

Previously on COMP541

- what is deep learning
- a brief history of deep learning
- compositionality
- end-to-end learning
- distributed representations

Lecture overview

- what is learning?
- types of machine learning problems
- image classification
- linear regression
- generalization
- cross-validation
- maximum likelihood estimation

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Bernhard Schölkopf's MLSS 2017 lecture,
—Tommi Jaakkola's 6.867 class,
—Fei-Fei Li and Andrej Karpathy's CS231n class
—Justin Johnson's EECS598 class

What is learning?

Two definitions of learning

- "Learning is the acquisition of knowledge about the world." Kupfermann (1985)
- "Learning is an adaptive change in behavior caused by experience." Shepherd (1988)

Empirical Inference

- Drawing conclusions from empirical data (observations, measurements)
- Example 1: scientific inference

Empirical Inference

- Drawing conclusions from empirical data (observations, measurements)
- Example 1: scientific inference

Empirical Inference

- Drawing conclusions from empirical data (observations, measurements)
- Example 1: scientific inference

Empirical Inference

- Drawing conclusions from empirical data (observations, measurements)
- Example 1: scientific inference

Empirical Inference

- Example 2: perception

9

9

8

9

8

8

9

8

8

9

The choice of representation may determine whether the learning task is very easy or very difficult!

Generalization

- observe
-What's next?

- $1,2,4,7,11,16, \ldots: a_{n+1}=a_{n}+n$ ("lazy caterer's sequence")
- $1,2,4,7,12,20, \ldots: a_{n+2}=a_{n+1}+a_{n}+1$
-1,2,4,7,13,24,...: "Tribonacci"-sequence
-1,2,4,7,14,28 : divisors of 28
- $1,2,4,7,1,1,5, \ldots$: decimal expansions of $\pi=3.14159 \ldots$ and $e=2.718 \ldots$ interleaved (thanks to 0 . Bousquet)
- don't need e : 1247 appears at position 16992 in π
- The On-Line Encyclopedia of Integer Sequences: > 1300 hits...

Generalization, II

- Question: which continuation is correct ("generalizes")?
- Answer? There's no way to tell ("induction problem")
- Question of statistical learning theory: how to come up with a law that generalizes ("demarcation problem")

Types of ML problems

Types of machine learning problems

Based on the information available:

- Supervised learning
- Unsupervised learning
- Semi-supervised learning
- Reinforcement learning

Supervised learning

- Input: $\{(\mathbf{x}, y)\}$
- Task: Predict target y from input \mathbf{x}
-Classification: Discrete output

-Regression: Real-valued output

Face detection

Unsupervised learning

- Input: $\{\mathrm{x}\}$

Anomaly detection

Semi-supervised learning

- Input:

Few labeled examples $\{(\mathbf{x}, y)\}$
Many unlabeled examples $\{\mathbf{x}\}$

- Task: Predict target y from input \mathbf{x}
-Classification: Discrete output
-Regression: Real-valued output

Try to improve predictions based on

interactive segmentation
examples by making use of the additional "unlabeled" examples

Reinforcement learning

- Input:

Interaction with an environment; the agent receives a numerical reward signal

- Task: A way of behaving that is very rewarding in the long run
- Goal is to estimate and maximize the long-term cumulative reward

TD-Gammon (Tesauro, 1990-1995)

Types of machine learning problems

How Much Information Does the Machine Need to Predict? Y LeCun

- "Pure" Reinforcement Learning (cherry)
- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

- Millions of bits per sample
(Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)
- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- $10 \rightarrow \mathbf{1 0 , 0 0 0}$ bits per sample

Unsupervised/Predictive Learning (cake)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
"If intelligence was a cake, unsupervised learning would be the cake, supervised learning would be the icing on the cake, and reinforcement learning would be the cherry on the cake. We know how to make the icing and the cherry, but we don't know how to make the cake."

