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Previously on COMP541

e variational autoencoders (VAESs)
 vector quantized VAEs (VQO-VAEs)

» denoising diffusion models

REARETEALT R R4 FFOBFP Y
FAARRARRRATI5R20A98FFTRR2
FRFARREATFIREAAADATRAFENDR
YERARATRAARTRAFAIRATAER4a
ARTARKRRPAREFATTAREARTARR
(AFIRPISIREDNARAAIPIRETF R0
APARRIRCIALS AR g §AF 7T
TARTFARPERRRADARRAR RLRTEA
MAFETPEFFTTATR R4V R AR R
FEARRGAIRERARTATATARARYT IR
YIIRISRRANMIERAER 24N R R 7
BT R RS SR TR R TR SR IR |
AYRTEIERD LAAelm P AT YARGALT
I AE bR AR RRTARART IR RYSARR
IRIER RS R AR R Y RERERA RN
IMEATRAREDAARARATIRANTH AR



Lecture Overview

* predictive / self-supervised learning

self-supervised learning in NLP

self-supervised learning in vision

multimodal self-supervised learning

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Andrej Risteski's CMU 10707 class

—Jimmy Ba's UToronto CSC413/2516 class

—Fei-Fel Li, Ranjay Krishna, Danfei Xu's CS231n class

—Justin Johnson's EECS 498/598 class



Supervised vs Unsupervised Learning

Supervised Learning Unsupervised Learning
Data: (X, vy) Data: x
X 1S data, v I1s label Just data, no labels!

Goal: Learn a function to map x —y Goal: Learn some underlying
hidden structure of the data

Examples: Classification, regression, Examples: Clustering,
object detection, semantic dimensionality reduction,
segmentation, Image captioning, feature learning, density
sentiment analysis, etc. estimation, etc.



Unsupervised Learning

» Learning from data without labels.

* \\What can we hope to do:

— Task A: Fit a parametrized structure (e.g. clustering, low-dimensional
subspace, manifold) to data to reveal something meaningful about data
(Structure learning)

— Task B: Learn a (parametrized) distribution close to data generating
distribution. (Distribution learning)

— Task C: Learn a (parametrized) distribution that implicitly reveals an
“embedding”/“representation” of data for downstream tasks.
(Representation/feature learning)

* Entangled! The “structure” and “distribution” often reveals an
embedding.



Supervised Learning

» Supervised learning is not how we learn!

Babies don't get supervision
for everything they seel



Solution: Self-Supervised Learning

e | ets builld methods that learn from "raw” data — no annotations
required

* Unsupervised Learning: Model isn't told what to predict. Older
terminology, not used as much today.

» Self-Supervised Learning: Model is trained to predict some
naturally-occurring signal in the raw data rather than human annotations.



Solution: Self-Supervised Learning

e | ets builld methods that learn from "raw” data — no annotations
required

* Unsupervised Learning: Model isn't told what to predict. Older
terminology, not used as much today.

» Self-Supervised Learning: Model is trained to predict some
naturally-occurring signal in the raw data rather than human annotations.

 Semi-Supervised Learning: Train jointly with some labeled data
and (a lot) of unlabeled data.



Self-Supervised Learning

» Given unlabeled data, design supervised tasks that induce a good
representation for downstream tasks.

* No good mathematical formalization, but the intuition is to “force”
the predictor used In the task to learn something “semantically
meaningful” about the data.



Self-Supervised Learning: Pretext then Transfer
—  w

Encoder: Decoder: Loss:

Step 1: Pretrain a
network on a pretext

task that doesn't B MR T ¢ 1) L(®,y)
require supervision & / \
Input Image: x Features: ¢(x) Prediction: y
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Self-Supervised Learning: Pretext then Transfer
P

Encoder: Decoder: Loss:

) Ly, y)
\

Input Image: x Features: ¢(x) Prediction: y

Step 1: Pretrain a
network on a pretext
task that doesn’t
require supervision

/

\g

Step 2: Transfer

encoder to \ Downstream tasks:
downstream tasks Encoder: Image classification,
ia i ¢ object detection, semantic
via linear _
if] segmentation

finetuning Input Image: x Features: ¢(x)
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Self-Supervised Learning: Pretext then Transfer

Generative: Predict part

of the input signal

Autoencoders
(sparse, denoising,
masked)
Autoregressive
GANSs
Colorization
Inpainting

Discriminative: Predict

something about the
Input signal

Context prediction
Rotation
Clustering
Contrastive

Multimodal: Use some
additional signal in
addition to RGB images
« Video

« 3D

e Sound

 [anguage

12



Self-Supervised Learning

» Predict any part of the input from any
other part.

» Predict the future from the past.

» Predict the future from the recent past.

» Predict the past from the present.

» Predict the top from the bottom.

» Predict the occluded from the visible

» Pretend there is a part of the input you «— Past Future —

don’t know and predict that. Present
Slide by Yann LeCun 13



Self-Supervised
Learning in NLP



Word Embeddings

» Semantically meaningful vector representations of words

Tiger
9T Lion

Example: Inner product (possibly scaled,
l.e. cosine similarity) correlates with word
similarity.

Table
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Word Embeddings

» Semantically meaningful vector representations of words

'\Tf/

"The service Is great,
fast and frlendlyI

Example: Can use embeddings to do
-. sentiment classification by training a
simple (e.qg. linear) classifier

16



Word Embeddings

» Semantically meaningful vector representations of words

It
English: "lt's raining
outside”.
l Google Translate Example: Can train a “simple” network
-. that if fed word embeddings for two
l languages, can effectively translate.

German: "Es regnet
draussen’.

17



Word Embeddings via Predictive Learning

» Basic task: predict the next word, given a few previous ones.

Late: 0.9
. . Early: 0.05
2?77
| | am running | a | little ‘ e Tired: 0.04
Table: 0.01

In other words, optimize for

m@axz 10gp9 (wt‘xt—la Lt—2y .- 7$t—L)
t
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Word Embeddings via Predictive Learning

» Basic task: predict the next word, given a few previous ones.

mgaXZ lngg ($t|$t_1, Lt—2y .- th—L)
t

Inspired by classical assumptions in NLP that the underlying distribution
iIs Markov — that is, x, only depends on the previous few words.

(Of course, this is violated if you wish to model long texts like paragraphs /
books.)

