*”Wﬁﬂf?ﬁﬂfﬁ?fﬂ%fﬁﬁﬁﬁfi%%W%m%%ﬁxﬁ%fwaﬂr?ﬁa;w?fxwfﬁw@wmwwwﬁ
':Hfff’iwﬁﬂﬁ"’xﬁ“ﬁ?f*?‘lﬁ’ﬁf*‘“ %mmmm‘wm%m::vmmmm

FRT AR N B 5 RPARREALFIREAAARATRFANER
YRR ITM”’?HH?MWMM Y.
iRT@ﬁa ~ 1 d ARTARKIRPARTFATTAREAET RN

1459 (AKIRPAISARTINEAAPIALTFED
HM%EE@’WLEA&N‘M PARRARCI AT AR fRF 2 Y
TARTFARPERRRADARRAR RLFXEALRRTEARIARSFARPERRIADIRAAR R FNEA
DATREPEF FRrRATRIARANCRAAPRARFRFIADARREPET FRCRIRIARAVCRAPR
?f%%%ifiﬁﬁﬁwﬁ?ﬁziﬁfmﬁ1irﬁiﬁﬁﬁ?%@?f%&%ﬁr}&ﬁﬁwn%ﬁziﬁﬁmwyinﬁ

“Le cture #12 -)Vahatlbha Auioencoﬂérs

‘%'-uﬂﬂd Den 5171 14011
?“7”'* T T R TR TR T x:%tc*«“ﬁsz Tﬁ<u®XZ%fﬁTﬁf?$

KOC : xkut /:Kog; Unwelosjty // H 202 8PS R 9
N A : Ul V%EfRSITY 7 LN /%‘ | ? { K ”-‘A L }FKP % ; 23} b3 { ’ r;‘ ?
e ,yflh’ xf VIART A ;%W RATEAREFAAFARATAIENTH G A

Previously on COMP541

* generative adversarial networks
(GANSs)

* normalizing flow models

Lecture overview

 variational autoencoders (VAES)
 vector quantized VAEs (VQO-VAES)

» denoising diffusion models

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Pavlov Protopapas, Mark Glickman and Chris Tanner's Harvard CS109B class

—Andrej Risteski's CMU 10707 class

—David McAllester's TTIC 31230 class

—Andrew Owens'’s EECS 442/504 class

—Sangwoo Mo's talk titled “Introduction to Diffusion Models”

—Robin Rombach’s slides on “Latent Diffusion Models”

Lecture overview

e variational autoencoders (VAES)
 vector quantized VAEs (VQO-VAES)

» denoising diffusion models

Recap: Autoencoders

[Feature Representation }
Feed-back, N 4 "\ Feed-forward,
enerative, bottom-u
opdown | Decoder Encoder P

N / N /
[Input Image 1

» Details of what goes insider the encoder and decoder matter!
* Need constraints to avoid learning an identity.

Parameter space of autoencoder

* Let's examine the latent space of an AE.

* |s there any separation of the different
classes? If the AE learned the “essence”
of the MINIST images, similar images
should be close to each other.

* Plot the latent space and examine the
separation.

* Here we plot the 2 PCA components of
the latent space.

Image taken from A. Glassner, Deep Learning, Vol. 2: From Basics to Practice

60

40

et s N
10 e ®
- - -

L/ 0
20| DR
res' g

L .
LYY
. : l lll

RNV BEWN~O

10

20

30

40

Traversing the latent space

* \We start at the start of the arrows in latent

A space and then move to end of the arrow In
/ steps.

 For each value of z we use the already trained
decoder to produce an image.

AllNNnGananG
B B
c\ C
D

D

B

EEH

Image taken from A. Glassner, Deep Learning, Vol. 2: From Basics to Practice

Problems with Autoencoders

* Gaps In the latent space
* Discrete latent space
» Separability in the latent space E\

=lo

B
£
A

Generative models

* Imagine we want to generate data from a distribution,

z ~ p(z)
L~ N(/L,O’)

*e.g.

Generative models

 But how do we generate such samples?

z ~ Unif (0, 1)

Generative models

 But how do we generate such samples?

z ~ Unif(0,1) x=Inz

Generative models

* [n other words we can think that if we choose z~Uniform then there is a mapping:

x = f(2)
such as:
x ~ p(x)

where In general f i1s some complicated function.

* We already know that Neural Networks are great in learning complex functions.

z~g(z) w—> x=f(z) =——x~p(x)

Traditional Autoencoders

* |n traditional autoencoders, we can think of encoder and decoders as
some function mapping.

® -
W —> Encoder =>4 = Decoder = | s

13

Variational Autoencoders

* TO go to variational autoencoders, we need to first add some
stochasticity and think of it as a probabilistic modeling.

® -
W | —> Encoder =34 —> Decoder = | s |

14

Variational Autoencoders

Sample from g(z)

e.g. Standard
Gaussian

z ~ g(z)

X ~ P(x|z)

15

Variational Autoencoders

Eé

-

_

Encoder

~

J

Traditional AE

zé

-

_

Encoder

~

J

Variational AE

e

Consider this
to be the mean
of a normal u

Consider this to
be the std of a

normal o

/

Randomly
chosen value
Latent value, z

16

Variational Autoencoders

3 latent

values
compute compute
3 centers 3 spreads
\/m:uent
values

Variational Autoencoders

2 _ » encoder —»

random
numbers

v

+m =)

+a =[]

+m =[]

+ 0 = D
latent
variables

—» decoder —»

18

Variational Autoencoders

a

ﬁ

&2 2818 20 neurons 296 012 /84 .
neurons neurons Rel U neurons neurons neurons - 7
Rel U Rel U © RelU RelU RelU
Centers
512 256 20 Random 256 512 784
neurons | | neurons | | Nneurons Variable neurons | | neurons | | neurons
RelLU RelLU RelLU S RelLU RelLU RelLU

19

Separability in Variational Autoencoders

» Separability is not only between classes but ;2 2 2 2
we also want similar items in the same class

to be near each other.

« For example, there are different ways of
writing “2”, we want similar styles to end up
near each other.

* Let's examine VAE, there is something
magic happening once we add stochasticity
INn the latent space.

NINNRIRIRD
NINNNRRD
NNINNNIR

2
2.
%
7
/.
Z
a

ANINININININ
DANINININI PO
DRIDINININONOMY

Separability in Variational Autoencoders

Latent Space

SD o randomly-
chosen
\ value /
<
: :
7\ / o
/ \
Mean u

Encode the first sample (a “2") and find u4, o,

Separability in Variational Autoencoders

Latent Space

SD o

/

A
™\

d3dOON4

\

randomly-
chosen
value

i

Mean u

Sample z; ~ N (4, 01)

\

DECODER

|

22

Blending Latent Variables

Latent Space

SD o

randomly-
chosen
value

/

A
N7

d3dOON4

\

Mean u

Decode to X,

IR

\

DECODER

|

23

Separability in Variational Autoencoders

Latent Space

SD o randomly-
chosen .
Z' T value]
> R
> :
S / O
// \
Mean u

Encode the second sample (a “3") find u,, o,. Sample z, ~ N(u,, g,)

24

Separability in Variational Autoencoders

SD o

randomly-

/

A
N7

d3dOON4

\

Mean u

Decode to X,

Latent Space

chosen
value

o‘ﬂ

O

\

DECODER

|

25

Separability in Variational Autoencoders

Latent Space

SD o
randomly-
chosen .

T value]

M / s

Z LL

O O

: :

s \u / 1
// \

Mean u

Train with the first sample (a “2") again and find uy, o;. However, z; ~ N(uy, 071)
will not be the same. |t can happen to be close to the “3" in latent space.

26

Separability in Variational Autoencoders

SD o
randomly-
chosen

— value

2 A

pd

o)

@)

w)

m

m \ /
//

Mean u

Latent Space

og

.

\

DECODER

|

Decode to X;. Since the decoder only knows how to map from latent

space to X space, it will returna “3".