Image classification

- non-parametric vs. parametric models
- nearest neighbor classifier
- hyperparameter
- cross-validation

Image Classification: a core task in Computer Vision

Input: image

Output: Assign image to one of a fixed set of categories
cat
bird
deer
dog
truck

The problem: Semantic Gap

An image is just a big grid of numbers between [0, 255].
e.g. $800 \times 600 \times 3$
(3 channels RGB)

Challenges: Viewpoint Variation

All pixels change when the camera moves!

Challenges: Intraclass Variation

Challenges: Fine-Grained Categories

Ragdoll
American Shorthhair

Challenges: Background clutter

Challenges: Illumination Changes

Challenges: Deformation

Challenges: Occlusion

Image Classification: Very Useful!

Medical Imaging

Galaxy Classification

Kaggle Challenge

An image classifier

def classify_image(image):
 \# Some magic here?
 return class_label

Unlike e.g. sorting a list of numbers,
no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

You could try ...

Find corners

?

Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels

2. Use Machine Learning to train an image classifier
3. Evaluate the classifier on a withheld set of test images

First classifier: Nearest Neighbor Classifier

```
def train(images, labels):
    # Machine learning!
    return model
def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Memorize all data and labels

Predict the label of the most similar training image

Example dataset: CIFAR-10
10 labels
50,000 training images, each image is tiny: 32×32
10,000 test images.
airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

Example dataset: CIFAR-10
10 labels
50,000 training images
10,000 test images.
For every test image (first column), examples of nearest neighbors in rows
airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck


```
import numpy as np
class NearestNeighbor:
    def __init__(self):
        pass
    def train(self, X, y):
        """ X is N x D where each row is an example. Y is l-dimension of size N """
        # the nearest neighbor classifier simply remembers all the training data
        self.Xtr = X
        self.ytr = y
    def predict(self, X):
        """ X is N x D where each row is an example we wish to predict label for """
        num_test = X.shape[0]
    # le}ts make sure that the output type matches the input typ
    Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num_test):
        # find the nearest training image to the i'th test image
        # using the L1 distance (sum of absolute value differences)
        distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
        min_index = np.argmin(distances) # get the index with smallest distance
        Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
        return Ypred
```


Nearest Neighbor classifier

```
class NearestNeighbor:
def __init__(self):
pass
```

```
def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
```

def predict(self, X):
""" X is $\mathrm{N} \times \mathrm{D}$ where each row is an example we wish to predict label for """
num_test $=X$.shape[0]
\# lets make sure that the output type matches the input type
Ypred $=$ np.zeros(num_test, dtype $=$ self.ytr.dtype)
\# loop over all test rows
for i in xrange(num_test):
\# find the nearest training image to the i 'th test image
\# using the L1 distance (sum of absolute value differences)
distances $=\mathrm{np}$. sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index $=\mathrm{np}$.argmin(distances) \# get the index with smallest distance
Ypred[i] = self.ytr[min_index] \# predict the label of the nearest example
return Ypred
class NearestNeighbor:

```
def __init__(self):
```

pass
def train(self, $X, y)$:

```
        """ X is N x D where each row is an example. Y is 1-dimension of size N """
        # the nearest neighbor classifier simply remembers all the training data
        self.Xtr = X
        self.ytr = y
    def predict(self, X):
        """ X is N x D where each row is an example we wish to predict label for """
        num_test = X.shape[0]
        # lets make sure that the output type matches the input type
        Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
```

 \# loop over all test rows
 for i in xrange(num_test):
 \# find the nearest training image to the \(i\) 'th test image
 \# using the L1 distance (sum of absolute value differences)
 distances \(=n\). \(\operatorname{sum}(n p . a b s(s e l f . X t r-X[i,:])\), axis \(=1)\)
 min_index \(=\mathrm{np}\).argmin(distances) \# get the index with smallest distance
 Ypred[i] = self.ytr[min_index] \# predict the label of the nearest example
 return Ypred
 For every test image:

- Find the nearest train image - Return the label of nearest training image

