
Lecture #11 –Autoregressive and Flow Models

Video: Samples from "cooking" subset of Kinetics, Weissenborn et al.

Aykut Erdem // Koç University // Fall 2023

COMP541
DEEP LEARNING

Previously on COMP541
• supervised vs unsupervised

learning

• generative modeling

• basic foundations
– sparse coding
– autoencoders

• generative adversarial networks
(GANs)

2

Artificial faces synthesized by StyleGAN (Nvidia)

Lecture overview
• autoregressive generative models

• normalizing flow models

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Bill Freeman, Antonio Torralba and Phillip Isola’s MIT 6.869 class
—Nal Kalchbrenner’s talks on “Generative Modelling as Sequence Learning” and “Generative Models of

Language and Images”
—Chin-Wei Huang slides on Normalizing Flows

3

Autoregressive
Generative Models

4

p

Synthesizing a pixel

non-parametric
sampling

Input image

[Efros & Leung 1999]

Models

Texture synthesis by non-parametric sampling

5

[PixelRNN, PixelCNN, van der Oord et al. 2016]

Input partial
image

“white”

Predicted color
of next pixel

Texture synthesis with a deep net

6

Input partial
image

Predicted color
of next pixel

“white”

…

7[PixelRNN, PixelCNN, van der Oord et al. 2016]

…
0

1

Prediction for a single pixel i,j

gr
ee

n

gr
ay

b
lu

e

te
al

br
ow

n

re
d

vi
ol

et

or
an

ge

Idea: We can represent colors as discrete classes

8

Softmax regression (a.k.a. multinomial logistic regression)

predicted probability of each
class given input x

max likelihood learner!

picks out the -log likelihood
of the ground truth class
under the model prediction

And we can interpret the learner as modeling P(next pixel | previous pixels):

9

Network output

…

…

turquoise

blue

green

red

orange

gray

black

white

p

pr
ob

ab
ili

ty

P(next pixel | previous pixels)

10

Network output

…

…

turquoise

blue

green

red

orange

gray

black

white

p

pr
ob

ab
ili

ty

11

Network output

…

…

turquoise

blue

green

red

orange

gray

black

white

pr
ob

ab
ili

ty

12

Network output

…

…

turquoise

blue

green

red

orange

gray

black

white

pr
ob

ab
ili

ty

13

Network output

…

…

turquoise

blue

green

red

orange

gray

black

white

pr
ob

ab
ili

ty

14

15

General product rule

The sampling procedure we defined above takes exact samples from the
learned probability distribution (pmf).

Multiplying all conditionals evaluates the probability of a full joint configuration
of pixels.

Autoregressive probability model

16

Learning the Distribution of Natural Data

17Slide adapted from Nal Kalchbrenner

• Fully visible belief networks [Frey et al.,1996] [Frey, 1998]

• NADE/MADE [Larochelle and Murray, 2011] [Germain et al., 2015]

• PixelRNN/PixelCNN (Images) [van den Oord, Kalchbrenner, Kavukcuoglu, 2016]
 [van den Oord, Kalchbrenner, Vinyals, et al., 2016]

• Video Pixel Nets (Videos) [Kalchbrenner, van den Oord, Simonyan, et al., 2016]

• ByteNet (Language/seq2seq) [Kalchbrenner, Espeholt, Simonyan, et al., 2016]

• WaveNet (Audio) [van den Oord, Dieleman, Zen, et al., 2016]

p(x) =
Y

k

Y

j

Y

i

p(xi,j,k|x<)p(x) =
Y

j

Y

i

p(xi,j |x<)p(x) =
Y

i

p(xi|x<)

1D sequences such as text or sound 2D tensors such as images 3D tensors such as videos

PixelCNN

18

Neural Image Model: Pixel RNN

P()

Slide adapted from Nal Kalchbrenner

• approach the generation process
as sequence modeling problem

• an explicit density model

PixelCNN

19

Neural Image Model: Pixel RNN

P()

Slide adapted from Nal Kalchbrenner

Neural Image Model: Pixel RNN

P()

x1

xi

xn

xn2

PixelCNN

20

Neural Image Model: Pixel RNN

P()

Slide adapted from Nal Kalchbrenner

Neural Image Model: Pixel RNN

P()

x1

xi

xn

xn2

By chain rule and using pixels as variables,

PixelCNN

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks.”
arXiv preprint arXiv:1601.06759 (2016).

Idea: use masked convolutions to enforce the autoregressive relationship

x1

xi

xn

xn2

Context

xn2

p(xi | x<i)

0 255 1 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0

0 0 0

0

0

0

0

Blind spot

Horizontal stack

Vertical stack

Figure 1: Left: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for
the next pixel. To generate pixel xi the model can only condition on the previously generated pixels
x1, . . . xi�1. Middle: an example matrix that is used to mask the 5x5 filters to make sure the model
cannot read pixels below (or strictly to the right) of the current pixel to make its predictions. Right:
Top: PixelCNNs have a blind spot in the receptive field that can not be used to make predictions.
Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive field.

combine the strengths of both models by introducing a gated variant of PixelCNN (Gated PixelCNN)
that matches the log-likelihood of PixelRNN on both CIFAR and ImageNet, while requiring less than
half the training time.

We also introduce a conditional variant of the Gated PixelCNN (Conditional PixelCNN) that allows
us to model the complex conditional distributions of natural images given a latent vector embedding.
We show that a single Conditional PixelCNN model can be used to generate images from diverse
classes such as dogs, lawn mowers and coral reefs, by simply conditioning on a one-hot encoding
of the class. Similarly one can use embeddings that capture high level information of an image to
generate a large variety of images with similar features. This gives us insight into the invariances
encoded in the embeddings — e.g., we can generate different poses of the same person based on a
single image. The same framework can also be used to analyse and interpret different layers and
activations in deep neural networks.

2 Gated PixelCNN

PixelCNNs (and PixelRNNs) [30] model the joint distribution of pixels over an image x as the
following product of conditional distributions, where xi is a single pixel:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1). (1)

The ordering of the pixel dependencies is in raster scan order: row by row and pixel by pixel within
every row. Every pixel therefore depends on all the pixels above and to the left of it, and not on any
of other pixels. The dependency field of a pixel is visualized in Figure 1 (left).