27

Separability in Variational Autoencoders

Train with 18t sample again

/

d3dOON4

\

SD o

randomly-
chosen
value

G-

Latent Space

N7

Mean u

-
oo

Latent space starts to
re-organize

\

DECODER

|

—

28

Separability in Variational Autoencoders

And again... Latent Space
SD o randomly-
o

- %d —

7 / i

Z— = 3 Is pushed away 3

S X =
// \

Mean u

Separability in Variational Autoencoders

Many times...

/

d3dOON4

\

SD o

randomly-
chosen
value

-

Mean u

Latent Space

\

DECODER

|

30

Separability in Variational Autoencoders

Now lets test again

/

d3dOON4

\

SD o

randomly-
chosen
value

Latent Space

™)
e

)
®

-s

Mean u

°E

\

DECODER

|

31

Separability in Variational Autoencoders

Training on 3's again
SD o

randomly-

chosen
value Y
°

7
N7

Latent Space

/
\

43AQ0ON3
o
V|
DECODER

\
/

Mean u

Separability in Variational Autoencoders

Many times...

/

d3dOON4

\

SD o

randomly-
chosen
value

-

Mean u

Latent Space

N
N [T
I‘..I

o5

)
mEE

\

DECODER

|

33

Training

Encoder G Decoder
X —— w G W, —— X
Training means learning Wg and Wp,.

« Define aloss function £

» Use stochastic gradient descent (or Adam) to minimize L

The Loss function:
« Reconstruction error: Lp = %Zi(xi — %)*

« Similarity between the probability of z given x, p(z|x), and some predefined probability
distribution p(z), which can be computed by Kullback-Leibler divergence (KL):

KL(p(z|x)||p(2))

34

BayeS I a n AE Encoder G Decoder

Bayes rule: X —— w; Q W, —— X
p(8|D) < p(D|8)p(6) °

Parameters
of the model
(@ 1s 2)

Posterior for our parameters, z is:
p(zlx, X) < p(X|z, x)p(2)

Posterior predictive, probability to see X given x; this is INFERENCE:
p(®lx) = [p(R|z, x)p(z]x)dz

Decoder: NN Posterior

35

Bayesian AE

The posterior, P(z|x,x), can be sampled with MCMC, i.e. no minimization of
Loss function. How?

1. Set the priors, p(2)
2. Define the likelihood, P(X|z, x)
3. Propose a new z" and:
a. checkif P(z*|x,x)/P(z|x,x) >1: accept, z*
b. If P(z*|x,X)/P(z|x,Xx) <1 throw a random coin and accept/reject z*
4. This will converge to true P(z|x, x)!

5. Calculate P(%|x) = | P(%|z x)P(z|x)dz (Note: this is easily done with sample
from z and re-weight given the likelihood)

DOABLE!

36

Variational AE

Problem: z is the dimensionality of your latent space, which can be too
large. In other words this [p(%|z, x)p(z|x)dz becomes intractable.

Instead we turn this into a minimization problem — Variational Calculus
Find a g(z|x) that is similar to p(z|x) by minimizing their difference.

After some math:

Proposal distribution

should resemble
Reconstruction Loss a Gaussian

B, q'09(P(X2)) + KL(a(@X)|m@) Eosiier

37

Variational AE

» The VAE approach: introduce an inference machine q4(z |) that
learns to approximate the posterior pg(z | x).

» Define a variational lower bound on the data likelihood: pg(x) > L(6, ¢, x)

L(O,p,7) =Ey, (2|2) logpe(x, 2) —logqy(z | T)]
_F .

g0 (zlz)yHogPelx | 2) + log pg(2) =
Dxr (qp(2 |)| po(2))

regularization term reconstruction term

* Whatis qg(z | z) ?

Slide credit: Aaron Courville 38

Variational AE: Math Maximum Likelihood?

9*_argmaXHp9 () Maximize likelihood of dataset ~ {z:() YN
1=1

Kingma and Welling, ICLR 2014 39

Variational AE: Math Maximum Likelihood?

N
0" = arg mQaXHpg(:c(i)) Maximize likelihood of dataset {:z:(z)}f;il
i=1

N
_ i)y Maximize log-likelihood instead
ars m(?X Zl lngg(CIZ) because sums are nicer
1=

Kingma and Welling, ICLR 2014 49

Variational AE: Math Maximum Likelihood?

N
0" = arg mQaXHpg(:c(i)) Maximize likelihood of dataset {m(z)},fil
i=1

N
_ i)y Maximize log-likelihood instead
ars m(?X Zl logpg(:z:) because sums are nicer
1=

(1)) — (4) Marginalize joint
Po(a)_/pg(x 2)dZ Gistribution

Kingma and Welling, ICLR 2014 44

Variational AE: Math Maximum Likelihood?

N
* i Miva likal) \VN
v —argmeaprQ(x()) Maximize likelihood of dataset {:E()}’I::].
i=1

N
_ 1 i)y Maximize |og—||ke||h§>od instead
ars mgxx 21 ogpg(:z:) because sums are nicer
=

Pe(w(i)) = /pg(l“(i),Z)dZ = /pg(:c(i) | 2)pe(z)dz Intractible integral!

42

Variational AE: Math

log po (")

43

Variational AE: Math

log pg(z(?) = B i (4]0 [logpg(m(z))} (po(2(?) Does not depend on z)

44

Variational AE: Math

log po () = B, g, (212 [log pe(fﬂ(”)} (po () Does not depend on)

po(z?) | 2)po(2)
po(z | V)

=E, {log] (Bayes’ Rule)

45

Variational AE: Math

log pg(z'?) = B, o (2l2®) [log pg(:n(i))} (po(z'?) Does not depend on z)

po(z) | 2)po(2)
po(2 | (D)

po(z\ | 2)pe(2) qg(z |)
po(z | @) gy(z | ()

=E, |log] (Bayes’ Rule)

= E. |log } (Multiply by constant)

46

Variational AE: Math

log pg(z(?) = B o021 [log pg(x(i))] (po (') Does not depend on z)

po(z?) | 2)po(2)
po(z | (V)

po(z'D | 2)pe(2) qg(z |)
po(z | @) qy(z | z®)

=E, |log] (Bayes’ Rule)

=E, (log :| (Multiply by constant)

i | (4) (2)
- po(2) po(z | ()

] (Logarithms)

47

Variational AE: Math

log pg(z(V) = E, q,(zla®) [log pg(m(i))] (po(2?) Does not depend on z)

i (4)
= E, |log po(e™ | Z)p9(2>] (Bayes’ Rule)
_ po(z | ()

po (2 | 2)po(2) g4(2 | 21*)
po(z |2®) qy(z | z®)

= E, [log J (Multiply by constant)

: po(2) po(z | z)

=E, —logpg(a:(i) | 2)

=E, —logpg(a:(i) | 2)

~ Drr(ap(2 | 219) || po(2)) + Drr(ap(z | 29) | po(z | 1))

(4) (4)
—E, llog 42| @)] + E, [log 42| @ >] (Logarithms)

48

Variational AE: Math

log pg(z'?) = B o (el B [logpg(a:(i))] (po(z'Y) Does not depend on z)

i (2)
=E, |log Po(z™ | z)pg(z)] (Bayes’ Rule)
_ po(z |)

po (=) | 2)pe(2) g4 (2 | =)

po(z | z) gp(z |)

(2) (7)

Gk)] +E. {log 42| @ .)] (Logarithms)
po(2) po(z | z()

— Dir(gs(2 | 29) || po(2)) + D r(as(z | 29) || pa(z | ™))

= E, [log } (Multiply by constant)

= E. |logpo(«? | z)| — E. [1og 19

—

=E, —logpg(x(i) | 2)

‘C(x(i)v 0, ¢) “Elbow”

49

Variational AE: Math

log pg(z'?) = B o (el B [logpg(a:(i))] (po(z'Y) Does not depend on z)

i (2)
=E, |log Po(z™ | z)pg(z)] (Bayes’ Rule)
_ po(z |)

po (x| 2)pe(2) g4 (2 | W)
po(z | z®) gu(z | z®)

= E. |log } (Multiply by constant)

i | - () (2)
=E, |logpe(z? | 2)| — E, [log 42| @)] +E. { 4p(2] =)
- - po(2) ® po(z [20)