The main issue: The trivial way of parametrizing pg (T¢|xt—1, Tt—2, ..., Tt_1)
s a “lookup table” with VL entries.
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Word Embeddings via Predictive Learning

» Basic task: predict the next word, given a few previous ones.

m@axz 10gp9 <5Ut|$t_1, Lt—2y - - - axt—L)
t
i-th output = P(w, = i| context) ) } .,
[Bengio-Ducharme-Vincent-danvin ‘2003]: A neural

softmax parametrization of the above probabillities.

( ..I. —~ [ X ] - 000 )

/l, I,I most| computation here \\ Maln Ingl’edientS:

i ¥ \  Embeddings: A word embedding C(w) for all words w in

tanh ' dictionary.

* Non-linear transforms: Potentially deep network taking as
Inputs i, Clx,_4), Clx,_,),...,Clx,_;), and outputting some
Clwez)  Clw) vector 0. Can be recurrent net too.

B o amnsgasssmns S MACE « Softmax: Softmax distribution for x, with parameters
given by o.

across words

index for w;_, .1 index for w,_, index for w,_,
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Word Embeddings via Predictive Learning

* Related: predict middle word Iin a sentence, given surrounding ones.

m@ax E 10gp9 (xt’xt—La coe s -1 L4,y - - - 7xt—|—L)
t

CBOW (Continuous Bag of Words): proposed by Mikolov et al. ‘13

INPUT PROJECTION QUTPUT

Parametrization is chosen s.t.

et L Do (th|$‘t_L, cee s Lt—1, Lt41, - - - 7£Ut—|-L) X

> W) t_I_L
‘\ CXP (U:Uta Z@':t_[, wti)
| \ vectors v

wit2) vectors w
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Word Embeddings via Predictive Learning

* Related: predict middle word Iin a sentence, given surrounding ones.

t+L

mc YD oo (o)

1=t—L,1#t

Skip-Gram: also proposed by Mikolov et al. “13

Input projection  output

e Parametrization is chosen s.t. pg (x;|x:) o< exp (vg,, Wy, )
4 | wen In practice, lots of other tricks are tacked on to deal with the slowest
" | part of training: the softmax distribution (partition function sums over
T N entire vocabulary).
N | w(tH1)
vectors w T Common ones are negative sampling, hierarchical softmax, etc.
| W(t+2)

vectors v
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Word Embeddings via Predictive Learning

* Related: predict middle word Iin a sentence, given surrounding ones.

t+L

mc YD oo (o)

1=t—L,1#t

Skip-Gram: also proposed by Mikolov et al. “13

Input projection  output

w(t-2)

<« | Wit1)

w(t) .

vectors w
"‘ w(t+2)

vectors v

Tomas Mikolov 107113 -

There are quite a few differences between the skip-gram and the CBOW models. However, if you have a lot of training data, their performance should be comparable.
If you want to see a list of advantages of each model, then my current experience is:

Skip-gram: works well with small amount of the training data, represents well even rare words or phrases
CBOW: several times faster to train than the skip-gram, slightly better accuracy for the frequent words

This can get even a bit more complicated if you consider that there are two different ways how to train the models: the normalized hierarchical softmax, and the un-
normalized negative sampling. Both work quite differently.

Overall, the best practice is to try few experiments and see what works the best for you, as different applications have different requirements.
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Evaluating Word Embeddings

 First variant (predict next word, given previous ones) can be used as
a generative model for text. (Also called language model.) The other

ones cannot.

* |n former case, a natural measure iIs the cross-entropy

|

4X1,T2,...,

TT lnge ('CUST) —

<1:"Llil,ZCQ,...,ZIZ‘T Z 10gp9 (th‘aj<t)
t

* For convenience, we often take exponential of this (called perplexity)

* [T we do not have a generative model, we have to use indirect

means.
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Evaluating Word Embeddings

* Intrinsic tasks: Test performance of word embeddings on tasks
measuring their “semantic” properties. Examples include solving

“which 1s the most similar word"™ queries, analogy queries (i.e. “man
Is to woman as king is to 22"

» Extrinsic tasks: How well can we “finetune” the word embeddings

to solve some (supervised) downstream task. “Finetune” usually
means train a (relatively small) feedforward network. Examples of

such tasks include:

— Part-of-Speech Tagging (determine whether a word is noun/verb/...),

— Named Entity Recognition (recognizing named entities like persons, places) —
e.g. label a sentence as Picassolperson] died in France[country], many
others.

25



Semantic Similarity

* Observation: similar words tend to have larger (renormalized) inner
products (also called cosine similarity).

* Precisely, if we look at the word embeddings for words 1,
< L >=cos<wi,wj> tends to be larger for similar words 1,

[Jwsl[ " [[w; |

Example: the nearest neighbors to “Frog” look like

0. frog
1. frogs
. toad
. litoria
. leptodactylidae
. rana

. lizard & :
eleutherodactylus 3. litoria 4. leptodactylidae 5. rana 7. eleutherodactylus

-

N oA WN

* To solve semantic similarity query like “which i1s the most similar word
to”, output the word with the highest cosine similarity.
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Semantic Clustering

« Consequence: clustering word embeddings should give “semantically”
relevant clusters.

Kmeans Clustering with Genre

t-SNE projection of word embeddings for artists (clustered by genre). Image from https://medium.com/free-code-
camp/learn-tensorflow-the- word2vec-model-and-the-tsne-algorithm-using-rock-bands-97¢99b5dcb3a
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https://medium.com/free-code-camp/learn-tensorflow-the-%20word2vec-model-and-the-tsne-algorithm-using-rock-bands-97c99b5dcb3a
https://medium.com/free-code-camp/learn-tensorflow-the-%20word2vec-model-and-the-tsne-algorithm-using-rock-bands-97c99b5dcb3a

Analogies

* Observation: You can solve analogy queries by linear algebra.

Man Precisely, w = queen will be the solution to:

King , 2
argmin, va — Uking — (Uwoman _ Uman)H
/ , , Counrtry and C’apital Vef:tors Pro?ected byr PCA ]

China:
\/\/ Beijing
OI I Ian 15 Russia
Japan
Queen .
1 -
Turkey Ankara “Tokyo
05
Poland
0r Germany
France ‘Warsaw
< —Berlin
0.5 Italy Paris
«—~+Athens
Greece:
1 | Spainr Rome
| . Madrid
-1.5 | Portugal Lisbon
2 1 I I 1 L 1
-2 -1.5 -1 -0.5 0 0.5 1 15 2

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.



Language Models (LMs)

A statistical model that assigns probabilities to the words In a
sentences.

 Most commonly: Given previous words, what should the next one
be?