A similar setup has been used by other autoregressive models such as NADE [14] and RIDE [26].
The difference lies in the way the conditional distributions p(xi|x1, ..., xi�1) are constructed. In
PixelCNN every conditional distribution is modelled by a convolutional neural network. To make
sure the CNN can only use information about pixels above and to the left of the current pixel, the
filters of the convolution are masked as shown in Figure 1 (middle). For each pixel the three colour
channels (R, G, B) are modelled successively, with B conditioned on (R, G), and G conditioned on R.
This is achieved by splitting the feature maps at every layer of the network into three and adjusting the
centre values of the mask tensors. The 256 possible values for each colour channel are then modelled
using a softmax.

PixelCNN typically consists of a stack of masked convolutional layers that takes an N x N x 3 image
as input and produces N x N x 3 x 256 predictions as output. The use of convolutions allows the
predictions for all the pixels to be made in parallel during training (all conditional distributions from
Equation 1). During sampling the predictions are sequential: every time a pixel is predicted, it is

2

21
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN

22
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN

PixelCNN

23
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN

24
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN

25
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN

26
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN

27
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN

28
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN

29
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN

30
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN

31
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN – Softmax Sampling

32
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN – Softmax Sampling

33
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN – Softmax Sampling

34
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN – Softmax Sampling

35
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN – Softmax Sampling

36
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN – Softmax Sampling

37
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN – Softmax Sampling

38
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN – Softmax Sampling

39
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN – Softmax Sampling

40
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN – Softmax Sampling

41
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN – Softmax Sampling

42
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN – Softmax Sampling

43
Slide adapted from
Oriol Vinyals and Navdeep Jaitly

PixelCNN

44

PixelCNN

van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.”
Advances in Neural Information Processing Systems. 2016.

x1

xi

xn

xn2

Context

xn2

How can convolutions make
this raster scan faster?

1 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0

0 0 0

0

0

0

0

Use a stack of masked convolutions

Training can be parallelized, though generation is still a sequential operation over pixelsSlide adapted from Nal Kalchbrenner

use masked convolutions
to enforce the
autoregressive
relationship

Neural Image Model: Pixel RNN

P()

x1

xi

xn

xn2

PixelCNN

45

Neural Image Model: Pixel RNN

P()

x1

xi

xn

xn2

use masked convolutions
to enforce the
autoregressive
relationship

Slide adapted from Nal Kalchbrenner

Mask B

Mask A

Pixel Recurrent Neural Networks

In the literature it is currently best practice to add real-
valued noise to the pixel values to dequantize the data when
using density functions (Uria et al., 2013). When uniform
noise is added (with values in the interval [0, 1]), then the
log-likelihoods of continuous and discrete models are di-
rectly comparable (Theis et al., 2015). In our case, we can
use the values from the discrete distribution as a piecewise-
uniform continuous function that has a constant value for
every interval [i, i + 1], i = 1, 2, . . . 256. This correspond-
ing distribution will have the same log-likelihood (on data
with added noise) as the original discrete distribution (on
discrete data).

For MNIST we report the negative log-likelihood in nats
as it is common practice in literature. For CIFAR-10 and
ImageNet we report negative log-likelihoods in bits per di-
mension. The total discrete log-likelihood is normalized by
the dimensionality of the images (e.g., 32⇥ 32⇥ 3 = 3072
for CIFAR-10). These numbers are interpretable as the
number of bits that a compression scheme based on this
model would need to compress every RGB color value
(van den Oord & Schrauwen, 2014b; Theis et al., 2015);
in practice there is also a small overhead due to arithmetic
coding.

5.2. Training Details

Our models are trained on GPUs using the Torch toolbox.
From the different parameter update rules tried, RMSProp
gives best convergence performance and is used for all ex-
periments. The learning rate schedules were manually set
for every dataset to the highest values that allowed fast con-
vergence. The batch sizes also vary for different datasets.
For smaller datasets such as MNIST and CIFAR-10 we use
smaller batch sizes of 16 images as this seems to regularize
the models. For ImageNet we use as large a batch size as
allowed by the GPU memory; this corresponds to 64 im-
ages/batch for 32⇥ 32 ImageNet, and 32 images/batch for
64 ⇥ 64 ImageNet. Apart from scaling and centering the
images at the input of the network, we don’t use any other
preprocessing or augmentation. For the multinomial loss
function we use the raw pixel color values as categories.
For all the PixelRNN models, we learn the initial recurrent
state of the network.

5.3. Discrete Softmax Distribution

Apart from being intuitive and easy to implement, we find
that using a softmax on discrete pixel values instead of a
mixture density approach on continuous pixel values gives
better results. For the Row LSTM model with a softmax
output distribution we obtain 3.06 bits/dim on the CIFAR-
10 validation set. For the same model with a Mixture of
Conditional Gaussian Scale Mixtures (MCGSM) (Theis &
Bethge, 2015) we obtain 3.22 bits/dim.

In Figure 6 we show a few softmax activations from the
model. Although we don’t embed prior information about
the meaning or relations of the 256 color categories, e.g.
that pixel values 51 and 52 are neighbors, the distributions
predicted by the model are meaningful and can be multi-
modal, skewed, peaked or long tailed. Also note that values
0 and 255 often get a much higher probability as they are
more frequent. Another advantage of the discrete distribu-
tion is that we do not worry about parts of the distribution
mass lying outside the interval [0, 255], which is something
that typically happens with continuous distributions.

 0 50 100 150 200 250 0 50 100 150 200 250

 0 50 100 150 200 250 0 50 100 150 200 250

 0 255

0 255 0 255 0 255

 0 255

Figure 6. Example softmax activations from the model. The top
left shows the distribution of the first pixel red value (first value
to sample).

5.4. Residual Connections

Another core component of the networks is residual con-
nections. In Table 2 we show the results of having residual
connections, having standard skip connections or having
both, in the 12-layer CIFAR-10 Row LSTM model. We
see that using residual connections is as effective as using
skip connections; using both is also effective and preserves
the advantage.

No skip Skip

No residual: 3.22 3.09
Residual: 3.07 3.06

Table 2. Effect of residual and skip connections in the Row LSTM
network evaluated on the Cifar-10 validation set in bits/dim.

