Convolution

Results from Glow: Generative Flow with Invertible 1×1 Convolutions by Kingma and Dhariwal, 2018

Figure from Glow: Generative Flow with Invertible 1×1 Convolutions by Kingma and Dhariwal, 2018

Interpolation with Generative Flows

Figure from *Glow: Generative Flow with Invertible 1×1 Convolutions* by Kingma and Dhariwal, 2018 Video from Durk Kingma's youtube channel

Architectural Taxonomy

Sparse connection

1. Block coupling

NICE/RealNVP/Glow **Cubic Spline Flow Neural Spline Flow**

(Lower triangular + structured)

Residual Connection $f(\boldsymbol{x}) = \boldsymbol{x} + g(\boldsymbol{x})$ 4. Stochastic 3. Det identity estimation

Planar/Sylvester flows Radial flow

Residual Flow **FFJORD**

(Low rank)

(Arbitrary)

Inverse (Affine) Autoregressive Flows

General form

$$f(\boldsymbol{x})_t = s(\boldsymbol{x}_{< t}) \cdot \boldsymbol{x}_t + m(\boldsymbol{x}_{< t})$$

- Invertibility s>0 (or simply non-zero)
- Jacobian determinant product of s

Trade-off between Expressivity and Inversion Cost

Block autoregressive

- Limited capacity
- Inverse takes constant time

Autoregressive

- Higher capacity
- Inverse takes linear time (dimensionality)

(Triangular)

Neural Autoregressive Flows

- General form $f(\boldsymbol{x})_t = \mathcal{P}(\boldsymbol{x}_t; \mathcal{H}(\boldsymbol{x}_{< t}))$
 - Invertibility monotonic activation and positive weight in ${\cal P}$
 - Jacobian determinant product of derivatives (elementwise)

Huang et al. 2018

 C_3

Architectural Taxonomy

Determinant Identity – Planar Flows

• General form

$$f(\boldsymbol{x}) = \boldsymbol{x} + \boldsymbol{u}h(\boldsymbol{w}^{\top}\boldsymbol{x} + b)$$

 $\boldsymbol{u}^{\top}\boldsymbol{w} > -1$ if h = anh

- Invertibility
- Jacobian determinant

$$\left|\det \frac{\partial f}{\partial \boldsymbol{x}}\right| = \left|\det \left(\boldsymbol{I} + h'(\boldsymbol{w}^{\top}\boldsymbol{x} + b)\boldsymbol{u}\boldsymbol{w}^{\top}\right)\right| = \left|1 + h'(\boldsymbol{w}^{\top}\boldsymbol{x} + b)\boldsymbol{u}^{\top}\boldsymbol{w}\right|$$

VAE on binary MNIST

Model	$-\ln p(\mathbf{x})$
DLGM diagonal covariance	≤ 89.9
DLGM+NF (k = 10)	≤ 87.5
DLGM+NF (k = 20)	≤ 86.5
DLGM+NF (k = 40)	≤ 85.7
DLGM+NF (k = 80)	≤ 85.1

Rezende et al. 2015

Determinant Identity – Sylvester Flows

- General form $f(\boldsymbol{x}) = \boldsymbol{x} + \boldsymbol{A}h(\boldsymbol{B}\boldsymbol{x} + \boldsymbol{b})$ $\boldsymbol{A} \in \mathbb{R}^{m \times d}, \, \boldsymbol{B} \in \mathbb{R}^{d \times m}, \, \boldsymbol{b} \in \mathbb{R}^{d}, \, ext{and} \, d \leq m$
 - Invertibility
 Similar to planar flows
 - Jacobian determinant Using Sylvester's Thm: $det(I_m + AB) = det(I_d + BA)$

Model	Freyfaces		Omr	niglot	Caltech 101		
	-ELBO	NLL	-ELBO	NLL	-ELBO	NLL	
VAE	4.53 ± 0.02	4.40 ± 0.03	104.28 ± 0.39	97.25 ± 0.23	110.80 ± 0.46	99.62 ± 0.74	
Planar	4.40 ± 0.06	$\bf 4.31 \pm 0.06$	102.65 ± 0.42	96.04 ± 0.28	109.66 ± 0.42	98.53 ± 0.68	
IAF	4.47 ± 0.05	4.38 ± 0.04	102.41 ± 0.04	96.08 ± 0.16	111.58 ± 0.38	99.92 ± 0.30	
Ō-SNF	4.51 ± 0.04	-4.39 ± 0.05	-99.00 ± 0.29	$\bar{93.82} \pm 0.21$	$10\overline{6}.\overline{08} \pm \overline{0}.\overline{39}$	$\bar{94.61} \pm 0.83$	
H-SNF	4.46 ± 0.05	4.35 ± 0.05	99.00 ± 0.04	93.77 ± 0.03	104.62 ± 0.29	93.82 ± 0.62	
T-SNF	4.45 ± 0.04	4.35 ± 0.04	99.33 ± 0.23	93.97 ± 0.13	105.29 ± 0.64	94.92 ± 0.73	