* Neural language model: Model the probability of words given
others using neural networks.
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Recurrent Architectures for LM

* \We can use recurrent architectures.
« LSTM, GRU ...
» Great for variable length inputs, like sentences.

P(WI"The") P(WI"...quick") P(WI"..brown") P(WI".. fox")

T T T T

(Sotwar ) [sotwar ) [sotwar] o)

T T T T
—hg—-[ RI‘;N ]7h,—-[ R?N ]~h2—-[ R}JN ]-h:r-[ R?N ]—h4—>

llThell Ilquickll |lbr0wn|l "foxll
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Recurrent Architectures for LM

* \\What are some of the problems with recurrent architectures?
— Not parallelizable across instances.
— Cannot model long dependences.
— Optimization difficulties (vanishing gradients).

e Attention to the rescue!
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Transformers

Properties of the transformer architecture:
* Fully feed forward.

» Equivariance properties of scaled dot
product attention (important):

— How does the output change if we permute
the order of queries? (equivariance)

— How does the output change if we permute
the key-value pairs in unison? (invariance)

Output
Probabilities
)
| Softmax |}
| Linear |
r
| Add & Norm ]ﬁ\
Feed
Forward
r
s 1 ~ LAdd & Norm e~
—{Add &. Norm J Multi-Head
Feed Attention
Forward T 77 N x
“ | J~
Add & Norm
Nx :
~—>| Add & Norm )  aEke
Multi-Head Multi-Head
Attention Attention
e J . —
Positional Positional
. + & .
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)
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Performance Comparison

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, £ is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logx(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)




Pretraining Language Models

» Can we use large amounts of text data to pretrain language models?

 Considerations:

» How can we fuse both left-right and right-left context?
» How can we facilitate non-trivial interactions between input tokens?

* Previous approaches:
» ELMO (Peters. et. al., 2017): Bidirectional, but shallow.
» GPT (Radford et. al., 2018): Deep, but unidirectional.

»BERT (Devlin et. al., 2018): Deep and bidirectional!




BERT Workflow

 The BERT workflow includes:

» Pretrain on generic, self-supervised tasks, using large amounts of data (like
all of Wikipedia)

» Fine-tune on specific tasks with limited, labelled data.

* The pretraining tasks (will talk about this In more detall later):
» Masked Language Modelling (to learn contextualized token representations)
» Next Sentence Prediction (summary vector for the whole input)
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BERT Architect

ure

KSP Mask LM Mask LM
< > *

‘\\\
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cs || Tok1 | | Tok N [SEP] Tok 1 TokM

Unlabeled Sentence A and B Pair
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Fine-Tuning
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BERT Architecture

Properties:

* TWO Input sequences.

» Many NLP tasks have two inputs (question answering, paraphrase detection,
entallment detection etc. )

 Computes embeddings
» Both token, position and segment embeddings.
» Special start and separation tokens.

« Architecture
» Basically the same as transformer encoder.

« Qutputs:
» Contextualized token representations.
» Special tokens for context.

37



BERT Embeddings

4 N\ N N /
Input [CLS] ’ my dog is ( cute 1 [SEP] he ( likes V play 1 ##ing 1 [SEP]
Token
Embeddings E[CLS] Emy Edog EIS Ecute E[SEP] Ehe EIikes Eplay E##ing E[SEP]
-+ L L L e e - o L L L o
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
o= L = = = - = e = L -
Position
Embeddings Eo E1 E2 E3 E4 E5 E6 E7 E8 E9 Elo

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmenta-
tion embeddings and the position embeddings.

 How we tokenize the inputs Is very important!
« BERT uses the WordPiece tokenizer (Wu et. al. 2016)



(Aside) Tokenizers

» Tokenizers have to balance the following:
— Being comprehensive (rare words? translation to different languages)
— Total number of tokens

— How semantically meaningful each token is.

 This Is an activate area of research.
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Pretraining tasks

* Masked Language Modelling, i.e. Cloze Task (Taylor, 1953)
* Next sentence prediction

40



Masked Language Modelling

* Mask 15% of the input tokens. (i.e. replace with a dummy masking
token)
* Run the model, obtain the embeddings for the masked tokens.

» Using these embeddings, try to predict the missing token.

 "| love to eat peanut ___and jam. " Can you guess what's missing?

* This procedure forces the model to encode context information
in the features of all of the tokens.

41



Next Sentence Prediction

* Goal Is to summarize the complete context (i.e. the two segments) in
a single feature vector.

* Procedure for generating data
» Pick a sentence from the training corpus and feed it as "segment A”.

» \\Vith 50% probabillity, pick the following sentence and feed that as "segment
B"”.

» \\Vith 50% probability, pick the a random sentence and feed it as "segment B”.

* Using the features for the context token, predict whether segment B is
the following sentence of segment A.

» Turns out to be a very effective pretraining technique!
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Fine Tuning

Procedure:

« Add a final layer on top of BERT representations.

 Train the whole network on the fine-tuning dataset.
* Pre-training time: In the order of days on TPUs.

* Fine tuning task: Takes only a few hours max.
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Fine Tuning

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 3.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 03.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 01.3 45.4 80.0 82.3 56.0 75.1
BERTgBAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 721 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average’ column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.® BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.



Self-Supervised
Learning in Vision



Context Prediction

Model predicts relative location of
two patches from the same
Image.

Discriminative pretraining task

Intuition: Requires understanding
objects and their parts

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015 46



COnteXt Pred iCtiOn Classification over 8 positions

Model predicts relative location of
two patches from the same ‘
Image. I B
Discriminative pretraining task / \
Concatenate
[ ] [ ]
Intuition: Requires understanding
objects and their parts ) g
| " CNN | Shared | CNN
Weights

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015 a7



Context Prediction

Model predicts relative location of
two patches from the same
Image.

Discriminative pretraining task

Intuition: Requires understanding
objects and their parts

Two networks with shared
welghts sometimes called a
"Siamese network”

Classification over 8 positions

[ ]
I
/ Concatenate \
] ]
—l
CNN Shared CNN
Weights

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015
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Context Prediction

Model predicts relative location of
two patches from the same
Image.

Discriminative pretraining task

Intuition: Requires understanding
objects and their parts

“For experiments, we use a
ConvNet trained on a K40 GPU
for approximately four weeks.”