=E. |logpo(¢"”) | 2)| — Dicr(gs(2 | 2'9) || pe(2)) + Dxcr(gs(z | 27

] (Logarithms)

||p9(2|33

4

‘C(x(i)7 0, ¢) “Elbow”

_O

50

Variational AE: Math

log pg(z'?) = B o (el B {log pg(:v(i))] (po(z'Y) Does not depend on z)

po (=) | 2)po(2

= E. |lo
8 T pe(z [20

Pe(l’(i) | 2)pa(2) g4 (2 | 33(7;))

=E. |lo .
5 T pe(z | @)

=1, _lngg(CE(i) | z)— —E. [log

e (z |)

gs(z |)

po(2)

))()] (Bayes’ Rule)

| 5. e,

log pe (@) > L(zD, 0, ¢)

Variational lower bound (elbow)

0,%) "Elbow"

} (Multiply by constant)

|14w

| (%)

] (Logarithms)

V) || po(z | 1))

=E, |logpg(z'V | 2)| — Drr(gs(z |) || pa(2)) + DKL(%(

g(x(zT

>0

51

Variational AE: Math

log pg(z'?) = B o (el B {log pg(:z:(i))] (po(z'Y) Does not depend on z)

Clj(i) poA VA
Po |)p)e)()] (Bayes’ Rule)

pg(Z | 33(7’

() (2)

po(z'" | Z)pO(Z) qy(z | @ j) (Multiply by constant)
po(z |2®) gy(z|2®)

= E, |log

= E, |log

- , . (¢) (Z)
= E, logpg(a:(") | 2)| — E, [log 9plz | 2)] + E. {log AL] (Logarithms)

(z] 20

= B. [logpo(a'? | 2)| ~ Dicr(ao(= | #9) 1| po(2)) + Drcn (o= | #7) llpo(= | 2))

L(@D,6,) “Elbow” L

log pe(z') > L(zV, 6, ¢) 0%, 9" = = g L(z®,0,¢)

Variational lower bound (elbow) Training: Maximize Tower bound

52

Variational AE: Math

log pg(z'?) = B o (el B [logpg(a:(i))] (po(z'Y) Does not depend on z)

Reconstruct D
the input — g~ logp : ' (Z @) (Bayes Rugs)
data Po(;) E 0
=E, log po(e” | 2) (K)} (Multiply by constant)
(2 | iv(z) gy (2 |)
. (2) (4)
=E, logp (:1;(") | z) —E, llog 47| @)] +E, { Sk)] (Logarithms)
: - po(2) (2 | z®)
~(B: [logro(a” | 2)] |- Dic(as(z | 5) 1 pa(:)) + Drstas |59 llfe 129
‘C(x(i)7 0, ¢) “Elbow” N o O

To. 0,0 “
Variational lower bound (elbow) Training: Maximize Tower bound

53

Variational AE: Math Latent states

0 0 (0 should follow
log pe(z'*) = Ezw%(zn(i)) [logpg(a:)] (pg(x'*) Does not

Reconstruct D the prior
the input — E~ log Po (2 I (Z (2) (Bayes’ Rule
data Po(;) L 0
=E, log po(z” | 2) (| 7) (Multiply by constant)
_ (2 | iv(") gy (2 | ()
, (2) (2)
=E, logp (:13(") | z) —E, [log 4z @)] +E, { Sk)] (Logarithms)
- - pg(2) (2 | @)
~(B: [logo(a” | 2)] H{ D as(z |) () J Drstas |59 llfe 129
‘C(x(i)v 0, qb) “Elbow” N B O

To. 0,0 “
Variational lower bound (elbow) Training: Maximize Tower bound

54

Variational AE: Math Latent states

should follow

l0g.ps (17) = By, .1z [10gps(z®)] (po(2?) Does not

Reconstruct _ the prior
the input = EJJo po(a® | 2)po(2) (Bayes’ Rulg
data NG ez [20) 4
/\- pe(il?(i) | 2)po(z) g4 (2 | a:(i))

Sampling = B _1 po(z | @) qu(z | 2®) (Multiply by constant)
with . : (i) (i)

_ (4) B qp(2 [') |)
reparam. — Lz | Z): E. [log pé(z)] +E, { 20)] (Logarithms)
I;';’: saper) (B [1o87e(e | 9] HDrealaolz | 4) 1) DKL<q¢< [29)||po(z | 2))

E(SC(Z), 9’ ¢) "Elbow" N O
10gp9(x(i>) 7 ﬁ(aj(i),Q,gb) 0%, o™ = = argmax L(zD, 0, p)

To. 0,0 “
Variational lower bound (elbow) Training: Maximize Tower bound

55

Variational AE: Math Latent states

should follow
the prior

l0g.ps (17) = By, .1z [10gps(z®)] (po(2?) Does not
Reconstruct

the input — Eé\-k)g p"(pm((i || Z)(ZH)(Z)] (Bayes’ Rule Everything is
data - o1 | Gaussian,

/_\\PH(”?(Z) | 2)po(2) go(z | V) closed form

, =E, |1 @ @ iply by constant)
Sar;l\plmg _ po(z | z) gqu(z | z™) solution!

_ () . qu(z) | £)
reparam. = (™ | z): E, [log pél(z)] + E, {log o >] (Logarithms)
E;‘gg saper) Lz logr)| HPxe sz | 29) 11 po() - Dicwlas(z | 29) 1po(z | 29))
L(9,6,¢) "Elbow” 20

To. 0,0 “
Variational lower bound (elbow) Training: Maximize Tower bound

56

Training VAE

» Apply stochastic gradient descent (SGD)

Problem:
« Sampling step not differentiable

» Use a re-parameterization trick

— Move sampling to input layer, so that the sampling step Is independent
of the model

57

Reparametrization Trick

=
-
-
=
-

Encoder

58

Reparametrization Trick

el
‘C—---- ------.
=
-
-
-
-

Encoder

59

Reparametrization Trick

- - -
-
-

Encoder

60

Training VAE

el [/ [o]4
- FAENR

Variational AE:

Input Image:

Input Image:
Output Images
Difference: e | % E’ql ,:J ;;,,I :’ A |

» Because of the prior N(O, 1) everything is center at (0,0) with spread
of approx 1.

Latent space of VAE

* More separable than AE

62

— — — =~ SN N N\ N Mmoo
SSNNNN M Mmoo
SSSNNNyMMm M
NNy Ny N NN
— 0% O MMM MM

=m0 OO MNmmmm N

e memnnn

NSNS ANANDN LW EW P

NARNNAXMNRXNY YD unNnNNNOOO

NSRRIV IOANAddOOO

YNNI 9 SIS0 00

TN 99000

FrrororrITnaoc000000

Frrr T INTNNAC000000

Crorrr I NVAOOCO0Q000

Corrrr I NVNAIAQAQ000

Cror T INNNVUQAQAQQQ0

8’ [canmenor~oo
o =
)
QTR
? °
e /o W mbooo% eo &
° % gw.o
? &
® e%ﬂ N
8
° on.weo
©
L) o oco
55 oo ® o0
oo o...-"] &00 o 2
AT o% 0, ®
H 0-\..(- °
o‘“ % 0 2e 8
o0 ° 0%l 0
e Ses) ol 2 CY N . : >
" o g o .oo’ ~ 000
A o.ocaw n'ooo ooo 2 . T
¢ o J.Po&ovoo.% o\o.f RE” * =
. \d ® L °
Ciad o .
L P *o "o °e
o7 o o
° ® 6% Py
° PR 4 @ ®, °
® ¢ ® ° o OO. <
& .Ql o0
e e
°
o0
O
1

Desiderata for representations

What do we want out a representation?
Many possible answers here. First, a few uncontroversial desiderata:

* Interpretability: if the derived features are semantically meaningful, and
Interpretable by a human, they can be easily evaluated.
(e.g. noisy-OR: "features” are diseases a patient has)

Sparsity of a representation is an important subcase: "explanatory’ features for
sample can be examined if there are a small number of them.

 Downstream usability: the features are "useful” for downstream tasks.
Some examples:

Improving label efficiency: if, for a task, a linear (or otherwise "simple’)
classifier can be trained on features and it works well, smaller # of labeled
samples are needed.