```
import numpy as np
class NearestNeighbor:
    def __init__(self):
        pass
    def train(self, X, y):
        """ X is N x D where each row is an example. Y is l-dimension of size N """
        # the nearest neighbor classifier simply remembers all the training data
        self.Xtr = X
        self.ytr = y
    def predict(self, X):
        """ X is N x D where each row is an example we wish to predict label for """
        num_test = X.shape[0]
        # le}ts make sure that the output type matches the input typ
        Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
    # loop over all test rows
        for i in xrange(num_test):
            # find the nearest training image to the i'th test image
            # using the LI distance (sum of absolute value differences)
            distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
            min_index = np.argmin(distances) # get the index with smallest distance
            Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
        return Ypred
```

Nearest Neighbor classifier

Q: how does the classification speed depend on the size of the training data?

```
class NearestNeighbor:
def __init__(self):
        pass
def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
        # the nearest neighbor classifier simply remembers all the training data
        self.Xtr = X
        self.ytr = y
    def predict(self, X):
        """ X is N x D where each row is an example we wish to predict label for """
        num_test = X.shape[0]
        # lèts make sure that the output type matches the input type
        Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
    # loop over all test rows
        for i in xrange(num_test):
            # find the nearest training image to the i'th test image
            # using the L1 distance (sum of absolute value differences)
            distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
            min_index = np.argmin(distances) # get the index with smallest distance
            Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
    return Ypred
```


Nearest Neighbor classifier

Q: how does the classification speed depend on the size of the training data? linearly :(

This is backwards:

- test time performance is usually much more important in practice.
- Deep Neural Networks flip this: expensive training, cheap test evaluation

Nearest Neighbor Decision Boundaries

Nearest neighbors in two dimensions

Points are training examples; colors give training labels

Nearest Neighbor Decision Boundaries

Nearest neighbors in two dimensions

Points are training examples; colors give training labels

Background colors give the category a test point would be assigned

Nearest Neighbor Decision Boundaries

Nearest neighbors in two dimensions

Points are training examples; colors give training labels

Background colors give the category a test point would be assigned

Nearest Neighbor Decision Boundaries

Nearest neighbors in two dimensions

Points are training examples; colors give training labels

Background colors give the category a test point would be assigned

Nearest Neighbor Decision Boundaries

Nearest neighbors in two dimensions

Points are training examples; colors give training labels

Background colors give the category a test point would be assigned

How to smooth out decision boundaries?

Decision boundary is the boundary between two classification regions

Decision boundaries can be noisy; affected by outliers

Nearest Neighbor Decision Boundaries

Nearest neighbors in two dimensions

Points are training examples; colors give training labels

Background colors give the category a test point would be assigned

How to smooth out decision boundaries? Use more neighbors