Classification over 8 positions

[ ]
I
/ Concatenate \
] ]
—l
CNN Shared CNN
Weights

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015
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Context Prediction: Nearest Neighbors in
Feature Space

Input Patch

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015 50



Context Prediction: Nearest Neighbors in
Feature Space

Input Patch Random Init

.'(;:::“ ‘.‘
™ : 7. 2a il
1 -
|
\
\

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015 51



Context Prediction: Nearest Neighbors in
Feature Space

Input Patch

=2 1A 1A
!k -

o .ﬁu-- _——
LA 15 T 19

Random Init

Supervised AlexNet

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015
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Context Prediction: Nearest Neighbors in
Feature Space

Input Patch Random Init Supervised AlexNet Their Features

AN TR

Works 7
e

Similar to o

-»'NW\AB!;‘]I lm *

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015 53



Context Prediction: Nearest Neighbors in
Feature Space

Input Patch Random Init Supervised AlexNet Their Features

A8 TEAREE™ S Yl

Jvorks 1 | S A L S el [ sat -
B " e

Snilar o N =
et \W\ ,fi&“ ARE lﬁi.

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015 54



Jigsaw puzzles

Rather than predict relative position of two patches, instead
predict permutation to “unscramble” 9 shuffled patches

\

- e[ —

Shared

N

w

N

‘_.'_.-_.-— -/ | /“°%/ LB
'—F-i“/— i s

-—» ) »tew = /

Shared

— '.i-_/—

Shof d

11x11x96  5x5x256 3x3x384 3x3x384 3x3x256

o~

Permutation Set

index permutation Reorder patches according to
the selected permutation

~N

(0]

L IR B 1N

64 946832517

] A

Noroozi and Favoro, “Unsupervised learning of visual representations by solving jigsaw puzzles”, ECCV 2016 55



Problem: These methods only work

J|gsaW pUZZIGS on patches, not whole images!

Rather than predict relative position of two patches, instead
predict permutation to “unscramble” 9 shuffled patches

w N —

N

L IR B 1N

4608’ 4096 4 100 / 64

fc7  fc8 softmax

o~

Permutation Set

index permutation Reorder patches according to
the selected permutation

~N

(0]

64 946832517

O

11x11x96  5x5x256 3x3x384 3x3x384 3x3x256

Noroozi and Favoro, “Unsupervised learning of visual representations by solving jigsaw puzzles”, ECCV 2016 56



Context Encoders: Learning by Inpainting

* The most obvious analogy to word embeddings: predict parts of image from
remainder of image.

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016 57



Context Encoders: Learning by Inpainting

* The most obvious analogy to word embeddings: predict parts of image from
remainder of image.

(c) Context Encoder (d) Context Encoder
(L2 loss) (L2 + Adversarial loss)

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016
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Context Encoders: Learning by Inpainting

* The most obvious analogy to word embeddings: predict parts of image from
remainder of image.

)

Architecture:
An encoder E takes a part of image,
constructs a representation.

¢

Channel-wise
Fully
Connected

[ ]
Encoder)
¢

Encoder Fealures

[ Decoder Features ]

_ , A decoder D takes representation,
7,/ tries to reconstruct missing part.

* Much trickier than in NLP:
As we have seen, meaningful losses for vision are much more difficult to design.
Choice of region to mask out is much more impactful.

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016 59



Context Encoders: Learning by Inpainting

Input Image

88 | Encoder: | Decoder:

b Y
/\

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016 60



Context Encoders: Learning by Inpainting

Input Image Predict Missing Pixels

88 | |Encoder: | Decoder:

b Y
/\

Human Artist

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016 61



Context Encoders: Learning by Inpainting

Input Image

\

88 | Encoder:

Predict Missing Pixels

=

Decoder:

¢
—

Y
\

L2 Loss
(Best for feature learning)

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016
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Context Encoders: Learning by Inpainting

Input Image Predict Missing Pixels

-

88 | |Encoder: | Decoder:

b Y
/\

L2 + Adversarial Loss
(Best for nice images)

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016 63



Inpainting

* The most obvious analogy to word embeddings: predict parts of image from
remainder of image.

* How to choose the region?

Task should be “solvable”, but not “too easy”.

« Fixed (central region): tends to produce less
generalizeable representations

 Random blocks: slightly better, but square
borders still hurt.

 Random silhouette (fully random doesn’t
make sense — prediction task is too ill-defined)
— even better!

(a) Central region (b) Random block (¢) Random region

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016 64



Predicting rotations

* |In principle, what we want is a task “hard enough”, that any model that does well on it, should
learn something “meaningful” about the task.

| Objectives:

ConvNet > Maximize prob.
0 0

»  model F() FO(x°)

| Predict 0 degrees rotation (y=0)

» Task: predict one of 4 possible P
rotations of an image. —> g(X,y=0) —>

Rotate 0 degrees

Rotated image: X°

ConvNet | ) | Maximize prob.

—» g(X,y=1) ﬁ&*& = modelF(.) | F'(x")

Rotate 90 degrees i Predict 90 degrees rotation (y=1)
Rotated image: X ’
o ConvNet . Maximize prob.
> g(X,y=2) > » model F() | FAxY)

Rotate 180 degrees | Predict 180 degrees rotation (y=2)

|

Rotated image: X’

Q ConvNet " Maximize prob.
—» g(X,y=3) —>» & g—> model F(.) | » F3(X3r;
Rotate 270 degrees ' | Predict 270 degrees rotation (y=3)

Rotated image: X°

Gidaris et al, “Unsupervised Representation Learning by Predicting Image Rotations”, ICLR 2018 65



Predicting rotations

* |In principle, what we want is a task “hard enough”, that any model that does well on it, should
learn something “meaningful” about the task.

« Task: predict one of 4 possible
rotations of an image.

— Representation: penultimate
layer of a neural net used to
solve task.

— Intuition: a rotation Is a global
transformation. ConvNets are
much better at capturing local
transformations (as
convolutions

are local), so there is no
obvious way to “cheat”.

.q‘ 7 ]Bb ] egvesi:i

| ConvNet > Maximize prob.
Rotate 0 degrees | Predict 0 degrees rotation (y=0)

Rotated image: X°

ConvNet | > . Maximize prob.

> g(X,y=1) Hﬁ«w - | F'(x))

Rotate 90 degrees i Predict 90 degrees rotation (y=1)
Rotated image: X ’
o ConvNet Maximize prob.
> g(X,y=2) > il model F(.) —'—> F} (X%

Rotate 180 degrees | Predict 180 degrees rotation (y=2)

Rotated image: X’

@ ConvNet Maximize prob.
—> g(X,y=3) — > £ . model F(.) ' > R
Rotate 270 degrees | Predict 270 degrees rotation (y=3)

Rotated image: X°

Gidaris et al, “Unsupervised Representation Learning by Predicting Image Rotations”, ICLR 2018 66



Predicting rotations

* |In principle, what we want is a task “hard enough”, that any model that does well on it, should
learn something “meaningful” about the task.