When using both the residual and skip connections, we see
in Table 3 that performance of the Row LSTM improves
with increased depth. This holds for up to the 12 LSTM
layers that we tried.

PixelCNN

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks.”arXiv preprint arXiv:1601.06759 (2016).

p(xi | x<i) = p(xi,R | x<i)p(xi,G | xi,R,x<i)p(xi,B | xi,R, xi,G,x<i)

autoregressive over color channels
R G B

R G B

R G B
Mask A

Mask B

Context

8-bits pixel values (multinoulli distribution)
7

autoregressive over color channels

Pixel Recurrent Neural Networks

In the literature it is currently best practice to add real-
valued noise to the pixel values to dequantize the data when
using density functions (Uria et al., 2013). When uniform
noise is added (with values in the interval [0, 1]), then the
log-likelihoods of continuous and discrete models are di-
rectly comparable (Theis et al., 2015). In our case, we can
use the values from the discrete distribution as a piecewise-
uniform continuous function that has a constant value for
every interval [i, i + 1], i = 1, 2, . . . 256. This correspond-
ing distribution will have the same log-likelihood (on data
with added noise) as the original discrete distribution (on
discrete data).

For MNIST we report the negative log-likelihood in nats
as it is common practice in literature. For CIFAR-10 and
ImageNet we report negative log-likelihoods in bits per di-
mension. The total discrete log-likelihood is normalized by
the dimensionality of the images (e.g., 32⇥ 32⇥ 3 = 3072
for CIFAR-10). These numbers are interpretable as the
number of bits that a compression scheme based on this
model would need to compress every RGB color value
(van den Oord & Schrauwen, 2014b; Theis et al., 2015);
in practice there is also a small overhead due to arithmetic
coding.

5.2. Training Details

Our models are trained on GPUs using the Torch toolbox.
From the different parameter update rules tried, RMSProp
gives best convergence performance and is used for all ex-
periments. The learning rate schedules were manually set
for every dataset to the highest values that allowed fast con-
vergence. The batch sizes also vary for different datasets.
For smaller datasets such as MNIST and CIFAR-10 we use
smaller batch sizes of 16 images as this seems to regularize
the models. For ImageNet we use as large a batch size as
allowed by the GPU memory; this corresponds to 64 im-
ages/batch for 32⇥ 32 ImageNet, and 32 images/batch for
64 ⇥ 64 ImageNet. Apart from scaling and centering the
images at the input of the network, we don’t use any other
preprocessing or augmentation. For the multinomial loss
function we use the raw pixel color values as categories.
For all the PixelRNN models, we learn the initial recurrent
state of the network.

5.3. Discrete Softmax Distribution

Apart from being intuitive and easy to implement, we find
that using a softmax on discrete pixel values instead of a
mixture density approach on continuous pixel values gives
better results. For the Row LSTM model with a softmax
output distribution we obtain 3.06 bits/dim on the CIFAR-
10 validation set. For the same model with a Mixture of
Conditional Gaussian Scale Mixtures (MCGSM) (Theis &
Bethge, 2015) we obtain 3.22 bits/dim.

In Figure 6 we show a few softmax activations from the
model. Although we don’t embed prior information about
the meaning or relations of the 256 color categories, e.g.
that pixel values 51 and 52 are neighbors, the distributions
predicted by the model are meaningful and can be multi-
modal, skewed, peaked or long tailed. Also note that values
0 and 255 often get a much higher probability as they are
more frequent. Another advantage of the discrete distribu-
tion is that we do not worry about parts of the distribution
mass lying outside the interval [0, 255], which is something
that typically happens with continuous distributions.

 0 50 100 150 200 250 0 50 100 150 200 250

 0 50 100 150 200 250 0 50 100 150 200 250

 0 255

0 255 0 255 0 255

 0 255

Figure 6. Example softmax activations from the model. The top
left shows the distribution of the first pixel red value (first value
to sample).

5.4. Residual Connections

Another core component of the networks is residual con-
nections. In Table 2 we show the results of having residual
connections, having standard skip connections or having
both, in the 12-layer CIFAR-10 Row LSTM model. We
see that using residual connections is as effective as using
skip connections; using both is also effective and preserves
the advantage.

No skip Skip

No residual: 3.22 3.09
Residual: 3.07 3.06

Table 2. Effect of residual and skip connections in the Row LSTM
network evaluated on the Cifar-10 validation set in bits/dim.

When using both the residual and skip connections, we see
in Table 3 that performance of the Row LSTM improves
with increased depth. This holds for up to the 12 LSTM
layers that we tried.

PixelCNN

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks.”arXiv preprint arXiv:1601.06759 (2016).

p(xi | x<i) = p(xi,R | x<i)p(xi,G | xi,R,x<i)p(xi,B | xi,R, xi,G,x<i)

autoregressive over color channels
R G B

R G B

R G B
Mask A

Mask B

Context

8-bits pixel values (multinoulli distribution)

PixelCNN

46Slide adapted from Aaron Courville

PixelCNN

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks.”
arXiv preprint arXiv:1601.06759 (2016).

PixelCNN Row LSTM Diagonal BiLSTMmasked convolution

only depends on pixel
above and to the left

composing multiple
layers increases the

context size

9

composing multiple
layers increases the
context size

only depends on pixel
above and to the left

masked convolution

Multiple layers of masked convolutions

Topics: CIFAR-10

• Samples from a class-conditioned PixelCNN

Samples from PixelCNNEXPERIMENTAL RESULTS
38

Topics: CIFAR-10
• Samples from a class-conditional PixelCNN

Conditional Image Generation with PixelCNN Decoders
van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016

African elephant Coral Reef

Sandbar Sorrel horse

Lhasa Apso (dog) Lawn mower

Brown bear Robin (bird)

Figure 3: Class-Conditional samples from the Conditional PixelCNN.

Figure 4: Left: source image. Right: new portraits generated from high-level latent representation.

Figure 5: Linear interpolations in the embedding space decoded by the PixelCNN. Embeddings from
leftmost and rightmost images are used for endpoints of the interpolation.