Decision boundary is the boundary between two classification regions

Decision boundaries can be noisy; affected by outliers

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take majority vote from K closest points

$$
K=3
$$

K-Nearest Neighbors

Using more neighbors helps smooth out rough decision boundaries

$K=3$

K-Nearest Neighbors

Using more neighbors helps reduce the effect of outliers

K-Nearest Neighbors

When $K>1$ there can be ties between classes.
Need to break somehow!

How do we compare the images? What is the distance metric?
L1 distance: $\quad d_{1}\left(I_{1}, I_{2}\right)=\sum_{p}\left|I_{1}^{p}-I_{2}^{p}\right|$
test image

56	32	10	18						
90	23	128	133						
24	26	178	200						
2	0	255	220						
10	20	24	17						
8	10	89	100						
12	16	178	170						
4	32	233	112	$	=$	46	12	14	1
:---:	:---:	:---:	:---:	:---:					
82	13	39	33						
12	10	0	30						
2	32	22	108						

The choice of distance is a hyperparameter common choices:

L1 (Manhattan) distance

$$
d_{1}\left(I_{1}, I_{2}\right)=\sum_{p}\left|I_{1}^{p}-I_{2}^{p}\right|
$$

L2 (Euclidean) distance
$d_{2}\left(I_{1}, I_{2}\right)=\sqrt{\sum_{p}\left(I_{1}^{p}-I_{2}^{p}\right)^{2}}$

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$
d_{1}\left(I_{1}, I_{2}\right)=\sum_{p}\left|I_{1}^{p}-I_{2}^{p}\right|
$$

$K=1$

L2 (Euclidean) distance
$d_{2}\left(I_{1}, I_{2}\right)=\sqrt{\sum_{p}\left(I_{1}^{p}-I_{2}^{p}\right)^{2}}$

Example dataset: CIFAR-10
10 labels
50,000 training images
10,000 test images.
airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

For every test image (first column), examples of nearest neighbors in rows

What is the best distance to use?
What is the best value of \mathbf{k} to use?
i.e. how do we set the hyperparameters?

What is the best distance to use?
What is the best value of \mathbf{k} to use?
i.e. how do we set the hyperparameters?

Very problem-dependent.
Must try them all out and see what works best.

Try out what hyperparameters work best on test set.

train data
test data

Trying out what hyperparameters work best on test set:

Very bad idea. The test set is a proxy for the generalization performance! Use only VERY SPARINGLY, at the end.

> | train data | test data |
| :--- | :--- |

train data				test data	
fold 1	fold 2	fold 3	fold 4	fold 5	test data

Example of
5-fold cross-validation for the value of \mathbf{k}.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation
(Seems that $\mathrm{k} \sim=7$ works the best for this data)

Problem: Curse of Dimensionality

- Curse of dimensionality: For uniform coverage of space, number of training points needed grows exponentially with dimension

Dimensions $=3$
Points $=4^{3}$

Dimensions $=3$
Points $=4^{2}$

Dimensions = 1
Points $=4$

Problem: Curse of Dimensionality

- Curse of dimensionality: For uniform coverage of space, number of training points needed grows exponentially with dimension

Number of possible
32×32 binary images:
$2^{32 \times 32} \approx 10^{308}$

Problem: Curse of Dimensionality

- Curse of dimensionality: For uniform coverage of space, number of training points needed grows exponentially with dimension

Number of possible
32×32 binary images:
$2^{32 \times 32} \approx 10^{308}$

Number of elementary particles in the visible universe: sourcel
$\approx 10^{97}$

k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

(all 3 images have same $L 2$ distance to the one on the left)

Nearest Neighbor with ConvNet features works well

Devlin et al, "Exploring Nearest Neighbor Approaches for Image Captioning", 2015

Nearest Neighbor with ConvNet features works well

Example: Image Captioning with Nearest Neighbor

A bedroom with a bed and a couch.

A cat sitting in a bathroom sink.

A train is stopped at a train station.