« Task: predict one of 4 possible
rotations of an image.

— Less finicky to get right: no
obvious artifacts the model
can make use of to cheat.

— The 90 deg. rotations also
don’'t introduce any additional
artifacts due to discretization.

| Objectives:

ConvNet > Maximize prob.
0

»  model F() F(x°)

| Predict 0 degrees rotation (y=0)

—» g(X,y=0) ——»

Rotate 0 degrees ‘ .
Rotated image: X

ConvNet | ) . Maximize prob.

> g(X,y=1) Hﬁﬁ - | | F(xY)

Rotate 90 degrees i Predict 90 degrees rotation (y=1)
Rotated image: X ’
R ConvNet Maximize prob.
> g(X,y=2) > » model F() F} (X%

Rotate 180 degrees | Predict 180 degrees rotation (y=2)

Rotated image: X’

% ConvNet . Maximize prob.
—> g(X,y=3) — £ . model F(.) ' > R
Rotate 270 degrees : | Predict 270 degrees rotation (y=3)

Rotated image: X°

Gidaris et al, “Unsupervised Representation Learning by Predicting Image Rotations”, ICLR 2018 67



Image coloring

g

X = RHXWXI

Grayscale image: L channel

L

Color information: ab channels

mtl

-

ab

Source: Richard Zhang / Philip Isola
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Image coloring

Grayscale image: L channel

X = ]RHxle

L

Concatenate (L,ab) channels

—

-

(X,Y)

ab

Source: Richard Zhang / Philip Isola
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Learning features from colorization:
Split-brain Autoencoder

 |dea: cross-channel predictions

<)

Split-Brain Autoencoder

Source: Richard Zhang / Philip Isola 70



Learning features from colorization:
Split-brain Autoencoder

* |dea: cross-channel predictions

Input Image X

Split-Brain Autoencoder

Source: Richard Zhang / Philip Isola 71



Learning features from colorization:
Split-brain Autoencoder

 |dea: cross-channel predictions
RGB channels HHA depth channels

Input / = o - \ Predicted
RGB-HHA R ——— RGB-HHA
image | image

HHA depth channels RGB channels

Split-Brain Autoencoder

Source: Richard Zhang / Philip Isola
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Split-brain Autoencoder: Transfer learned
features to supervised learning

» Self-supervised learning  ,, BElaii. S
on ImageNet eI 4
(entire training set). — .
40 supervised
» Use concatenated 2 .
» Labeled data is ° | | SN
from the Places _ .
20 .
(Zhou 2016). : @
lc;\& Q IO\\/ co(l\\ﬂ 900\1 00(\\‘3 co(l\\\ co(l\\f) 900\6
Layer

Source: Richard Zhang / Philip Isola 73



Contrastive Representation Learning

attract

74



Contrastive Representation Learning

X reference

:c+ positive

€L  negative




A formulation of contrastive learning

 \What we want:

score(f(x), f(x™)) >> score( f(x), f(x7))

» X: reference sample; x* positive sample; x negative sample

» Given a chosen score function, we aim to learn an encoder function f
that yields high score for positive pairs (x, x*) and low scores for
negative pairs (X, X).
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A formulation of contrastive learning

 Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f(z ™))
exp(s(f(z), f(z+)) + 3,1 exp(s(f(x), f(z;)).

L = —EX lOg




A formulation of contrastive learning

 Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(2), f (™))

L =—-Ex |log

78



A formulation of contrastive learning

 Loss function given 1 positive sample and N - 1 negative samples:

L=-Ex

exp(s(f(z), f (w+))

log
exp(s(f(z), f(z 1)) + 3, exp(s(f(z), flz;))
score for score for the N-1
the positive pair negative pairs

 This seems familiar..
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A formulation of contrastive learning

 Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f (w+))

L =—-Ex |log —
exp(s(f(z), f(z 1)) + 3, exp(s(f(z), flz;))
score for score for the N-1
the positive pair negative pairs

 This seems familiar..

Cross entropy loss for a N-way softmax classifier!
l.e., learn to find the positive sample from the N samples
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A formulation of contrastive learning

 Loss function given 1 positive sample and N - 1 negative samples:

L=-Ex

« Commonly known as the InfoNCE loss (van den Oord et al., 2018)

log

exp(s(f(z), f(z™))

exp(s(f(z), f(z 1)) + Y, exp(s(f(z), f(z}))

A lower bound on the mutual information between f(x) and f(x*)

MI[f(z), f(z™)] — log(N) = —L

* The larger the negative sample size (N), the tighter the bound
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SimCLR: A Simple Framework for Contrastive

Learning
* Cosine similarity as the score
function: s(u,v) = Hmﬁ)l'

» Use a projection network h(-) to
project features to a space where
contrastive learning i1s applied.

» Generate positive samples through

data augmentation:

* random cropping, random color
distortion, and random blur.

Maximize agreement

Zi = > Zj
A
0 L9
h; <— Representation — h;
A A
() f()
B T;

Source: Chen et al.,, 2020 4,



SimCLR: Generating positive samples from data
augmentation

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering
Source: Chen et al.,, 2020 g



SimCLR: Generating positive samples from data

augmen LAQtION  Algorithm 1 SimCLR's main Teaming algorithm.

input: batch size N, constant 7, structure of f, g, 7.
for sampled minibatch {x;}2_; do
forallk € {1,..., N1} do

draw two augmentation functions t ~ 7T, t' ~T
/ # the first augmentation

Generate a positive pair ~_— | $2k-1 = tax)

. hor—1 = f(@®ar—1 # representation
by Samplm.g data : 2ok—1 = 9((h2k—1; # projection
augmentation functions # the second augmentation

T @Qk = t’(mk)
hoi = fl@op) # representation
zor = g(hog) # projection
end for
foralli € {1,...,2N}and j € {1,...,2N} do
si; =z z;/(|1z:llll2]) # pairwise similarity
end for

exp(s;,;/T)

define (i, j) as £(i,j)=—log A TR oy
L= S0 [0(2k—1,2Kk) + £(2k, 2k—1)]
update networks f and g to minimize £

end for
return encoder network f(-), and throw away g(-)

Source: Chen et al.,, 2020 g,



SimCLR: Generating positive samples from data

augmen LAQtION  Algorithm 1 SimCLR's main Teaming algorithm.