7

Slide credit: Nal Kalchbrenner 47

Topics: CIFAR-10

• Samples from a class-conditioned PixelCNN

Samples from PixelCNN

Slide credit: Nal Kalchbrenner 48

Topics: CIFAR-10

• Samples from a class-conditioned PixelCNN

Samples from PixelCNNEXPERIMENTAL RESULTS
40

Topics: CIFAR-10
• Samples from a class-conditional PixelCNN

Conditional Image Generation with PixelCNN Decoders
van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016

African elephant Coral Reef

Sandbar Sorrel horse

Lhasa Apso (dog) Lawn mower

Brown bear Robin (bird)

Figure 3: Class-Conditional samples from the Conditional PixelCNN.

Figure 4: Left: source image. Right: new portraits generated from high-level latent representation.

Figure 5: Linear interpolations in the embedding space decoded by the PixelCNN. Embeddings from
leftmost and rightmost images are used for endpoints of the interpolation.

7

Slide credit: Nal Kalchbrenner 49

Improving PixelCNN

50

van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.”
Advances in Neural Information Processing Systems. 2016.

There is a problem with this
form of masked convolution.

1 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0

0 0 0

0

0

0

0

Blind spot

Stacking layers of masked
convolution creates a blindspot

 Improving PixelCNN

Stacking layers of masked
convolution creates a blindspot

Solution: use two stacks of
convolution, a vertical stack and
a horizontal stack

van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.”
Advances in Neural Information Processing Systems. 2016.

Blind spot

Stacking layers of masked
convolution creates a blindspot

Horizontal stack

Vertical stack

Solution: use two stacks of convolution,
a vertical stack and a horizontal stack

 Improving PixelCNN I

Improving PixelCNN I

51

PixelCNN

van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.”
Advances in Neural Information Processing Systems. 2016.

x1

xi

xn

xn2

Context

xn2

How can convolutions make
this raster scan faster?

1 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0

0 0 0

0

0

0

0

Use a stack of masked convolutions

Training can be parallelized, though generation is still a sequential operation over pixels

There is a problem with this
form of masked convolution.

van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.”
Advances in Neural Information Processing Systems. 2016.

There is a problem with this
form of masked convolution.

1 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0

0 0 0

0

0

0

0

Blind spot

Stacking layers of masked
convolution creates a blindspot

 Improving PixelCNN

Stacking layers of masked
convolution creates a blindspot

Improving PixelCNN II

52

Use more expressive nonlinearity:

2p

pp

p

p

pp

2p

p
Split feature maps

p = #feature maps

van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.” NIPS 2016.

Use more expressive nonlinearity: hk+1 = tanh(Wk,f ⇤ hk)� �(Wk,g ⇤ hk)

 Improving PixelCNN II

Vertical stack (in) Horizontal stack (in)

Vertical stack (out) Horizontal stack (out)

This information flow (between
vertical and horizontal stacks)
preserves the correct pixel
dependencies

This information flow (between
vertical and horizontal stacks)
preserves the correct pixel
dependencies

Convolutional Long Short-Term Memory

53

Neural Image Model: Pixel RNN

P()

x1

xi

xn

xn2

Stollenga et al, 2015
Oord, Kalchbrenner, Kavukcuoglu, 2016

Row LSTM

LSTM

Pixel RNN

54

Neural Image Model: Pixel RNN

P()

x1

xi

xn

xn2

Stollenga et al, 2015
Oord, Kalchbrenner, Kavukcuoglu, 2016

LSTM

Multiple
layers of
convolutional
LSTM

Pixel RNN

x1

xi

xn

xn2

LSTM

Multiple layers of convolutional LSTM

Samples from PixelRNN
Samples from Image Model

Slide credit:
Nal Kalchbrenner 55

Samples from
PixelRNN

Samples from Image Model

Slide credit: Nal Kalchbrenner 56

[PixelRNN, van der Oord et al. 2016]

Image completions (conditional samples)
from PixelRNN
occluded completions original

57

Modeling Audio

58

Architecture for 1D sequences (Bytenet / Wavenet)

• Stack of dilated, masked 1-D
convolutions in the decoder

• The architecture is parallelizable
along the time dimension (during
training or scoring)

• Easy access to many states from the
past

59

Deep RNN

Bytenet decoder

Causal Convolution

60

Causal Convolution

Input

Hidden
Layer

Hidden
Layer

Input

Causal Convolution

61

Hidden
Layer

Input

Hidden
Layer

Causal Convolution

62

Hidden
Layer

Input

Hidden
Layer

Hidden
Layer

Causal Convolution

63

Hidden
Layer

Input

Hidden
Layer

Hidden
Layer

Output

Causal Convolution

64

Hidden
Layer

Input

Hidden
Layer

Hidden
Layer

Output

Causal Dilated Convolution

65

Input

Causal Dilated Convolution

66

Hidden
Layer

Input

Causal Dilated Convolution

67

Hidden
Layer

Input

Hidden
Layer

dilation=1

dilation=2

Causal Dilated Convolution

68

Hidden
Layer

Input

Hidden
Layer

Hidden
Layer

dilation=1

dilation=2

dilation=4

Causal Dilated Convolution

69

Hidden
Layer

Input

Hidden
Layer

Hidden
Layer

Output

dilation=1

dilation=2

dilation=4

dilation=8

Causal Dilated Convolution

70

Hidden
Layer

Input

Hidden
Layer

Hidden
Layer

Output

dilation=1

dilation=2

dilation=4

dilation=8

Multiple Stacks
• Improved receptive field with

dilated convolutions

• Gated Residual block with
skip connections

71

Sampling

72

Hidden
Layer

Input

Hidden
Layer

Hidden
Layer

Output

Sampling

73

Hidden
Layer

Input

Hidden
Layer

Hidden
Layer

Output

sample
speech

sample
music

Video Pixel Net (VPN)

74

masked convolution
VPN Samples for Robotic Pushing

Video Pixel Net (VPN)

75

VPN Samples for Robotic Pushing

PixelCNN
Decoders

Resolution Preserving
CNN Encoders

Sparse Transformers

• Strided attention is roughly equivalent to each
position attending to its row and its column

• Fixed attention attends to a fixed column and the
elements after the latest column element
(especially used for text).