A wooden bench in front of a building.

Devlin et al, "Exploring Nearest Neighbor Approaches for Image Captioning", 2015

The learning problem

- linear classification
- hypothesis class, estimation algorithm
- loss and estimation criterion
- sampling, empirical and expected losses

The Learning Problem

Digit
Recognition

Image Classification

- Steps
—entertain a (biased) set of possibilities (hypothesis class)
—adjust predictions based on available examples (estimation)
—rethink the set of possibilities (model selection)
- Principles of learning are "universal"
—society (e.g., scientific community)
—animal (e.g., human)
—machine

Hypothesis class

- Representation: examples are binary vectors of length $d=64$

$$
\mathrm{x}=[111 \ldots 0001]^{T}=
$$

and labels $y \in\{-1,1\}$ ("no","yes")

- The mapping from examples to labels is a "linear classifier"

$$
\hat{y}=\operatorname{sign}(\theta \cdot \mathbf{x})=\operatorname{sign}\left(\theta_{1} x_{1}+\ldots+\theta_{d} x_{d}\right)
$$

where θ is a vector of parameters we have to learn from examples.

Linear classifier/experts

- We can understand the simple linear classifier

$$
\hat{y}=\operatorname{sign}(\theta \cdot \mathbf{x})=\operatorname{sign}\left(\theta_{1} x_{1}+\ldots+\theta_{d} x_{d}\right)
$$

as a way of combining expert opinion (in this case simple binary features)

Estimation

- How do we adjust the parameters θ based on the labeled examples?

$$
\hat{y}=\operatorname{sign}(\theta \cdot \mathbf{x})
$$

For example, we can simply refine/update the parameters whenever we make a mistake (perceptron algorithm):

$$
\theta_{i} \leftarrow \theta_{i}+y x_{i}, i=1, \ldots, d \quad \text { if prediction was wrong }
$$

Evaluation

- Does the simple mistake driven algorithm work?

(average classification error as a function of the number of examples and labels seen so far)

Illustration of Convergence

- Convergence of the perceptron learning algorithm

Linear classifier: image classification

image parameters
$f(x, W)$
10 numbers,
indicating class scores
[32×32×3]
array of numbers $0 . . .1$
(3072 numbers total)

Linear classifier: image classification

$$
f(x, W)=W x
$$

10 numbers,
indicating class scores
[32×32×3]
array of numbers $0 . . .1$

Linear classifier: image classification

Linear classifier: image classification

$$
f(x, W)=W x{ }^{3072 \times 1} \quad(+\mathrm{b}) 10 \times 1
$$

[32×32×3] array of numbers 0... 1

10 numbers,
indicating class
scores
parameters, or "weights"

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

	0.2	-0.5	0.1	2.0	56	1.1	-96.8	cat score
	1.5	1.3	2.1	0.0	231	3.2	437.9	dog score
input image	0	0.25	0.2	-0.3	24	-1.2	61.95	ship score
	W				2	b	$f\left(x_{i} ; W, b\right)$	

Interpreting a Linear Classifier

$$
f\left(x_{i}, W, b\right)=W x_{i}+b
$$

Q: what does the linear classifier do, in plain English?

Interpreting a Linear Classifier

$$
f\left(x_{i}, W, b\right)=W x_{i}+b
$$

Example trained weights of a linear classifier trained on CIFAR-10:

Interpreting a Linear Classifier

Model selection

- The simple linear classifier cannot solve all the problems (e.g., XOR)

- Can we rethink the approach to do even better?
- We can, for example, add "polynomial experts"

$$
\hat{y}=\operatorname{sign}\left(\theta_{1} x_{1}+\ldots+\theta_{d} x_{d}+\theta_{12} x_{1} x_{2}+\ldots\right)
$$

Model selection (cont'd)

Review: The learning problem

Image Classification

- Hypothesis class: we consider some restricted set \mathcal{F} of mappings $f: \mathcal{X} \rightarrow \mathcal{L}$ from images to labels
- Estimation: on the basis of a training set of examples and labels, $\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}$, we find an estimate $\hat{f} \in \mathcal{F}$