input: batch size N, constant 7, structure of f, g, 7.
for sampled minibatch {x;}2_; do
forallk € {1,..., N1} do

draw two augmentation functions t ~ 7T, t' ~T
/ # the first augmentation

Generate a positive pair ~_— | $2k-1 = tax)

. hor—1 = f(@®ar_1 # representation
by Samplm.g data . 22k—1 = 9((h2k—1; # projection
augmentatlon functions # the second augmentation

I itgk = t’(mk)
hoi = fl@op) # representation
zor = g(hog) # projection
end for
foralli € {1,...,2N}and j € {1,...,2N} do
si; =z z;/(|1z:llll2]) # pairwise similarity
end for

exp(s;,;/T)
21 ]].[k;éz] exp(si,k/T)

define (i, j) as|£(i,j)=—log 52
k

L= S0 6261, 2K) T €2k, 2k —1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

InfoNCE loss:
Use all non-
< positive
samples in the
batch as x

Source: Chen et al., 2020 g



SimCLR: Generating positive samples from data

augmen LAQtION  Algorithm 1 SimCLR's main Teaming algorithm.

input: batch size N, constant 7, structure of f, g, 7.
for sampled minibatch {x;}2_; do

forall k € {1...

., N}do

draw two augmentation functions t ~ 7T, t' ~T
/ # the first augmentation

Tok—1 = t(xk)

Generate a positive pair __—

by sampling data

hok—1 = J(T2k—1)
zZok—1 = g(hok—1)

augmentation functions # the second 2"~ entation

T itgk = t’(mk)

har = [(@2x)
zor, = g(hak)

end for

# representation
# projection

# representation
# projection

foralli € {1,...,2N}and j € {1,...,2N} do
sij =z zi/(lzilllzl)  #

end for

Iterate through and use define £(;, j) as

pairwise similarity

exp(s;,;/T)

f(z,j):—log Zi

21 ]].[k;éz] exp(si,k/T)

each of the 2N sample —— £ = & Y5, [((ZF—1,2K) F 0(2, ZF—1)]

as reference, compute

end for
average loss

update networks f and g to minimize £

return encoder network f(-), and throw away g(-)

InfoNCE loss:
Use all non-
< positive
samples in the
batch as x

Source: Chen et al., 2020 g



SimCLR: mini-batch training

2N xD
—  encoder Z < R
“ _\

list of positive pairs I — 2N

. encoder /
Each 2k and 2k + 1
element is a positive pair

Tr,.
Z; Zj

IEANEA]
“Affinity matrix”

Sij =

2N

87



SimCLR: mini-batch training

“ B -

list of positive pairs

“_. encoder

o
— Z <

A

I

Each 2k and 2k + 1
element is a positive pair

T. .
Zi %]

[lzi ][ []25]]
“Affinity matrix”

Si,j =

“m
“m

2N

2N

-= classification label for each row
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Training linear classifier on SImCLR features

e Train feature encoder on

" *Supervised ...k SIMCLR (4x) ImageNet (entire training
S e RBIGLE (%) set) using SImCLR.
%) e eCPCv2-L |
5 0T *simCLR e 8CNC i  Freeze feature encoder, train
Q ePIRL-c2x . .- .
= q oMoCo (2x)  MPM a linear classifier on top with
& ‘CPCVZ PIRL-ens.
© PIRL . S labeled data.
© 60 *MOCO *nigol
= LA
2
E 55 S e eRotation

25 50 100 200 400 626
Number of Parameters (Millions)

Source: Chen et al., 2020 89



Training linear classifier on SImCLR features

Label fraction

Method Architecture 1%  10% e Train feature encoder on

Top 5 : .

_ _ P ImageNet (entire training
Supervised baseline ResNet-50 48.4 80.4 t) : S : C |_ R
Methods using other label-propagation: set) usin g Im '
Pseudo-label ResNet-50 51.6 82.4 - :
VAT+Entropy Min.  ResNet50 470 834 * Finetune the encoder with
UDA (w. RandAug) ResNet-50 - 88.5 o 0
FixMatch (w. RandAug) ResNet-50 ~ 891 1% /10% of labeled data on
S4L (Rot+VAT+En. M.) ResNet-50 (4%) - 91.2 | mage N et.
Methods using representation learning only:
InstDisc ResNet-50 392 774
BigBiGAN RevNet-50 (4x) 552  78.8
PIRL ResNet-50 57.2 83.8
CPC v2 ResNet-161(x) 77.9  91.2

SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-50 (2x) 83.0 91.2
SimCLR (ours) ResNet-50 (4%)

Table 7. ImageNet accuracy of models trained with few labels.

Source: Chen et al.,, 2020 90



SimCLR design choices: projection head

* Linear / non-linear projection heads

60 ) . .
- |IP lIt |I Improve representation learning.
8—50 rojection - .
| = I * A possible explanation:

40 | mmm Non-linear

. _? pre « contrastive learning objective may

5 \;% 120 b @ P discard useful information for

Projection output dimensionality downstream tasks

e * representation space z is trained to be
[ ()T" ’zf() ] Invariant to data transformation.

g\ g\

h: < Represenation— _ h, * by leveraging the projection head g(:),
76) 0 more information can be preserved In

the h representation space
P T

Source: Chen et al., 2020 91



SimCLR design choices: large batch size

70.0

 Large training batch size Is

o ‘ crucial for SICLR!

65.0

62.5 ‘ ‘
60,0 * Large batch size causes
. il i large memory footprint

.y il i [ requires distributed

- il ol training on TPUs

100 200 300 400Tra?r?i(|)~|g e6p0c?chs700 800 900 1000 (lmageNet eXperlmentS)

Figure 9. Linear evaluation models (ResNet-50) trained with differ-
ent batch size and epochs. Each bar is a single run from scratch. '

Source: Chen etal., 2020 92



Momentum Contrastive Learning (MoCo)

contrastive loss o grad - Key differences to SImCLR:
T » Keep a running queue of keys
similarity / (negative samples).

« Compute gradients and update the
q kO kl k2 encoder only through the queries.

* Decouple min-batch size with the

queue
number of keys: can support a large
momentum number of negative samples.
encoder ot
ke ke ke
g Bg © By © By e

Source: He et al., 2020 93



Momentum Contrastive Learning (MoCo)

contrastive loss o grad - Key differences to SImCLR:
T » Keep a running queue of keys
similarity / (negative samples).

« Compute gradients and update the
q kO kl k2 encoder only through the queries.

* Decouple min-batch size with the

queue

number of keys: can support a large
; Memantim number of negative samples.