63

Desiderata for representations

* Obvious issue: interpretability and “usefulness” are not easily mathematically
expressed. We need some “proxies” that induce such properties.

This Is a lot more contraversial — here we survey some general desiderata, proposed
as early as Bengio-Courville-Vincent "14:

* Hierarchy/compositionality: video/images/text/ are expected to have hierarchical
structure — depth helps induce such structure.

« Semantic clusterability: features of the same “semantic class” (e.g. images in the
same category) are clustered.

* Linear interpolation: in representation space, linear interpolations produce
meaningful data points (i.e. “latent space is convex”). Sometimes called manifold
flattening.

* Disentangling: features capture “independent factors of variation” of data. (Bengio-
Courville-Vincent '14). Has been very popular in modern unsupervised learning,
though many potential issues with it.

64

Semantic clustering

 Semantic clusterability: features of the same “semantic class”
(e.g. Images In the same category) are clustered together.

Latent Variable T-SNE per Class

The Intultion:

75 1

If semantic classes are linearly (or other
simple function) separable, and labels
on downstream tasks depend linearly
on semantic classes — can afford to
learn a simple classifier!!

50

=75 -50 -25 0 25 50 75 100

t-SNE projection of VAE-learned features of the 10 MNIST classes.

Image from https://pyro.ai/fexamples/vae.html
65

Semantic clustering

 Semantic clusterability: features of the same “semantic class”
(e.g. Images In the same category) are clustered together.

Kmeans Clustering with Genre

—30 20 -10 0 10 20 0

t-SNE projection of word embeddings for artists (clustered by genre). Image from https://medium.com/free-code-
camp/learn-tensorflow-the- word2vec-model-and-the-tsne-algorithm-using-rock-bands-97¢99b5dcb3a

66

https://medium.com/free-code-camp/learn-tensorflow-the-%20word2vec-model-and-the-tsne-algorithm-using-rock-bands-97c99b5dcb3a
https://medium.com/free-code-camp/learn-tensorflow-the-%20word2vec-model-and-the-tsne-algorithm-using-rock-bands-97c99b5dcb3a

Linear interpolation

* Linear interpolation: in representation space, linear interpolations

produce meaningful data points. (i.e. “latent space is convex”)
d
d=2z3—2, ZZ+Z

The intuition:

The data manifold is
complicated/curved.

The latent variable

manifold is a convex
EW set — moving IN Straight

lines keeps us on It.
1117171799888 %8¢%

Interpolations for a VAE trained on MNIST.

67

Linear interpolation

* Linear interpolation: in representation space, linear interpolations
produce meaningful data points. (i.e. “latent space is convex”)

Interpolations for a BigGAN, image from
https://thegradient.pub/bigganex-a-dive-into- the-latent-space-of-biggan/

68

https://thegradient.pub/bigganex-a-dive-into-%20the-latent-space-of-biggan/

Disentangled representations

* Disentangling: features capture “independent factors of variation” of data.
(Bengio-Courville-Vincent '14).

 For concreteness, let's assume that we have a latent variable model for data
with latent variables z, observables x, and joint distribution py(z, x)

* There are (at least) two ways to formalize this.

s . .
Prior disentangling: is a product distribution, i.e.pg(z) = II;pe(2;)
Classical example: ICA (independent component analysis)

Posterior disentangling: fit a variational posterior gg s.t. qg(z|®) is (on
average over X) a product distribution

In other words /qo(z|w)P(w)diB — usually called the aggregate posterior — Is

o
\Close to a product distribution.

J

69

Disentangled representations

;b) Age/gender

fEEEGI! ;bﬁﬁpﬂ; CEEEEEE
Figure 4: Latent factors learnt by 3-VAE on celebA: traversal of individual latents demonstrates

that 5-VAE discovered in an unsupervised manner factors that encode skin colour, transition from an
elderly male to younger female, and image saturation.

» Posterior disentangling in B-VAE. To produce plots, infer latent
variable for an image, then change a single latent variable gradually.

Irina Higgins et al. B-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. ICLR 2017. 70

Prior disentangling

 Prior disentangling: pg(z) is a product distribution, i.e. pg(z) = I1;pg(z;)

Classical example: ICA (independent component analysis), also called the
“cocktall party problem™.

Assume data Is generated as

Sources Mixing Observation ICA estimation
£ N . . .
%‘_ 4))) If z has an independent, non-Gaussian prior,
i K model is identifiable and efficiently learnable.
o, — , i » (See, e.g. Frieze-Jerum-Kannan "96,
o0 - 2\ 4))) Anandkumar et al "12)

e] =)

Other examples: noisy-OR networks (diseases are independent), general Bayesian nets, viewing
top variables as z's, GANSs, ...
71

Posterior disentanglement in VAEs

» Recall the “regularization” view of the VAEs objective:

22Eqnis) log p(z|h") — KL(q(h"|z)||p(h"))

\ J
Y \ v J

"Reconstruction” error "Regularization towards prior”

» Consider a prior which is a product distribution (e.g. standard Gaussian):

The KL term implicitly penalizes distributions for which
ZKL hL\az Hp(hL)) %]Ewwp*KL(q(hL]a:)Hp(hL))

IS large — 1.e. the aggregated posterior is far from a product distribution

72

Posterior disentanglement in VAEs

» Recall the “regularization” view of the VAEs objective:

22Eqnis) log p(z|h") — KL(q(h"|z)||p(h"))

\ J
Y \ v J

"Reconstruction” error "Regularization towards prior”

" The KL term implicitly penalizes distributions for which

ZKL (q(h*)z)||p(hY)) = Epnpr KL(g(hE|2)||p(RT))

on reconstruction or disentanglement:
B-VAE objective: Y _E, 4, logp(z|h”) — BKL(g(h"|z)|p(h"))

rThe iIdea of Higgins et al 17 introduce a “weighting” factor to put more weight |

73

Posterior disentanglement in VAEs

=
[©]
=
3]
4
O
S
~—
£
e
3
E
N
<
P
L

(b) emotion (smile)

(c) hair (fringe)

Irina Higgins et al. B-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. ICLR 2017.

74

Posterior disentanglement in VAEs

DC-IGN InfoGAN
-F; - a;@g&@
we8PII FEATSF
wemmrr deddfdfd

BEENYY ““r“’
Factor not learnt Factor not learnt ﬂ ’ " ' ’ ’ l * J8ee

mmewmw we ,_(.(H--q

(c) leg style (b) width (a) azim
af |
-

Irina Higgins et al. B-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. ICLR 2017. 75

Posterior disentanglement in VAEs

76

ork. ICLR 2017.

TOTOE e VCOSH @
OO SLOHE CODHE - W
<QVPOHS GDOHT VPODHP
SODOHH VDONHTY DOVDDE
SHOOH VOTAY DDODHP :

VOVVE $OSOP DOOTE
_DDDVE SPELP DOODG ¢
00ets VVBOD DOOSS
~aMeNHH ODOOD DOLDP -
SALNE OPOOD DBPDP ©

DBPDD PEOBe MELDE ¢
zOPPDY PEDOW MGLD S
TGO PDOHDY MULDS ;
DSHOD DDOHDY ALTDS o
DSLDD POO®Y AQUNS &
SDOVe ODOSY DADDG -
zODOVS HDOOY DAVDDS -
¥ CONOOe HPODY SHTDS <
"ODOOS SLeDD SeVOe
OOPLE SPeDO SOVDE ¢

(uonejol) yinwizy (e) Bunybi (q) uoneas|d (2)

lnfoGA

Irina Higgins e

Measuring disentanglement

* Metrics are typically defined assuming access to a dataset with K “ground-truth”

variation factors.

BetaVVAE metric: based on ‘linear separability" of factors

Generate a training set of samples as follows:
Sample a batch of B samples as follows:
Pick a ground-truth variation factor k uniformly at random from [K].
Generate two sets of “ground truth” latent factors, v,, v, € R, s.t.
(V{), = (V,),, and other coords are independently, randomly sampled.
Generate images x4, X, from v, v,.