- Evaluation: we measure how well \hat{f} generalizes to yet unseen examples, i.e., whether $\hat{f}\left(\mathbf{x}_{\text {new }}\right)$ agrees with $y_{\text {new }}$

Hypothesis and estimation

- We used a simple linear classifier, a parameterized mapping $f(\mathbf{x} ; \theta)$ from images \mathcal{X} to labels \mathcal{L}, to solve a binary image classification problem (2's vs 3's):

$$
\hat{y}=f(\mathbf{x} ; \theta)=\operatorname{sign}(\theta \cdot \mathbf{x})
$$

where \mathbf{x} is a pixel image and $\hat{y} \in\{-1,1\}$.

- The parameters θ were adjusted on the basis of the training examples and labels according to a simple mistake driven update rule (written here in a vector form)

$$
\theta \leftarrow \theta+y_{i} \mathbf{x}_{i}, \quad \text { whenever } \quad y_{i} \neq \operatorname{sign}\left(\theta \cdot \mathbf{x}_{i}\right)
$$

- The update rule attempts to minimize the number of errors that the classifier makes on the training examples

Estimation criterion

- We can formulate the binary classification problem more explicitly by defining a zero-one loss:

$$
\operatorname{Loss}(y, \hat{y})=\left\{\begin{array}{l}
0, y=\hat{y} \\
1, y \neq \hat{y}
\end{array}\right.
$$

so that

$$
\frac{1}{n} \sum_{i=1}^{n} \operatorname{Loss}\left(y_{i}, \hat{y}_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \operatorname{Loss}\left(y_{i}, f\left(\mathbf{x}_{i} ; \theta\right)\right)
$$

gives the fraction of prediction errors on the training set.

- This is a function of the parameters θ and we can try to minimize it directly.

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2

5.1
-1.7

1.3
4.9
2.5
$2.0-3.1$

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i}, is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

cat	3.2	1.3	2.2
car	5.1	$\mathbf{4 . 9}$	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9		

Multiclass SVM loss:

Given an example (x_{i}, y_{i}) where x_{i}, is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

$$
=\max (0,5.1-3.2+1)
$$

$$
+\max (0,-1.7-3.2+1)
$$

$$
=\max (0,2.9)+\max (0,-3.9)
$$

$$
=2.9+0
$$

$$
=2.9
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example (x_{i}, y_{i}) where x_{i}, is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

$$
\begin{aligned}
= & \max (0,1.3-4.9+1) \\
& +\max (0,2.0-4.9+1) \\
= & \max (0,-2.6)+\max (0,-1.9) \\
= & 0+0 \\
= & 0
\end{aligned}
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2
5.1
car
frog
Losses:
2.9

1.3	2.2
4.9	2.5
2.0	-3.1
0	10.9

Multiclass SVM loss:

Given an example (x_{i}, y_{i}) where x_{i}, is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

$$
=\max (0,2.2-(-3.1)+1)
$$

$$
+\max (0,2.5-(-3.1)+1)
$$

$$
=\max (0,5.3)+\max (0,5.6)
$$

$$
=5.3+5.6
$$

$$
=10.9
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2

$$
5.1
$$

$$
-1.7
$$

2.9

cat
car
frog
Losses:
1.3
2.2
2.5
4.9
-3.1
10.9

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i}, is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
and the full training loss is the mean over all examples in the training data:

$$
\begin{gathered}
L=\frac{1}{N} \sum_{i=1}^{N} L_{i} \\
L=(2.9+0+10.9) / 3
\end{gathered}
$$

$$
=4.6
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2 5.1
-1.7
2.9

cat
car
frog
Losses:
1.3
2.2
$4.9 \quad 2.5$
$2.0 \quad$-3.1
10.9

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i}, is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
Q: what is the min/max possible loss?

There is something missing in the loss:

$$
f(x, W)=W x
$$

$$
L=\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+1\right)
$$

e.g. suppose that we found a W such that $L=0$. Is this W unique?

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
Before:

$$
\begin{aligned}
= & \max (0,1.3-4.9+1) \\
& +\max (0,2.0-4.9+1) \\
= & \max (0,-2.6)+\max (0,-1.9) \\
= & 0+0 \\