Sneotet encoder « The key encoder is slowly

progressing through the
" " " momentum update rules:
uer ey ey ey
g Y Lo~ Xy~ Ly ... Ok < mbx + (1 — m)bq

Source: He et al., 2020 94



MoCo

Generate a positive pair
by sampling data
augmentation functions

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

# £ g, f_k: encoder networks for query and key
# queue: dictionary as a queue of K keys (CxK)
# m: momentum

# t: temperature

f_k.params = f_g.params # initialize
for x in loader: # load a minibatch x with N samples

X_ g = aug(x) # a randomly augmented version

_k = aug(x) # another randomly augmented version
qg = f_g.forward(x_qg) # queries: NxC

k = f k.forward(x k) # keys: NxC

k = k.detach() # no gradient to keys|

# positive logits: Nx1

NO grad|ent through/ i_pos = bmm(g.view(N,1,C), k.view(N,C,1)) USG the running queue

the positive sample

Update the FIFO
negative sample queue

# negative logits: NxK | .— of keys as the negative
1l neg = mm(g.view(N,C), queue.view(C,K)) Samp|eS

# logits: Nx (1+K)
logits = cat([1l_pos, 1l_neg], dim=1)

# contrastive loss, Egn. (1)
labels = zeros(N) # positives are the 0-th
loss = CrossEntropyloss (logits/t, labels)

- InfONCE loss

# SGD update: query network
loss.backward()
update (f_g.params)

# tum update: key network
f_rlzc.)gzgamg =pm*fik.pzzar?1:+ ((ljfm) xf_g.params | Update f_k through
momentum

# update dictionary
enqueue (queue, k) # enqueue the current minibatch
dequeue (queue) # dequeue the earliest minibatch

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.
Source: He et al., 2020 95



MoCo v2

* A hybrid of ideas from SImCLR oss
and MOCO: affinity loss
e From SImCLR: non-linear ity [FEEEE - 1

projection head and strong data

augmentation. |
 From MoCo: momentum- m m m

updated queues that allow queue

training on a large number of S S— B momentum

negative samples (no TPU

required!). [[[m [[[m m m

(a) end-to-end (b) Momentum Contrast

Source: Chen et al., 2020 96



Momentum Contrastive Learning (MoCo)

unsup. pre-train ImageNet VOC detection

case MLP aug+ cos epochs acc. APsg AP AP75
supervised 76.5 81.3 53.5 58.8
MoCo vl 200 60.6 815 559 626
(a) v 200 66.2 82.0 564 62.6

(b) v 200 63.4 82.2 56.8 63.2

(¢) v v 200 67.3 825 57.2 639

(d) v v v 200 67.5 824 57.0 63.6

(e) v v v 800 71.1 82.5 574 64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for

(1) ImageNet linear classification, and (ii) fine-tuning VOC object
detection (mean of 5 trials). “MLP”: with an MLP head; “aug+":
with extra blur augmentation; “cos”: cosine learning rate schedule.

» Key takeaways:

* Non-linear projection head and
strong data augmentation are
crucial for contrastive learning.

Source: Chen et al., 2020 97



Momentum Contrastive Learning (MoCo)

unsup. pre-train ImageNet

case MLP aug+ cos epochs Dbatch acc.
MoCo v1 [6] 200 256 60.6
SimCLR [2] v v v 200 256 61.9
SimCLR [2] v v v 200 8192 66.6
MoCo v2 v v v 200 256 67.5
results of longer unsupervised training follow:

SimCLR [2] v v v 1000 4096 69.3
MoCo v2 v v v 800 256 71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy
(ResNet-50, 1-crop 224 x224), trained on features from unsuper-
vised pre-training. “aug+” in SimCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).

» Key takeaways:

* Non-linear projection head and
strong data augmentation are
crucial for contrastive learning.

» Decoupling mini-batch size with
negative sample size allows
MoCo-v2 to outperform SImCLR

with smaller batch size

(256 vs. 8192).

Source: Chen et al., 2020 98



Momentum Contrastive Learning (MoCo)

» Key takeaways:

* Non-linear projection head and
strong data augmentation are

mechanism  batch memory /GPU  time / 200-ep. crucial for contrastive learning.
L 206 s L « Decoupling mini-batch size with

end-to-end 256 7.4G 65 hrs . .

eridtoend  A0DE 93.0G1 i negative sample size allows

Table 3. Memory and time cost in 8 V100 16G GPUs, imple- M_OCO_VZ to OUtperfC_)rm SImCLR
mented in PyTorch. ': based on our estimation. with smaller batch size
(256 vs. 8192).
e ... all with much smaller memory
footprint! (“end-to-end” means

SImCLR here)

Source: Chen et al., 2020 99



Instance vs. Sequence Contrastive Learning

Predictions

LR A L i
[ [ \/%\/%\/%\/“\/%\/ \

| T¢—3 | Ti—1 Tt | Te+1 | T2 | Te43 Tt44

st~ s

attract

Source: van den Oord et al., 2018

Instance-level contrastive learning: Sequence-level contrastive learning:
contrastive learning based on contrastive learning based on
positive & negative instances. sequential / temporal orders.

Examples: SImCLR, MoCo, MoCo v2 Example: Contrastive Predictive Coding (CPC)
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Contrastive Predictive Coding (CPC)

t redictions .
___________ Pindiein  Contrastive: contrast between

;— “right” and “wrong” sequences
\ * using contrastive learning.

» Predictive: the model has to predict

ol aglh o
/g“ \ / - \ /g - \ / \ / \ /g” \ /g"' \ future patterns given the current

Tt—3 Ti—2 | Ty— lt+1 -It+2 \ 1t+3 11+4 \ context.
i . . » Coding: the model learns useful
. ‘ positive feature vectors, or “code”, for
/
downstream tasks, similar to other

context VSL ) ] self-supervised méthods.

negative

Source: van den Oord et al., 2018 102



Contrastive Predictive Coding (CPC)

Predictions

. - or-cestul 1. Encode all samples in a sequence
T INTO VeCctors z, = ganclXy).

N N
A\ [ [ o \ o) o [ \/f\

Te—2 | Tyg—1 | T | Ti+1 Tt+2 \ Tt+3 | Tt+4 \

~ El PO
/

context -
\ negative /

Source: van den Oord et al., 2018 103



Contrastive Predictive Coding (CPC)

Ct redictions .
) P e 1. Encode all samples in a sequence
; @ @ INtO VeCtors z; = ggnelXi)-
]y ' 1 2. Summarize context (e.g., half of a
sequence) Into a context code ¢, using

m /g \ / - \ /g \ / \ / \ /9" \ /ge' \ an auto-regressive model (g,,).