Infer latent vars z,, z, using model we are evaluating. (e.g. encoder in VAE)
Calculate average z,,4 Of | ; - Z, | in batch, add (z,,,, k) to training set.

KTrain linear predictor on training set, evaluate it's test performance.

\

77

Measuring disentanglement

BetaVVAE metric: based on ‘linear separability" of factors

~

Generate a training set of samples as follows:
Sample a batch of B samples as follows:
Pick a ground-truth variation factor k uniformly at random from [K].
Generate two sets of “ground truth” latent factors, v,, v, € R, s.t.

(V{), = (V,),, and other coords are independently, randomly sampled.
Generate images Xx;, X, from v;, Vv,.

Infer latent vars z,, z, using model we are evaluating. (e.g. encoder in VAE)
Calculate average z,,4 Of | Z; - Z, | in batch, add (z,,, k) to training set.

\Train linear predictor on training set, evaluate it's test performance.

* Intuition: averaging should make coords in z,,4 different from k smaller, thus linear
classitier should “focus” on k.

* Many variants of this exist. (e.g. FactorVAE, mutual information gap, etc.)

78

Measuring disentanglement

» Locatello et al ‘19, “Challenging Common Assumptions in the Unsupervised
Learning of Disentangled Representations” (Best paper award ar ICML'19):
A large-scale study of disentanglement measures, as well as gen. models.

Dataset = Noisy-dSprites

BetaVAE Score (m N . s -

FactorVAE Score (B ﬂ 100 52 38 -
e 1 2 -
38 -

Modularity (E 46 25 6 -8
sar (F) A e e 1S m
] | | | |

(A) (B) (C) (D) (E) (F)

(A)
)
)4
DCI Disentanglement (D) - 41 52
¥
3

Figure 2. Rank correlation of different metrics on Noisy-dSprites.
Overall, we observe that all metrics except Modularity seem mildly
correlated with the pairs BetaVAE and FactorVAE, and MIG and
DCI Disentanglement strongly correlated with each other.

79

Usefulness of disentanglement?

* Downstream classification task: predict true ground-truth factors
(w/ multiclass logistic regression)

 Careful to extrapolate too much — task/setup Is a little contrived.

,Dataset = dSprites,

] 1 1]
BetaVAE Score- 18 65" 28 28 67 76 50 -

FactorVAE Score- 13 49 13 12 58 71 43 46 -
mc- 18 [l 20 -1 mm- a0 a7 -

DCI Disentanglement- 19 65 18 4 mmm 62 54 -

Modularity - -3 -9 15 18 -6 -19 -14 -

I 1 I | | I I
o o o o o o = =
— o o o — 3 S o o =
o - o o — — o o = [
=} [— S oM — — o G

- o — G} m = — 5 =
= o [G) m = 2 >

=3 IG) m o)

5] - C

[v]]

E S

w &=

i

Figure 5. Rank correlations between disentanglement metrics and
downstream performance (accuracy and efficiency) on dSprites.

Locatello et al. Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. ICML 2019. 80

Usefulness of disentanglement?

 Statistical efficiency measure: average accuracy based on 100 samples
divided by the average accuracy based on 10,000 samples

sng (3-VAE e* s [-TCVAE ¢*e DIP-VAE-I
s+ 44 FactorVAE +«* s DIP-VAE-I| vvv AnnealedVAE

Metric = FacforVAE Score

__0.64- 'L'I;' - o
o e g &
(D) 7\ 'l’c}"_ AN

et « . sl St ﬁ.g D
> 0.56 - L4 \ﬂiﬁfﬁ?"d@/#g@" o
S H O, BOIIVES » 9l 0.6 I
< v Yy SR @ evil@ s vigig Q
Q _Y/ffm‘;fﬁ'i,,{%' ,.‘-Q,i:ﬁ;.'»“?iﬂ)‘ﬁ’.' n
iz A S A A e O
&= i % Mgl ey T - -
i 0.48 R Susere - T ®
N:‘ﬁ -

040 = | 1 1 V.

0.2 0.4 0.6 0.8 1.0

Value

Figure 6. Statistical efficiency of the FactorVAE Score for learning

a GBT downstream task on dSprites.
Locatello et al. Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. ICML 2019. 81

Issue of ill-posedness?

» Similar issues plague disentangling that do "flat minima": a model can
be re-parametrized, s.t. the distribution over the data I1s unchanged,
but It can be arbitrarily more "entangled”.

 Thus, some kind of inductive bias both on model class and data
Seems necessary.

- As a simple example: consider.z ~ N (0, I), let 7z = Uz, for any
non-identity orthogonal matrix U.

» Then, under any "intuitive" understanding of entangling, z’ seems
entangled with z — small changes of coordinates of z cause global
changes in z’.

Locatello et al. Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. ICML 2019.

82

Today

e variational autoencoders (VAESs)
» vector quantized VAEs (VQ-VAEs)

» denoising diffusion models

83

Gaussian VAEs 2013

Sample 2z ~ N(0,) and compute yq(2)

[Alec Radford]

Vector Quantized VAEs (VQ-VAE) 2019

VQ-VAE-2, Razavi et al., NeurlPS 2019

85

Vector Quantized VAEs (VQ-VAE) 2019

Figure 1: Class-conditional 256x256 image samples from a two-level model trained on ImageNet.

VQ-VAE-2, Razavi et al., NeurlPS 2019

86

Vector Quantized VAEs

N

Encoder

N [O0000

* replace latent z vector with an autoregressive model

87

Discrete codes (Symbols)

* Autoregressive models meets variational autoencoders
* VAEs usually use a continuous representation for latent code, z

* But many events in the world are discrete.

— e.g. can sometimes describe images concisely as collection of objects

» Key idea: replace Gaussian code with categorical code

88

Learning

* TWO stages:
1. Train the VO-VAE
2. Learn a better prior, p(z)

89

Learning

* TWO stages:
1. Train the VO-VAE
2. Learn a better prior, p(z)

90

Vector quantization

* Predict a real-valued vector, like in an ordinary VAE. Then, “snap” it
to a nearest neighbor from a codebook

Code #4

1

—(x) |z —| Quantization |— es

Quantize(E(x)) = e; wherek = argmin ||E(x) — e/
J

91

VQ-VAE

(e ,ee, e,)

Embedding
Space

4

e
CNN <l geg p(xlz,)
s
z,(x)
\\ ~ \\ ~ P 4

Encoder Decoder

92

Training the VQ-VAE

L(x,D(e)) = [[x — D(e)|[3 + |[sg[E(x)] — ellz + BlIsgle] — E(x)]|3

where:

* E(x) I1s the encoder and D(e) I1s the decoded image

* e Is the quantized code for image patch x

* sg[x] I1s “stop gradient” a.k.a. "detach” and 3 Is a constant

93

Backprop through vector quantization

* Hard to run backprop through this:
X = D(quantize(E(X))

* \\Why?
V_quantize(u) = 0

Trick: use the straight-through estimator. Pretend quantize(.) is the
identity during backwards pass!

94

Learning

* TWO stages:
1. Train the VO-VAE
2. Learn a better prior, p(z)

95

How do we sample z?

(61 eZ e3 eK\

Embedding
Space

' '
Encoder Decoder

* The grid of codes, z, is a lot like a very tiny image.
* FIt an autoregressive model to it!

96

VQ-VAE vs. BigGAN deep

9 4 = A x’i,,

BigGAN deep

97

VQ-VAE vs. BigGAN deep

BigGAN deep

98

Also good for conditional synthesis

’ Parti

-

A. A photo of a frog reading the newspaper named “Toaday” writ- B. A portrait of a statue of the Egyptian god Anubis wearing avia- C. A high-contrast photo of a panda riding a horse. The panda is
ten on it. There is a frog printed on the newspaper too. tor goggles, white t-shirt and leather jacket. The city of Los Ange- wearing a wizard hat and is reading a book. The horse is standing
les is in the background. Hi-res DSLR photograph. on a street against a gray concrete wall. Colorful flowers and the

word "PEACE" are painted on the wall. Green grass grows from

cracks in the street. DSLR photograph. daytime lighting.