Van den Berg et al. 2018

Architectural Taxonomy

Sparse connection

 $\begin{array}{ll} f({\pmb x})_t = g({\pmb x}_{1:t}) \\ \text{1. Block} \\ \text{coupling} \end{array} \qquad \begin{array}{ll} \text{2. Autoregressive} \end{array}$

NICE/RealNVP/Glow Cubic Spline Flow Neural Spline Flow

(Lower triangular + structured)

(Lower triangular)

$$egin{aligned} f(oldsymbol{x}) &= oldsymbol{x} + g(oldsymbol{x}) \ egin{aligned} & \left\| rac{\partial g(oldsymbol{x})}{\partial oldsymbol{x}}
ight\|_2 < 1 \end{aligned}$$

- Invertibility
- Jacobian determinant

$$\log \left| \det \frac{\partial f(x)}{\partial x} \right| = \operatorname{tr} \left(\log \frac{\partial f(x)}{\partial x} \right)$$

$$egin{aligned} f(oldsymbol{x}) &= oldsymbol{x} + g(oldsymbol{x}) \ &\left\|rac{\partial g(oldsymbol{x})}{\partialoldsymbol{x}}
ight\|_2 < 1 \end{aligned}$$

- Invertibility
- Jacobian determinant

$$\begin{split} \log \left| \det \frac{\partial f(x)}{\partial x} \right| &= \operatorname{tr} \left(\log \frac{\partial f(x)}{\partial x} \right) \\ \operatorname{tr} \left(\log \left(\mathbf{I} + \frac{\partial g(x)}{\partial x} \right) \right) &= \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \operatorname{tr} \left(\frac{\partial g(x)}{\partial x}^k \right) \\ \end{split}$$
 Power series expansion

$$egin{aligned} f(oldsymbol{x}) &= oldsymbol{x} + g(oldsymbol{x}) \ egin{aligned} &\| rac{\partial g(oldsymbol{x})}{\partial oldsymbol{x}} \|_2 < 1 \end{aligned}$$

- Invertibility
- Jacobian determinant

$$\begin{split} \log \left| \det \frac{\partial f(x)}{\partial x} \right| &= \operatorname{tr} \left(\log \frac{\partial f(x)}{\partial x} \right) & \text{Jacobi's formula} \\ \operatorname{tr} \left(\log \left(\mathbf{I} + \frac{\partial g(x)}{\partial x} \right) \right) &= \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \operatorname{tr} \left(\frac{\partial g(x)}{\partial x}^k \right) & \text{Power series expansion} \\ &\approx \mathbb{E}_v \left[\sum_{k=1}^n \frac{(-1)^{k+1}}{k} v^\top \left(\frac{\partial g(x)}{\partial x}^k \right) v \right] & \text{Truncation \&} \\ & \text{Hutchinson trace estimator} \end{split}$$

• General form

$$egin{aligned} f(oldsymbol{x}) &= oldsymbol{x} + g(oldsymbol{x}) \ egin{aligned} &\| rac{\partial g(oldsymbol{x})}{\partial oldsymbol{x}} \|_2 < 1 \end{aligned}$$

• Invertibility

Behrma

• Jacobian determinant

$$\begin{split} \log \left| \det \frac{\partial f(x)}{\partial x} \right| &= \operatorname{tr} \left(\log \frac{\partial f(x)}{\partial x} \right) & \text{Jacobi's formula} \\ \operatorname{tr} \left(\log \left(\mathbf{I} + \frac{\partial g(x)}{\partial x} \right) \right) &= \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \operatorname{tr} \left(\frac{\partial g(x)}{\partial x}^k \right) & \text{Power series expansion} \\ &\approx \mathbb{E}_v \left[\sum_{k=1}^n \frac{(-1)^{k+1}}{k} v^\top \left(\frac{\partial g(x)}{\partial x}^k \right) v \right] & \text{Truncation &} \\ & \text{Hutchinson trace estimator} \\ \\ & \text{Bias} \end{split}$$

$$egin{aligned} f(oldsymbol{x}) &= oldsymbol{x} + g(oldsymbol{x}) \ egin{aligned} &\| rac{\partial g(oldsymbol{x})}{\partial oldsymbol{x}} &\|_2 < 1 \end{aligned} \end{aligned}$$

- Invertibility
- Jacobian determinant

$$\begin{split} \log \left| \det \frac{\partial f(x)}{\partial x} \right| &= \operatorname{tr} \left(\log \frac{\partial f(x)}{\partial x} \right) & \text{Jacobi's formula} \\ \operatorname{tr} \left(\log \left(\mathbf{I} + \frac{\partial g(x)}{\partial x} \right) \right) &= \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \operatorname{tr} \left(\frac{\partial g(x)}{\partial x}^k \right) & \text{Power series expansion} \\ &= \mathbb{E}_{v,n} \left[\sum_{k=1}^n \frac{(-1)^{k+1}}{k \cdot \mathbb{P}(N \ge k)} v^\top \left(\frac{\partial g(x)}{\partial x}^k \right) v \right] & \text{Russian roulette estimator & Hutchinson trace estimator} \end{split}$$

CelebA samples

Cifar10 samples

Imagenet-32 samples

Figures from Residual Flows for Invertible Generative Modeling by Chen et al., 2019

Next lecture: Variational Autoencoders and Denoising Diffusion Models