76

Generating Long Sequences with Sparse Transformers

Figure 2. Learned attention patterns from a 128-layer network on CIFAR-10 trained with full attention. White highlights denote attention
weights for a head while generating a given pixel, and black denotes the autoregressive mask. Layers are able to learn a variety of
specialized sparse structures, which may explain their ability to adapt to different domains. a) Many early layers in the network learn
locally connected patterns, which resemble convolution. b) In layers 19 and 20, the network learned to split the attention across a
row attention and column attention, effectively factorizing the global attention calculation. c) Several attention layers showed global,
data-dependent access patterns. d) Typical layers in layers 64-128 exhibited high sparsity, with positions activating rarely and only for
specific input patterns.

(a) Transformer (b) Sparse Transformer (strided) (c) Sparse Transformer (fixed)

Figure 3. Two 2d factorized attention schemes we evaluated in comparison to the full attention of a standard Transformer (a). The top
row indicates, for an example 6x6 image, which positions two attention heads receive as input when computing a given output. The
bottom row shows the connectivity matrix (not to scale) between all such outputs (rows) and inputs (columns). Sparsity in the connectivity
matrix can lead to significantly faster computation. In (b) and (c), full connectivity between elements is preserved when the two heads are
computed sequentially. We tested whether such factorizations could match in performance the rich connectivity patterns of Figure 2.

[Child, Gray, Radford, Sutskever, 2019]

Normal
Transformer

Sparse
Transformer

(strided)

Sparse
Transformer

(fixed)

Autoregressive Models
• Explicitly model conditional probabilities:

Advantages:
• pmodel(x) is tractable (easy to train and sample)

Disadvantages:
• Generation can be too costly
• Generation can not be controlled

by a latent code PixelCNN elephants
(van den Ord et al. 2016)

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

Fully-visible belief net

pmodel(x) = pmodel(x1)
nY

i=2

pmodel(xi | x1, . . . , xi�1)

1

77Slide adapted from Ian Goodfellow

Each conditional can be
a complicated neural net

Neural Image Model: Pixel RNN

P()

x1

xi

xn

xn2

Flow-Based Models

78

Invertible Neural Networks

79

Normalizing Flows: Translating Probability
Distributions

80

Change of Variable Density Needs to Be
Normalized

81

Change of Variable Density (m-Dimensional)

For a multivariable invertible mapping

Local change
of volume

mass = density
* volume

82

Change of Variable Density (m-Dimensional)

Figures from blog post: Normalizing Flows Tutorial, Part 1: Distributions and Determinants by Eric Jang

1-D 2-D

For a multivariable invertible mapping

83

Chaining Invertible Mappings (Composition)

Chain rule

Determinant of
matrix product

Figure from blog post: Flow-based Deep Generative Models by Lilian Weng, 2018 84

Training with Maximum Likelihood
Principle

Regularizes the entropy

Inference
Generatio

n
Figures from Density Estimation Using Real NVP by Dinh et al., 2017

Higher likelihood

85

Pathways to Designing a Normalizing Flow

86

1. Require an invertible architecture.
• Coupling layers, autoregressive, etc.

2. Require efficient computation of a change of variables equation.

Slide by Ricky Chen

Model distribution Base distribution

(or a continuous version)

Architectural Taxonomy
Ja

co
b

ia
n

(Low rank)(Lower triangular +
structured)

(Lower triangular) (Arbitrary)

Sparse connection
Residual

Connection

1. Block
coupling

2. Autoregressive 3. Det identity
4. Stochastic
estimation

IAF/MAF/NAF
SOS polynomial

UMNN

Planar/Sylvester
flows

Radial flow

Residual
Flow

FFJORD

NICE/RealNVP/Glow
Cubic Spline Flow
Neural Spline Flow

Figures from Ricky Chen 87

Architectural Taxonomy
Ja

co
b

ia
n

(Low rank)(Lower triangular +
structured)

(Lower triangular) (Arbitrary)

Sparse connection
Residual

Connection

1. Block
coupling

2. Autoregressive 3. Det identity
4. Stochastic
estimation

IAF/MAF/NAF
SOS polynomial

UMNN

Planar/Sylvester
flows

Radial flow

Residual
Flow

FFJORD

NICE/RealNVP/Glow
Cubic Spline Flow
Neural Spline Flow

Figures from Ricky Chen 88

89

Coupling Law - NICE
• General form

• Invertibility

• Jacobian determinant

no constraint

=1 (volume preserving)

90

Coupling Law - RealNVP
• General form

• Invertibility

• Jacobian determinant

s>0 (or simply non-zero)

product of s

Real-valued
Non-Volume
Preserving

Real NVP via Masked Convolution

Partitioning can be implemented using a binary mask b, and using the
functional form for y