[Yu et al., “Scaling Autoregressive Models for Content-Rich Text-to-lmage Generation”, 2022] 100

Multi-Layer Vector Quantized VAEs

VQ-VAE Encoder and Decoder Training Image Generation

Top
Level

Bottom
Level

Original Reconstruction Generation

101

Image Compression

htop ht0p7 hmiddle ht0p7 hmiddlea hbottom Original

Figure 3: Reconstructions from a hierarchical VQ-VAE with three latent maps (top, middle, bottom).
The rightmost image is the original. Each latent map adds extra detail to the reconstruction. These
latent maps are approximately 3072x, 768x, 192x times smaller than the original image (respectively).

102

Vector Quantization (Emergent Symbols)

* VVector quantization represents a distribution (or density) on vectors
with a discrete set of embedded symbols.

» VVector quantization optimizes a rate-distortion tradeoff for vector
compression.

* The VQ-VAE uses vector guantization to construct a discrete
representation of images and hence a measurable image
compression rate-distortion trade-off.

103

Symbols: A Better Learning Bias

* Do the objects of reality fall into categories?
* | so, shouldn’t a learning architecture be designed to categorize?

* \Whole image symbols would yield emergent whole image
classification.

104

Symbols: Improved Interpretability

» VVector quantization shifts interpretation from linear threshold units
to the emergent symbols.

* This seems related to the use of t-SNE as a tool in interpretation.

105

Symbols: Unifying Vision and Language

* Modern language models use word vectors.
* \Word vectors are embedded symbols.

* Vector quantization also results iIn models based on embedded
symbols.

106

Symbols: Addressing the “Forgetting”
Problem

* \\When we learn to ski we do not forget how to ride a bicycle.

* However, when a model is trained on a first task, retraining on a
second tasks degrades performance on the first (the model
“forgets”).

» But embedded symbols can be task specific.

* The embedding of a task-specific symbol will not change when
training on a different task.

107

Symbols: Improved Transfer Learning

 Embedded symbols can be domain specific.

» Separating domain-general parameters from domain-specific
parameters may improve transfer between domains.

108

Today

e variational autoencoders (VAESs)
 vector quantized VAEs (VQO-VAES)

» denoising diffusion models

109

Observation 1: Diffusion Destroys Structure

* Dye density represents probability density

» Goal: Learn structure probability density

* Observation: Diffusion destroys structure

Data distribution =——— Uniform distribution

110

ldea: Recover Structure by Reversing Time

 \What if we could reverse time?

» Recover data distribution by starting from uniform
distribution and running dynamics backwards

Data distribution — < ———— Uniform distribution

111

Observation 2: Microscopic Diffusion is Time
Reversible

* Microscopic view

 Brownian motion

* Position updates are small Gaussians
— Both forwards and backwards in time

Nanoparticles in water
Video credit: Rutger Saly 112

Overview of Diffusion Probabilistic Models

+ (Gaussian noise

ﬁ

Denoising model

_

Clean Noisy

Slide adapted from Kiaming Song 113

Recall: the denoising problem

\
TR g
A R
X
Loss: [|Xjeqn — XII°

114

From noise to an image

denoise

Random noise

Example source: Aditya Ramesh ;¢

From noise to an image

enoise

enoise

Example source: Aditya Ramesh

116

From noise to an image

117

Ramesh

Itya

Ad

Example source

From noise to an image

Example source: Aditya Ramesh 4

From noise to an image

denoise denoise

Example source: Aditya Ramesh 4

From noise to an image

| denoise

—

denoise

Generated
Image!

Example source: Aditya Ramesh 5

image

to an

From noise

o
Fya

=

Al

r
v

i

121

. Aditya Ramesh

Example source

Diffusion Probabilistic Models

Different noise levels

+ Gaussian

noise I

Many denoising

' models

Slide adapted from Kiaming Song 123

Overview of Diffusion Probabilistic Models

» Destroy all structure in data distribution using diffusion process

» Learn reversal of diffusion process

— Estimate function for mean and covariance of each step in the reverse
diffusion process (binomial rate for binary data)

* Reverse diffusion process is the model of the data

124

Diffusion Probabilistic Models

 Diffusion model aims to learn the reverse of noise generation
procedure

—Forward step: (lteratively) Add noise to the original sample
—The sample Xg converges to the complete noise X7 (e.g., N (0, 1))

p()xtllxt
@@ — O H

__—’

y)
!)

Forward (d|ffu3|on) process

125

Diffusion Probabilistic Models

 Diffusion model aims to learn the reverse of noise generation
procedure

—Forward step: (lteratively) Add noise to the original sample
—The sample Xg converges to the complete noise X7 (e.g., N (0, 1))

—Reverse step: Recover the original sample from the noise

—Note that It I1s the “generation” procedure
Reverse process

pGthlxt
@@ — O H

s_——’

;l
’)

Forward (d|ffu3|on) process

126

How do we train this model?

—

X, Training pair! X/ 1

« We'll use a variance schedule, B4,B,,...,B7, for 0 < B; < 1

- Also, we'll scale the image by a factor 4/1 — f; so that mean
goes to 0 over time.

127

Diffusion Probabilistic Models

 Diffusion model aims to learn the reverse of noise generation procedure

— Forward step: (Iteratively) Add noise to the original sample

— Technically, it is a product of conditional noise distributions Q(Xt‘xt—l)
« Usually, the parameters B, are fixed (one can jointly learn, but not beneficial)

* Noise annealing (i.e., reducing noise scale B, < B.4) is crucial to the performance
T

q (X1:T | Xo) = H q (Xt | Xt—1)7 q (Xt | Xt—l) =N (Xt; V1= 5tXt—1,5tI)

t=1

128

Diffusion Probabilistic Models

 Diffusion model aims to learn the reverse of noise generation procedure

— Forward step: (Iteratively) Add noise to the original sample

— Technically, it is a product of conditional noise distributions Q(Xt‘xt—l)
« Usually, the parameters B, are fixed (one can jointly learn, but not beneficial)

* Noise annealing (i.e., reducing noise scale B, < B.4) is crucial to the performance
T

q (X1:T | Xo) = H q (Xt | Xt—1)7 q (Xt | Xt—l) =N (Xt; V1= 5tXt—1,5tI)

t=1

— Reverse step: Recover the original sample from the noise

— |t Is also a product of conditional (de)noise distributions Pg (X¢=1|X¢)
— Use the learned parameters: denoiser gy (main part) and randomness X4
T

po (Xo.1) = p (X7) Hpe (xe—1 [xe), po (%1 | x¢) =N (K15 g (X4,) , B (x4, 7))

t=1
129

Diffusion Probabilistic Models

 Diffusion model aims to learn the reverse of noise generation procedure

— Forward step: (lteratively) Add noise to the original sample
— Reverse step: Recover the original sample from the noise

(x1.7 | X0) Hq (x¢ | xe—1), q(x¢]| xp—1) =N (Xt; v1-— tht—laﬁtl)

— Training: Minimize varlat|ona| lower bound of the model

q ?il(j;olzTX)O)]

E[—logps (x0)] < E, [— log

130

Diffusion Probabilistic Models

 Diffusion model aims to learn the reverse of noise generation procedure

— Forward step: (lteratively) Add noise to the original sample
— Reverse step: Recover the original sample from the noise

(x1.7 | X0) Hq (x¢ | xe—1), q(x¢]| xp—1) =N (Xt; v1-— tht—laﬁtl)

— Training: Minimize varlat|ona| lower bound of the model

q ?39(1(:?0’:1;()0)]

E[—logps (x0)] < E, [— log
|t can be decomposed to the step-wise losses (for each step t)

IE:q[pKL (g (X7 | Xo) |lp (%)) ‘|‘ZDKL q (xt—1 | x¢,%0) |[po (X¢-1 | Xt)z\—logpe (%0 | xl)/]

LT Li 4 Lo

131

Diffusion Models as a kind of VAE

chﬁ 21!913 q(b ZQ\zl

po(z|z1) po(z1|z2)

A Hierarchical VAE A Diffusion Probabilistic Model

IE:q[pKL (g (X7 | Xo) |lp (%)) ‘|‘ZDKL q (xt—1 | x¢,%0) |[po (X¢-1 | Xt)z\—logpe (%0 | Xlz]