T2 | T T | Te1 | @4z | s | Ters | The original paper uses GRU-RNN

5 . . here.
=4 a -
‘&\ / L
context o\ _

:negahve

Source: van den Oord et al., 2018 104



CPC example: modeling audio sequences

Ct Predictions
i [] Ei [ j"’"‘ffff:ff::::'::':_':‘ R
E Zt+1 E Rt+2 z Zt+3 % Zt+4
| Xt-3 | Ti—2 | Ti—1 | Tt | D41 | P42 | Te43 | Ti4d

N e = o = e

Source: van den Oord et al., 2018 105



CPC example: modeling audio sequences

Figure 2: t-SNE visualization of audio (speech)
representations for a subset of 10 speakers (out
of 251). Every color represents a different
speaker.

Method ACC
Phone classification

Random initialization 27.6
MFCC features 39.7
CPC 64.6
Supervised 74.6
Speaker classification
Random initialization 1.87
MFCC features 17.6
CPC 07.4
Supervised 98.5

Linear classification on trained
representations (LibriSpeech dataset)

Source: van den Qord et al., 2018 106



CPC example: modeling audio sequences

pottom rows.

Jenc - output

 |dea: split image into patches, model rows of patches from top to
pottom as a sequence. |.e., use top rows as context to predict

gar - output

64 px

input image

i
|

142

<t+3

X
!

:

Zt—l|—4

Ct

/)

7 L.
e ‘//

e

e '/
-7 Predictions

Source: van den Oord et al., 2018 107



CPC example: modeling audio sequences

Method Top-1 ACC
Using AlexNet conv5

Video [28] 29.8
Relative Position [11] 304
BiGan [35] 34.8
Colorization [10] 35.2
Jigsaw [29] * 38.1
Using ResNet-V2

Motion Segmentation [36] 27.6
Exemplar [36] 315
Relative Position [36] 36.2
Colorization [36] 39.6
CPC 48.7

Table 3: ImageNet top-1 unsupervised classifi-
cation results. *Jigsaw is not directly compa-
rable to the other AlexNet results because of

architectural differences.

« Compares favorably with other pretext task-
based self-supervised learning method.

 Doesn’'t do as well compared to newer
Instance-based contrastive learning methods
on image feature learning.

% Supervised ... SIMCLR (4x)
e | ~ *SimCLR (2x)
%) e eCPCv2-1]
C 70F wails MoCo (4x
S *SimCLR ocMC ¢ ’( )
5] ePIRL-c2x
< AMDIM
- 65 . eMoCo (2x)
& SCPCVQ PIRL-ens.
'9 BigBiGAN
AP eBigBi
%, 60k *MoCo
) LA
(@)]
g Rotation
k= - oRho
29 e|nstDisc
25 50 100 200 400 626

Number of Parameters (Millions)

Source: van den Qord et al., 2018 108



Masked Autoencoders (MAE)

A nrew old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022 109



Masked Autoencoders (MAE)

A nrew old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer

Divide image into

nonoverlapping patches,

discard most of them

] [
HEENS
A1
i =
NNENN

input

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022

110



Masked Autoencoders (MAE)

A nrew old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer
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Masked Autoencoders (MAE)

A nrew old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer
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Masked Autoencoders (MAE)

Input Patches Prediction Actual Image

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022 113
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Masked Autoencoders (MAE)

Input Patches Prediction Actual Image
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Masked Autoencoders (MAE)

SSL Pretraining, then finetuning for ImageNet Classification
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MAE Pretraining outperforms training from scratch, and allows scaling to larger ViT models
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Multimodal Self-Supervised Learning

Don't learn from isolated images - take images together with some context

Video: Image together with adjacent video frames

Agrawal et al, “Learning to See by Moving”, ICCV 2015
Wang et al, “Unsupervised Learning of Visual Representations using Videos”, ICCV 2015

Pathak et al, “Learning Features by Watching Objects Move"”, CVPR 2017
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Video: Image together with adjacent video frames
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Sound: Image with audio track from video

Owens et al, “Ambient Sound Provides Supervision for Visual Learning”, ECCV 2016
Arandjelovic and Zisserman, “Look, Listen and Learn”, ICCV 2017
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Sound: Image with audio track from video
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Multimodal Self-Supervised Learning

Don't learn from isolated images - take images together with some context

Video: Image together with adjacent video frames

Agrawal et al, “Learning to See by Moving”, ICCV 2015
Wang et al, “Unsupervised Learning of Visual Representations using Videos”, ICCV 2015
Pathak et al, “Learning Features by Watching Objects Move"”, CVPR 2017

Sound: Image with audio track from video

Owens et al, “Ambient Sound Provides Supervision for Visual Learning”, ECCV 2016
Arandjelovic and Zisserman, “Look, Listen and Learn”, ICCV 2017

3D: Image with depth map or point cloud

Xie et al, “PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding”, ECCV 2020
Zhang et al, “Self-supervised pretraining of 3D features on any point-cloud”, CVPR 2021

Language: Image with natural-language text

Sariyildiz et al, “Learning Visual Representations with Caption Annotations”, ECCV 2020

Desai and Johnson, “VirTex: Learning Visual Representations from Textual Annotations”, CVPR 2021

Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021

Jia et al, “Scaling up Visual and Vision-Language Representation Learning with Noisy Text Supervision”, ICLR 2021
Desai et al, “RedCaps: Web-curated Image-Text data created by the people, for the people”, NeurlPS 2021
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Matching Images and Text

pepper the Text
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Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021
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Matching Images and Text: CLIP
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Matching Images and Text: CLIP

Linear probe average over all 27 datasets

Very strong performance on many 85

downstream vision problems!

Performance continues to

Improve with larger models
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CLIP: Zero-Shot Classification

(2) Create dataset classifier from label text

\
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CLIP: Zero-Shot Classification

(2) Create dataset classifier from label text Problem: CLIP training
dataset Is private; can't

Aaad T reproduce results
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Summary

« Self-Supervised Learning (SSL) aims to scale up to larger datasets without
human annotation

« First train for a pretext task, then transfer to downstream tasks
 Many pretext tasks: context prediction, jigsaw, colorization, clustering, rotation
« SSL has been wildly successful for language

* |ntense research on SSL in vision: current best are contrastive, masked
autoencoding

* Multimodal SSL uses images together with additional context

* Multimodal SSL with vision + language has been very successful; seems very
promising!
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