91

f(x) = b� x+ (1� b)� (x� exp(s (b� x)) +m(b� x))
<latexit sha1_base64="wz6HpnzLC+ZgddBLt/xDGxRBAes=">AAACM3icbVBNS8MwGE7n15xfU49egkNoEUcrgl6EoRfxNMF9wFpKmqVbWNqUJJWOsf/kxT/iQRAPinj1P5htPczpAyHP+7zPS/I+QcKoVLb9ahSWlldW14rrpY3Nre2d8u5eU/JUYNLAnHHRDpAkjMakoahipJ0IgqKAkVYwuJ70Ww9ESMrjezVMiBehXkxDipHSkl++Dc3MgpcwgC7vcgUzeAxN5ySw8trMZrdLssSUrm8Guc+ytDOaK0t+uWJX7SngX+LkpAJy1P3ys9vlOI1IrDBDUnYcO1HeCAlFMSPjkptKkiA8QD3S0TRGEZHeaLrzGB5ppQtDLvSJFZyq8xMjFEk5jALtjJDqy8XeRPyv10lVeOGNaJykisR49lCYMqg4nAQIu1QQrNhQE4QF1X+FuI8EwkrHPAnBWVz5L2meVh3N784qtas8jiI4AIfABA44BzVwA+qgATB4BC/gHXwYT8ab8Wl8zawFI5/ZB79gfP8AZIml9A==</latexit><latexit sha1_base64="wz6HpnzLC+ZgddBLt/xDGxRBAes=">AAACM3icbVBNS8MwGE7n15xfU49egkNoEUcrgl6EoRfxNMF9wFpKmqVbWNqUJJWOsf/kxT/iQRAPinj1P5htPczpAyHP+7zPS/I+QcKoVLb9ahSWlldW14rrpY3Nre2d8u5eU/JUYNLAnHHRDpAkjMakoahipJ0IgqKAkVYwuJ70Ww9ESMrjezVMiBehXkxDipHSkl++Dc3MgpcwgC7vcgUzeAxN5ySw8trMZrdLssSUrm8Guc+ytDOaK0t+uWJX7SngX+LkpAJy1P3ys9vlOI1IrDBDUnYcO1HeCAlFMSPjkptKkiA8QD3S0TRGEZHeaLrzGB5ppQtDLvSJFZyq8xMjFEk5jALtjJDqy8XeRPyv10lVeOGNaJykisR49lCYMqg4nAQIu1QQrNhQE4QF1X+FuI8EwkrHPAnBWVz5L2meVh3N784qtas8jiI4AIfABA44BzVwA+qgATB4BC/gHXwYT8ab8Wl8zawFI5/ZB79gfP8AZIml9A==</latexit><latexit sha1_base64="wz6HpnzLC+ZgddBLt/xDGxRBAes=">AAACM3icbVBNS8MwGE7n15xfU49egkNoEUcrgl6EoRfxNMF9wFpKmqVbWNqUJJWOsf/kxT/iQRAPinj1P5htPczpAyHP+7zPS/I+QcKoVLb9ahSWlldW14rrpY3Nre2d8u5eU/JUYNLAnHHRDpAkjMakoahipJ0IgqKAkVYwuJ70Ww9ESMrjezVMiBehXkxDipHSkl++Dc3MgpcwgC7vcgUzeAxN5ySw8trMZrdLssSUrm8Guc+ytDOaK0t+uWJX7SngX+LkpAJy1P3ys9vlOI1IrDBDUnYcO1HeCAlFMSPjkptKkiA8QD3S0TRGEZHeaLrzGB5ppQtDLvSJFZyq8xMjFEk5jALtjJDqy8XeRPyv10lVeOGNaJykisR49lCYMqg4nAQIu1QQrNhQE4QF1X+FuI8EwkrHPAnBWVz5L2meVh3N784qtas8jiI4AIfABA44BzVwA+qgATB4BC/gHXwYT8ab8Wl8zawFI5/ZB79gfP8AZIml9A==</latexit><latexit sha1_base64="wz6HpnzLC+ZgddBLt/xDGxRBAes=">AAACM3icbVBNS8MwGE7n15xfU49egkNoEUcrgl6EoRfxNMF9wFpKmqVbWNqUJJWOsf/kxT/iQRAPinj1P5htPczpAyHP+7zPS/I+QcKoVLb9ahSWlldW14rrpY3Nre2d8u5eU/JUYNLAnHHRDpAkjMakoahipJ0IgqKAkVYwuJ70Ww9ESMrjezVMiBehXkxDipHSkl++Dc3MgpcwgC7vcgUzeAxN5ySw8trMZrdLssSUrm8Guc+ytDOaK0t+uWJX7SngX+LkpAJy1P3ys9vlOI1IrDBDUnYcO1HeCAlFMSPjkptKkiA8QD3S0TRGEZHeaLrzGB5ppQtDLvSJFZyq8xMjFEk5jALtjJDqy8XeRPyv10lVeOGNaJykisR49lCYMqg4nAQIu1QQrNhQE4QF1X+FuI8EwkrHPAnBWVz5L2meVh3N784qtas8jiI4AIfABA44BzVwA+qgATB4BC/gHXwYT8ab8Wl8zawFI5/ZB79gfP8AZIml9A==</latexit>

Real NVP via Masked Convolution

Partitioning can be implemented using a binary mask b, and using the
functional form for y