= & 0
\end{aligned}
$$

With W twice as large:
$=\max (0,2.6-9.8+1)$

$$
+\max (0,4.0-9.8+1)
$$

$$
=\max (0,-6.2)+\max (0,-4.8)
$$

$$
=0+0
$$

$$
=0
$$

Ma: b+ $\quad \lambda=$ regularization strength (hyperparameter)

$L=\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+1\right)+\lambda R(W)$
In common use:

L2 regularization
L1 regularization
Elastic net (L1 + L2)

$$
\begin{aligned}
& R(W)=\sum_{k} \sum_{l} W_{k, l}^{2} \\
& R(W)=\sum_{k} \sum_{l}\left|W_{k, l}\right| \\
& R(W)=\sum_{k} \sum_{l} \beta W_{k, l}^{2}+\left|W_{k, l}\right|
\end{aligned}
$$

Max norm regularization

Dropout (will see later)

Batch normalization (will see later)

L2 regularization: motivation

$$
\begin{aligned}
& x=[1,1,1,1] \\
& w_{1}=[1,0,0,0] \\
& w_{2}=[0.25,0.25,0.25,0.25]
\end{aligned}
$$

$$
w_{1}^{T} x=w_{2}^{T} x=1
$$

Estimation criterion (revisited)

- We have reduced the estimation problem to a minimization problem

$$
\text { find } \theta \text { that minimizes } \overbrace{\frac{1}{n} \sum_{i=1}^{n} \operatorname{Loss}\left(y_{i}, f\left(\mathbf{x}_{i} ; \theta\right)\right)}^{\text {empirical loss }}
$$

-valid for any parameterized class of mappings from examples to predictions -valid when the predictions are discrete labels, real valued, or other provided that the loss is defined appropriately
-may be ill-posed (under-constrained) as stated

- But why is it sensible to minimize the empirical loss in the first place since we are only interested in the performance on new examples?

Training and test performance: sampling

- We assume that each training and test example-label pair, (\mathbf{x}, y) is drawn independently at random from the same but unknown population of examples and labels.
- We can represent this population as a joint probability distribution $P(\mathbf{x}, y)$ so that each training/test example is a sample from this distribution $\left(\mathbf{x}_{i}, y_{i}\right) \sim P$

Training and test performance: sampling

- We assume that each training and test example-label pair, (\mathbf{x}, y) is drawn independently at random from the same but unknown population of examples and labels.
- We can represent this population as a joint probability distribution $P(\mathbf{x}, y)$ so that each training/test example is a sample from this distribution $\left(\mathbf{x}_{i}, y_{i}\right) \sim P$

$$
\begin{aligned}
\text { Empirical (training) loss } & =\frac{1}{n} \sum_{i=1}^{n} \operatorname{Loss}\left(y_{i}, f\left(\mathbf{x}_{i} ; \theta\right)\right) \\
\text { Expected (test) loss } & =E_{(\mathbf{x}, y) \sim P}\{\operatorname{Loss}(y, f(\mathbf{x} ; \theta))\}
\end{aligned}
$$

- The training loss based on a few sampled examples and labels serves as a proxy for the test performance measured over the whole population

Regression, example
 Linear regression

- Estimation, errors, analysis

Regression

- The goal is to make quantitative (real valued) predictions on the basis of a (vector of) features or attributes
- Example: predicting vehicle fuel efficiency (mpg) from 8 attributes

y	\mathbf{x}				
	cyls	disp	hp	weight	\ldots
18.0	8	307.0	130.00	3504	\ldots
26.0	4	97.00	46.00	1835	\ldots
33.5	4	98.00	83.00	2075	\ldots
\ldots					

- We need to
-specify the class of functions (e.g., linear)
-select how to measure prediction loss
—solve the resulting minimization problem

Linear regression

- We begin by considering linear regression (easy to extend to more complex predictions later on)

$$
\begin{array}{rl}
f: \mathcal{R} \rightarrow \mathcal{R} & f(x ; \mathbf{w})=w_{0}+w_{1} x \\
f: \mathcal{R}^{d} \rightarrow \mathcal{R} & f(\mathbf{x} ; \mathbf{w})=w_{0}+w_{1} x_{1}+\ldots w_{d} x_{d}
\end{array}
$$

where \mathbf{w} are parameters we need to set.

Linear regression: squared loss

$$
\begin{array}{rl}