LT Li_1 LO

132

Diffusion Probabilistic Models

» Diffusion model aims to learn the reverse of noise generation procedure

— Training: Minimize variational lower bound of the model
|t can be decomposed to the step-wise losses (for each step t)

Eq[Dkw (¢ (x7 | %0) |lp (x7)) + ZPKL (q (x¢—1 | X¢,%0) [lpo (x¢—1 | x¢)) —logpg (%0 | x1)]

LT Lt—l LO

— Here, the true reverse step q(x:_1|x¢,Xo) can be computed as a closed form of g,
* Note that we only define the true forward step

q (Xt—l \ Xt,XO) =N (Xt—l; [t (Xt,XO) aB?I)
where [, (x¢,%0) := %0 + Bx

— Since all distributions above are Gaussian, the KL divergences are tractable

133

Diffusion Probabilistic Models

 Diffusion model aims to learn the reverse of noise generation procedure

— Network: Use the image-to-image translation (e.g., U-Net) architectures
» Recall that input Is x; and output is x4, both are images
* |t is expensive since both input and output are high-dimensional

« Note that the denoiser g (x;, 1) shares weights, but conditioned by step t

Gz

G;
2x downsampling

134

Diffusion Probabilistic Models

 Diffusion model aims to learn the reverse of noise generation procedure

— Sampling: Draw a random noise x7 then apply the reverse step p(X¢=1|x¢)

|t often requires the hundreds of reverse steps (very slow)

— Early and late steps change the high- and low-level attributes, respectively

W

%

135

Diffusion Probabilistic Models — CIFAR10

BYEED- BEEEEE PLEERT EENEPE
EEILE; EEREEE EEIHEEYy BE:EEEE
(AP HEE GEEEEE RAVHETD ~2ERNNES
EERYNE EEDEEDE EERVONE UENEEHE
N<BED= BENEEE N<AEEE REAVESDR
EEQEGP BEREEE EEAERE FARIEE
() e LS RPN ©) 8N (d)iéi ¥

Figure 3. The proposed framework trained on the CIFAR-10 (Krizhevsky & Hinton, 2009) dataset. (a) Example holdout data (similar to training
data). (b) Holdout data corrupted with Gaussian noise of variance 1 (SNR = 1). (c¢) Denoised images, generated by sampling from the posterior
distribution over denoised images conditioned on the images in (b). (d) Samples generated by the diffusion model.

136

Denoising Diffusion Probabilistic Model

 DDPM reparametrizes the reverse distributions of diffusion models
— Key idea: The original reverse step fully creates the denoiser ugy(x;, t) from x,

* However, X, and x, share most information, and thus it is redundant
— Instead, create the residual €4(x,,t) and add to the original x,

e Set 29(xt,t) = 0't21

Training resembles denoising score matching
Sampling resembles Langevin Dynamics

Initiated the diffusion model boom!

137

Denoising Diffusion Probabilistic Model

 DDPM reparametrizes the reverse distributions of diffusion models
— Key idea: The original reverse step fully creates the denoiser ugy(x;, t) from x,

* However, X, and x, share most information, and thus it is redundant
— Instead, create the residual €4(x,,t) and add to the original x,

e Set Eg(xt,t) = O’?I

— Formally, DDPM reparametrizes the learned reverse distribution as
1

o e.t) = —= (30— o (t)) =16

Qy = Hszl Xs

and the step-wise objective L., can be reformulated as

Et,xo,e [‘6 — 60(\/54_1:3(0 + v 1— @téat) Hzl

138

Denoising Diffusion Probabilistic Model

Algorithm 1 Training Algorithm 2 Sampling
1: repeat 1: xr ~ N(0,T)
2: xo ~ q(xo) 2: fort=1T,...,1do
3: t~ Uniform({l,...,T}) 3: z~N(0,I)ift > 1,elsez=0
4: €~ N(0,I) . O e
5: Take gradient descent step on 4 X1 = = (X — g €0(Xt t)) T 02

Vo ||e — €o(v@rxo + VI — die, t)|° 5: end for

6: until converged 6: return xo

—ll

B S =+ o« WO KRN N

~ v ~ b - g W 4
139

Denoising Diffusion Probabilistic Model

Algorithm 1 Training Algorithm 2 Sampling
1 repeat l: x17 ~ N(O, I)
2: Xo r~ g(o) 2: fort=T,....1do
o = ‘j{}l(l(f)orll)n({l’ =y T}) 3: z~N(0,I)ift > 1 elsez=0
€ ~ :
5: Take gradient descent step on 4 X1 = ﬁ (xt — —L\}li— €o (Xt,t)) + 0tz
Vo ||6—€9(\/51th + /1 —&te,t)llz 5: end for
6: return xo

6: until converged

pGthlxt
O *@ @* *

‘-—-—’

140

Denoising Diffusion Probabilistic Model

Algorithm 1 Training Algorithm 2 Sampling
1: repeat 1: x7 ~ N(0,I)
2: xo ~ q(xo) 2: fort=1T,...,1do
3: ¢~ Uniform({L,...,T}) 3: z~N(0,I)ift > 1,elsez=0
4: €~ N(O, I) . __ 3 1—oy
5: Take gradient descent step on 4 X1 = = (X — g €0(Xt t)) T 02

Vo ||e — €o(v@rxo + VI — die, t)|° 5: end for

6: until converged 6: return xo

—ll

B S =+ o« WO KRN N

~ v ~ b - g W 4
141

Denoising Diffusion Probabilistic Model

FAEse sl v P s W OEWES ElN =
e FAaRE NS e
RN o e w B o B e B LE S 2 1 B I (R
|7 IMHHWEH%.F;I.HI&W
Iﬂlnuﬂﬁl FoASE T
s alﬂgﬂﬂﬁlﬂllﬂzildh
hﬂh“ﬂ!wwl%ﬂﬂIllH.mll
> s e BT e U =l € YE
Aiﬁﬁllﬁzallllﬁﬂﬂlﬂﬂﬂ
ﬁl!mﬁm\ﬂmwﬂgﬁﬁlﬂlﬂﬁﬂ

Unconditional CIFAR10 samples. Inception Score=9.46, FID=3.17.

142

Denoising Diffusion Probabilistic Model

"\

y

Denoising Diffusion Probabilistic Model

- Ho, Jain. Abbeel * arxiv:2006:11239

144

Denoising Diffusion Implicit Model

* DDIM roughly sketches the final sample, then refine it with the
reverse process

* Motivation:
— Diffusion model is slow due to the iterative procedure
— GAN/VAE creates the sample by one-shot forward operation
— Can we combine the advantages for fast sampling of diffusion models?

* Technical spoiller:
Instead of naively applying diffusion model upon GAN/VAE,
DDIM proposes a principled approach of rough sketch + refinement

145

Denoising Diffusion Implicit Model

 DDIM roughly sketches the final sample, then refine it with the reverse process
» Key idea:
— Given x,, generate the rough sketch x, and refine q(x;_1|x¢, Xg)
— Unlike original diffusion model, it is not a Markovian structure

OO =90 @ =006

:133’.730 .’L'() £E2|$1 w()

(J("B'z\wl)

Figure 1. Graphical models for diffusion (left) and non-Markovian (right) inference models.