Figures from Density Estimation Using Real NVP by Dinh et al., 2017

After a “squeeze” operation

92

f(x) = b� x+ (1� b)� (x� exp(s (b� x)) +m(b� x))
<latexit sha1_base64="wz6HpnzLC+ZgddBLt/xDGxRBAes=">AAACM3icbVBNS8MwGE7n15xfU49egkNoEUcrgl6EoRfxNMF9wFpKmqVbWNqUJJWOsf/kxT/iQRAPinj1P5htPczpAyHP+7zPS/I+QcKoVLb9ahSWlldW14rrpY3Nre2d8u5eU/JUYNLAnHHRDpAkjMakoahipJ0IgqKAkVYwuJ70Ww9ESMrjezVMiBehXkxDipHSkl++Dc3MgpcwgC7vcgUzeAxN5ySw8trMZrdLssSUrm8Guc+ytDOaK0t+uWJX7SngX+LkpAJy1P3ys9vlOI1IrDBDUnYcO1HeCAlFMSPjkptKkiA8QD3S0TRGEZHeaLrzGB5ppQtDLvSJFZyq8xMjFEk5jALtjJDqy8XeRPyv10lVeOGNaJykisR49lCYMqg4nAQIu1QQrNhQE4QF1X+FuI8EwkrHPAnBWVz5L2meVh3N784qtas8jiI4AIfABA44BzVwA+qgATB4BC/gHXwYT8ab8Wl8zawFI5/ZB79gfP8AZIml9A==</latexit><latexit sha1_base64="wz6HpnzLC+ZgddBLt/xDGxRBAes=">AAACM3icbVBNS8MwGE7n15xfU49egkNoEUcrgl6EoRfxNMF9wFpKmqVbWNqUJJWOsf/kxT/iQRAPinj1P5htPczpAyHP+7zPS/I+QcKoVLb9ahSWlldW14rrpY3Nre2d8u5eU/JUYNLAnHHRDpAkjMakoahipJ0IgqKAkVYwuJ70Ww9ESMrjezVMiBehXkxDipHSkl++Dc3MgpcwgC7vcgUzeAxN5ySw8trMZrdLssSUrm8Guc+ytDOaK0t+uWJX7SngX+LkpAJy1P3ys9vlOI1IrDBDUnYcO1HeCAlFMSPjkptKkiA8QD3S0TRGEZHeaLrzGB5ppQtDLvSJFZyq8xMjFEk5jALtjJDqy8XeRPyv10lVeOGNaJykisR49lCYMqg4nAQIu1QQrNhQE4QF1X+FuI8EwkrHPAnBWVz5L2meVh3N784qtas8jiI4AIfABA44BzVwA+qgATB4BC/gHXwYT8ab8Wl8zawFI5/ZB79gfP8AZIml9A==</latexit><latexit sha1_base64="wz6HpnzLC+ZgddBLt/xDGxRBAes=">AAACM3icbVBNS8MwGE7n15xfU49egkNoEUcrgl6EoRfxNMF9wFpKmqVbWNqUJJWOsf/kxT/iQRAPinj1P5htPczpAyHP+7zPS/I+QcKoVLb9ahSWlldW14rrpY3Nre2d8u5eU/JUYNLAnHHRDpAkjMakoahipJ0IgqKAkVYwuJ70Ww9ESMrjezVMiBehXkxDipHSkl++Dc3MgpcwgC7vcgUzeAxN5ySw8trMZrdLssSUrm8Guc+ytDOaK0t+uWJX7SngX+LkpAJy1P3ys9vlOI1IrDBDUnYcO1HeCAlFMSPjkptKkiA8QD3S0TRGEZHeaLrzGB5ppQtDLvSJFZyq8xMjFEk5jALtjJDqy8XeRPyv10lVeOGNaJykisR49lCYMqg4nAQIu1QQrNhQE4QF1X+FuI8EwkrHPAnBWVz5L2meVh3N784qtas8jiI4AIfABA44BzVwA+qgATB4BC/gHXwYT8ab8Wl8zawFI5/ZB79gfP8AZIml9A==</latexit><latexit sha1_base64="wz6HpnzLC+ZgddBLt/xDGxRBAes=">AAACM3icbVBNS8MwGE7n15xfU49egkNoEUcrgl6EoRfxNMF9wFpKmqVbWNqUJJWOsf/kxT/iQRAPinj1P5htPczpAyHP+7zPS/I+QcKoVLb9ahSWlldW14rrpY3Nre2d8u5eU/JUYNLAnHHRDpAkjMakoahipJ0IgqKAkVYwuJ70Ww9ESMrjezVMiBehXkxDipHSkl++Dc3MgpcwgC7vcgUzeAxN5ySw8trMZrdLssSUrm8Guc+ytDOaK0t+uWJX7SngX+LkpAJy1P3ys9vlOI1IrDBDUnYcO1HeCAlFMSPjkptKkiA8QD3S0TRGEZHeaLrzGB5ppQtDLvSJFZyq8xMjFEk5jALtjJDqy8XeRPyv10lVeOGNaJykisR49lCYMqg4nAQIu1QQrNhQE4QF1X+FuI8EwkrHPAnBWVz5L2meVh3N784qtas8jiI4AIfABA44BzVwA+qgATB4BC/gHXwYT8ab8Wl8zawFI5/ZB79gfP8AZIml9A==</latexit>

The spatial
checkerboard pattern
mask has value 1
where the sum of
spatial coordinates is
odd, and 0 otherwise.

The channel-wise mask
b is 1 for the first half of
the channel dimensions
and 0 for the second half.

Celeba-64 (left) and LSUN bedroom (right)
Figures from Density Estimation Using Real NVP by Dinh et al., 2017 93

Glow: Generative Flow with 1x1
Convolutions
Replacing permutation with 1x1 convolution (soft permutation)

Figure from Density Estimation Using Real NVP by Dinh et al., 2017

Unchanged in the first transform

94

Glow: Generative Flow with 1x1
Convolutions
Replacing permutation with 1x1 convolution (soft permutation)

Figure from Density Estimation Using Real NVP by Dinh et al., 2017

Alternating masks

95

Glow: Generative Flow with 1x1
Convolutions
Replacing permutation with 1x1 convolution (soft permutation)

Figure from Density Estimation Using Real NVP by Dinh et al., 2017

Alternating masks

Replace with a general
invertible matrix W

Represent W as a 1x1
convolutional kernel of shape
[c, c, 1, 1]; c being # channels

96

Ablation: Permutation vs 1x1 Convolution

Bits-per-dim on CIFAR: left: additive, right: affine
Results from Glow: Generative Flow with Invertible 1×1 Convolutions by Kingma and Dhariwal, 2018 97

Figure from Glow: Generative Flow with Invertible 1×1 Convolutions by Kingma and Dhariwal, 2018 98

Figure from Glow: Generative Flow with Invertible 1×1 Convolutions by Kingma and Dhariwal, 2018
Video from Durk Kingma’s youtube channel

Interpolation with
Generative Flows

99

Architectural Taxonomy
Ja

co
b

ia
n

(Low rank)(Lower triangular +
structured)

(Lower triangular) (Arbitrary)

Sparse connection
Residual

Connection

1. Block
coupling

2. Autoregressive 3. Det identity
4. Stochastic
estimation

IAF/MAF/NAF
SOS polynomial

UMNN

Planar/Sylvester
flows

Radial flow

Residual
Flow

FFJORD

NICE/RealNVP/Glow
Cubic Spline Flow
Neural Spline Flow

Figures from Ricky Chen 100

Context vector for conditioning

Inverse (Affine) Autoregressive Flows

101

• General form

• Invertibility

• Jacobian determinant

s>0 (or simply non-zero)

product of s

Context vector for conditioning

Inverse Autoregressive Flows

102

Autoregressive NN

• General form

• Invertibility

• Jacobian determinant

s>0 (or simply non-zero)

product of s

Trade-off between Expressivity and
Inversion Cost
Block autoregressive

● Limited capacity
● Inverse takes constant time

Autoregressive

● Higher capacity
● Inverse takes linear time (dimensionality)

(Block triangular) (Triangular)

Ja
co

b
ia

n

Figures from Ricky Chen 103

Neural Autoregressive Flows

104

monotonic activation and positive weight in

product of derivatives (elementwise)

• General form

• Invertibility

• Jacobian determinant

P
<latexit sha1_base64="+LpokmBcyRd+mlQsI0nORklggtA=">AAAB8nicbVBNS8NAFHypX7V+VT16CRbBU0lE0GPRi8cKthbSUDbbTbt0sxt2X4QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmSgU36HnfTmVtfWNzq7pd29nd2z+oHx51jco0ZR2qhNK9iBgmuGQd5ChYL9WMJJFgj9HktvAfn5g2XMkHnKYsTMhI8phTglYK+gnBMSUib88G9YbX9OZwV4lfkgaUaA/qX/2holnCJFJBjAl8L8UwJxo5FWxW62eGpYROyIgFlkqSMBPm88gz98wqQzdW2j6J7lz9vZGTxJhpEtnJIqJZ9grxPy/IML4Ocy7TDJmki4/iTLio3OJ+d8g1oyimlhCquc3q0jHRhKJtqWZL8JdPXiXdi6Zv+f1lo3VT1lGFEziFc/DhClpwB23oAAUFz/AKbw46L86787EYrTjlzjH8gfP5A4cbkWY=</latexit><latexit sha1_base64="+LpokmBcyRd+mlQsI0nORklggtA=">AAAB8nicbVBNS8NAFHypX7V+VT16CRbBU0lE0GPRi8cKthbSUDbbTbt0sxt2X4QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmSgU36HnfTmVtfWNzq7pd29nd2z+oHx51jco0ZR2qhNK9iBgmuGQd5ChYL9WMJJFgj9HktvAfn5g2XMkHnKYsTMhI8phTglYK+gnBMSUib88G9YbX9OZwV4lfkgaUaA/qX/2holnCJFJBjAl8L8UwJxo5FWxW62eGpYROyIgFlkqSMBPm88gz98wqQzdW2j6J7lz9vZGTxJhpEtnJIqJZ9grxPy/IML4Ocy7TDJmki4/iTLio3OJ+d8g1oyimlhCquc3q0jHRhKJtqWZL8JdPXiXdi6Zv+f1lo3VT1lGFEziFc/DhClpwB23oAAUFz/AKbw46L86787EYrTjlzjH8gfP5A4cbkWY=</latexit><latexit sha1_base64="+LpokmBcyRd+mlQsI0nORklggtA=">AAAB8nicbVBNS8NAFHypX7V+VT16CRbBU0lE0GPRi8cKthbSUDbbTbt0sxt2X4QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmSgU36HnfTmVtfWNzq7pd29nd2z+oHx51jco0ZR2qhNK9iBgmuGQd5ChYL9WMJJFgj9HktvAfn5g2XMkHnKYsTMhI8phTglYK+gnBMSUib88G9YbX9OZwV4lfkgaUaA/qX/2holnCJFJBjAl8L8UwJxo5FWxW62eGpYROyIgFlkqSMBPm88gz98wqQzdW2j6J7lz9vZGTxJhpEtnJIqJZ9grxPy/IML4Ocy7TDJmki4/iTLio3OJ+d8g1oyimlhCquc3q0jHRhKJtqWZL8JdPXiXdi6Zv+f1lo3VT1lGFEziFc/DhClpwB23oAAUFz/AKbw46L86787EYrTjlzjH8gfP5A4cbkWY=</latexit><latexit sha1_base64="+LpokmBcyRd+mlQsI0nORklggtA=">AAAB8nicbVBNS8NAFHypX7V+VT16CRbBU0lE0GPRi8cKthbSUDbbTbt0sxt2X4QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmSgU36HnfTmVtfWNzq7pd29nd2z+oHx51jco0ZR2qhNK9iBgmuGQd5ChYL9WMJJFgj9HktvAfn5g2XMkHnKYsTMhI8phTglYK+gnBMSUib88G9YbX9OZwV4lfkgaUaA/qX/2holnCJFJBjAl8L8UwJxo5FWxW62eGpYROyIgFlkqSMBPm88gz98wqQzdW2j6J7lz9vZGTxJhpEtnJIqJZ9grxPy/IML4Ocy7TDJmki4/iTLio3OJ+d8g1oyimlhCquc3q0jHRhKJtqWZL8JdPXiXdi6Zv+f1lo3VT1lGFEziFc/DhClpwB23oAAUFz/AKbw46L86787EYrTjlzjH8gfP5A4cbkWY=</latexit>

Architectural Taxonomy
Ja
co
bi
an

(Low rank)(Lower triangular +
structured)

(Lower triangular) (Arbitrary)

Sparse connection
Residual

Connection

1. Block
coupling

2. Autoregressive 3. Det identity
4. Stochastic
estimation

IAF/MAF/NAF
SOS polynomial

UMNN

Planar/Sylvester
flows

Radial flow

Residual
Flow

FFJORD

NICE/RealNVP/Glow
Cubic Spline Flow
Neural Spline Flow

Figures from Ricky Chen 111

Determinant Identity – Planar Flows

112

• General form

• Invertibility

• Jacobian determinant

VAE on binary MNIST

Determinant Identity – Sylvester Flows

113

• General form

• Invertibility

• Jacobian determinant

Similar to planar flows

Using Sylvester’s Thm:

Architectural Taxonomy
Ja

co
b

ia
n

(Low rank)(Lower triangular +
structured)

(Lower triangular) (Arbitrary)

Sparse connection
Residual

Connection

1. Block
coupling

2. Autoregressive 3. Det identity
4. Stochastic
estimation

IAF/MAF/NAF
SOS polynomial

UMNN

Planar/Sylvester
flows

Radial flow

Residual
Flow

FFJORD

NICE/RealNVP/Glow
Cubic Spline Flow
Neural Spline Flow

Figures from Ricky Chen 114

Jacobi’s formula

Stochastic Estimation for General Residual
Form

116

• General form

• Invertibility

• Jacobian determinant

Jacobi’s formula

Stochastic Estimation for General Residual
Form

117

Power series expansion

• General form

• Invertibility

• Jacobian determinant

Jacobi’s formula

Stochastic Estimation for General Residual
Form

118

Power series expansion

Truncation &
Hutchinson trace estimator

• General form

• Invertibility

• Jacobian determinant

Jacobi’s formula

Stochastic Estimation for General Residual
Form

119

Power series expansion

Truncation &
Hutchinson trace estimator

Bias

• General form

• Invertibility

• Jacobian determinant

Jacobi’s formula

Stochastic Estimation for General Residual
Form

120

Power series expansion

Russian roulette estimator &
Hutchinson trace estimator

• General form

• Invertibility

• Jacobian determinant

Effect of bias

CelebA samples

Cifar10 samples

Imagenet-32 samples

Figures from Residual Flows for Invertible Generative Modeling by Chen et al., 2019 121

Next lecture:
Variational Autoencoders

and Denoising Diffusion Models

122