146

Denoising Diffusion Implicit Model

 DDIM roughly sketches the final sample, then refine it with the reverse process
— Key idea: Given xt generate the rough sketch x, and refine ¢(x;—1|x¢, Xo)

2 9
@ @ — @—

q 333’3” 330 q 332|331 -’B()

— Formulation: Define the forward distribution ¢(x¢—1|X¢, X0) as

Lt — 4/ OtL0
Qo (T1—1 | @1, T0) = (\/at 1T + \/1 — g1 — 0} - Ao afI)

then, the forward process is derived from Bayes’ rule

4o (wt 1 | mtamO) 4o (wt ‘ ZB())
4o (wt—l | mO)

4o (wt \ Lt 17330)
147

Denoising Diffusion Implicit Model

 DDIM roughly sketches the final sample, then refine it with the reverse process
— Key idea: Given x,, generate the rough sketch x, and refine ¢(x;—1|x¢, Xo)

@ @ — @—'

q 333’3” 330 q 332|331 -’B()

4o (CBt—l | iBt,CL’O) 4o (CL’t \ wo)
9o (T1—1 | o)

— Formulation: Forward process is ¢ (z: | x:—1, o) =

(t
. x; — V1 — o€’ (@
and reverse process is ;1 = ,/Ttl(i \@t o t)> +§/1 o :af-egt)(thJr e

random noise

~ ~ -~ “direction pointing to @x; ”

”predicted xy”

— Training: The variational lower bound of DDIM is identical to the one of DDPM
* |t is surprising since the forward/reverse formulation is totally different

148

Denoising Diffusion Implicit Model

« DDIM significantly reduces the sampling steps of diffusion model

— Creates the outline of the sample after only 10 steps (DDPM needs
hundreds)

sample timesteps sample timesteps

149

Denoising Diffusion Implicit Model

N —
o o

total steps
o
o

100 §

1000 §

Generating CIFAR10 samples Generating CelebA samples

150

total steps

Denoising Diffusion Impl

Step O

10

20

wu
o

100

1000

Generating LSUN Church samples

Step 0

Generating LSUN Bedroom samples

151

Denoising Diffusion Implicit Model

« DDIM significantly reduces the sampling steps of diffusion model
— Creates the outline of the sample after only 10 steps (DDPM needs hundreds)

Table 1: CIFARI10 and CelebA image generation measured in FID. n = 1.0 and ¢ are cases of
1 (although Ho et al. (2020) only considered 7' = 1000 steps, and S < T can be seen as
simulating DDPMs trained with S steps), and n = 0.0 indicates DDIM,

CIFARIO (32 x 32) CelebA (64 x 64)
S 10 20 50 100 1000 10 20 50 100 1000

0.0 | 13.36 6.84 4.67 4.16 4.04 1733 13.73 917 6.53 3.51
02 | 1404 7.11 4.77 4.25 4.09 17.66 14.11 9.51 6.79 3.64
051 1666 8.35 J:2 4.46 4.29 1986 16.06 11.01 8.09 4.28
1.0 | 41.07 1836 8.01 5.78 4.73 33.12 2603 18.48 1393 5098

o 36743 133.37 3272 9599 3.17 | 299.71 18383 71.71 4520 3.26

152

Diffusion Models for Image Generation

» Beat BIgGAN and StyleGAN on generating high-resolution images

Model FID sFID Prec Rec
LSUN Bedrooms 256 <256

DCTransformer' [42] 6.40 6.66 0.44 0.56

DDPM [25] 489 9.07 060 045

IDDPM [43] 424 821 0.62 0.46

P StyleGAN [27] 235 6.62 059 048

e 7Y ADM (dropout) 1.90 5.59 0.66 0.51

— P~ ImageNet 512512

Figure 1: Selected samples from our best ImageNet 512x512 BigGAN-deep [5] 343 813 0.88 029
model (FID 3.85) ADM 2324 10.19 0.73 0.60

ADM-G (25 steps) 841 9.67 0.833 047
ADM-G 772 6.57 0.87 0.42

153

Latent Diffusion Models

Autoencoder with KL or VQ regularization

E + Diffusion Process —> emanth
Ma
P Denoising U-Net €g 2T Text
Repres
entations
D llmages
= /
@xel Spacg
To
pd
denoising step crossattention switch skip connection concat - /

[Rombach et al., “High-Resolution Image Synthesis with Latent Diffusion Models”, CVPR 2022] 154

Latent Diffusion Models
) }

e internal UNet
p— I p— i Conditioning __ -~~~ representation
HEH Diffusion P mantig- -~ ;
Zzr€ | TUSION T10008S __,L -M;,; | e.g. 8x8x64 _
g |- Denoising U-Net€g _ - 7zp Text - 4 le (optionally more)
ar-n [1 Repres Add & Norm
~— ‘ - Q entations Tood
=) Q| |Q|] |
z €D "I" KV KV | Ky KV‘ s T e
. . A . or /7] 1
S~ N I
- T T Encoder Add & Norm Mult-Head Cross-

Dd X < Feed Attention i
denoising step crossattention switch skip connect\m(\ concat —0 r-——/ Forward) J) Attention
\\\ R —

N Nix Add & Norm

\\\ Add & Norm Matad— Self-
' Multi-Head Muiti-Head
\ Attention Attention Attention
5 ——— PN P
b Positional &
Y Encoding
\\\ Input Output
% Embedding Embedding
\\ Conditioning, internal UNet
X e.g. text prompt representation,
. e.g. 8x8x64

155

Latent Diffusion Models

* \Why latent space?

- find perceptually equivalent
space (to pixel space)

- efficient training
- fast sampling

- one-step decoding to Image
space

Distortion (RMSE)

80

60

40

20

0

Semantic Compression

— Generative Model:
Latent Diffusion Model (LDM)

Perceptual Compression

— Autoencoder+GAN

ne

0.5 O
Rate (bits/dim)

H R &

156

Tuning Compression Ratios

ours (f = 4) DALL-E (f =98 VQGAN (f = 16)
Input PSNR: 27.4 R-FID: 0.58 PSNR: 22.8 R-FID: 32.01 PSNR: 19.9 R-FID: 4.98

; >
3 WAL
1%h :"f\i
4 B
Jy) :
RatBA0 o7 1
0 |
e 3
) i'l i/
(3) z

256 X 256 64 x 64 32 x 32 16 x 16

157

Image Inpainting

[“LDM"”, Rombach et al., 2022] 55

Semantic Image Synthesis

[“LDM"”, Rombach et al., 2022] 59

Generatmg Images from Text

| “,;fr['."',‘".:-‘:i’)f feL7

bastth pi3a i)
Piet Py
o T

o

"A sunset over a mountain, vector image” "a portrait of a cyberpunk rabbit, trending on artstation”

A sunset over a mountain, oil on canvas”

L

[“LDM"”, Rombach et al., 2022] 140

Generating Images from Text

a teddy bear on a skateboard in A photo of Michelangelo’s “A sea otter with a pearl earring” 3D render of a cute tropical fish
times square sculpture of David wearing by Johannes Vermeer in an aquarium on a dark blue
headphones djing background, digital art

["DALL-E 2", Ramesh et al., 2022] 14;

Generating Videos from Text

N Imagen Video

£ s
A 8T
Imagen Video T

A teddy bear A british shorthair A swarm of bees
running in New York City jumping over a coach flying around their hive

[Ho et al., “Imagen Video", 2022] 16

Image Editing

Stroke Painting to Image Stroke-based Editing

™ - . 4B . - H
Source Input (guide) Source Input (guide) . Output

Figure 1: Stochastic Differential Editing (SDEdit) is a unified image synthesis and editing frame-
work based on stochastic differential equations. SDEdit allows stroke painting to image, image
compositing, and stroke-based editing without task-specific model training and loss functions. -

Image Editing

“zebras roaming in the field”

“a man with red hair” “a vase of flowers” 164

Super Resolution

Input : 64x64

Results of a SR3 model (64%x64 — 512x512), trained on FFHQ, and applied to images outside of

the training set.
165

Diffusion Models are also effective for
non-visual domains

WA\ Al MWM:WWW

Qddta.(il?o) q(z1|zo) q(z2|z1) d1ffus1onprocess q(zr|zT-1)

G) o @

reverse process
pe(xolwl) 331|-’172 Pe rT— 1|SBT DPlate nt(-’ET)

generated at t=0 t=T/4 t=T/2 © t=T(stationary)

https://github.com/heejkoo/Awesome-Diffusion-Models

166

https://github.com/heejkoo/Awesome-Diffusion-Models

Diffusion Model is All We Need?

* Trilemma of generative models: Quality vs. Diversity vs. Speed

— Diffusion model produces diverse and high-quality samples,
but generations Is slow

High
Quality

Samples

Generative
Adversarial 7 ‘,.
Networks - \

-y Denoising
: Diffusion
4 "\ Models

}

Variational Autoencoders.,
Normalizing Flows

167

Next lecture:
Self-Supervised Learning