f: \mathcal{R} \rightarrow \mathcal{R} & \\
f(x ; \mathbf{w})=w_{0}+w_{1} x \\
f: \mathcal{R}^{d} \rightarrow \mathcal{R} & f(\mathbf{x} ; \mathbf{w})=w_{0}+w_{1} x_{1}+\ldots w_{d} x_{d}
\end{array}
$$

- We can measure the prediction loss in terms of squared error, $\operatorname{Loss}(y, \hat{y})=(y-\hat{y})^{2}$, so that the empirical loss on n training samples becomes mean squared error

$$
J_{n}(\mathbf{W})=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(\mathbf{x}_{i} ; \mathbf{W}\right)\right)^{2}
$$

Linear regression: estimation

- We have to minimize the empirical squared loss

$$
\begin{aligned}
J_{n}(\mathbf{w}) & =\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2} \quad(1-\operatorname{dim})
\end{aligned}
$$

- By setting the derivatives with respect to w_{1} and w_{0} to zero, we get necessary conditions for the "optimal" parameter values

$$
\begin{aligned}
\frac{\partial}{\partial w_{1}} J_{n}(\mathbf{w}) & =0 \\
\frac{\partial}{\partial w_{0}} J_{n}(\mathbf{w}) & =0
\end{aligned}
$$

Optimality conditions: derivation

$$
\frac{\partial}{\partial w_{1}} J_{n}(\mathbf{w})=\frac{\partial}{\partial w_{1}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2}
$$

Optimality conditions: derivation

$$
\begin{aligned}
\frac{\partial}{\partial w_{1}} J_{n}(\mathbf{w}) & =\frac{\partial}{\partial w_{1}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{1}}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2}
\end{aligned}
$$

Optimality conditions: derivation

$$
\begin{aligned}
\frac{\partial}{\partial w_{1}} J_{n}(\mathbf{w}) & =\frac{\partial}{\partial w_{1}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{1}}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2} \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right) \frac{\partial}{\partial w_{1}}\left(y_{i}-w_{0}-w_{1} x_{i}\right)
\end{aligned}
$$

Optimality conditions: derivation

$$
\begin{aligned}
\frac{\partial}{\partial w_{1}} J_{n}(\mathbf{w}) & =\frac{\partial}{\partial w_{1}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{1}}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2} \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right) \frac{\partial}{\partial w_{1}}\left(y_{i}-w_{0}-w_{1} x_{i}\right) \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)\left(-x_{i}\right)=0
\end{aligned}
$$

Optimality conditions: derivation

$$
\begin{aligned}
\frac{\partial}{\partial w_{1}} J_{n}(\mathbf{w}) & =\frac{\partial}{\partial w_{1}} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_{1}}\left(y_{i}-w_{0}-w_{1} x_{i}\right)^{2} \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right) \frac{\partial}{\partial w_{1}}\left(y_{i}-w_{0}-w_{1} x_{i}\right) \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)\left(-x_{i}\right)=0 \\
\frac{\partial}{\partial w_{0}} J_{n}(\mathbf{w}) & =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0}-w_{1} x_{i}\right)(-1)=0
\end{aligned}
$$

Linear regression: matrix notation

- We can express the solution a bit more generally by resorting to a matrix notation

$$
\mathbf{y}=\left[\begin{array}{l}
y_{1} \\
\cdots \\
y_{n}
\end{array}\right], \mathbf{X}=\left[\begin{array}{cc}
1 & x_{1} \\
\cdots & \cdots \\
1 & x_{n}
\end{array}\right], \mathbf{w}=\left[\begin{array}{c}
w_{0} \\
w_{1}
\end{array}\right]
$$

so that

$$
\begin{aligned}
\frac{1}{n} \sum_{t=1}^{n}\left(y_{t}-w_{0}-w_{1} x_{t}\right)^{2} & =\frac{1}{n}\left\|\left[\begin{array}{c}
y_{1} \\
\cdots \\
y_{n}
\end{array}\right]-\left[\begin{array}{cc}
1 & x_{1} \\
\cdots & \cdots \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{l}
w_{0} \\
w_{1}
\end{array}\right]\right\|^{2} \\
& =\frac{1}{n}\|\mathbf{y}-\mathbf{X w}\|^{2}
\end{aligned}
$$

Linear regression: solution

- By setting the derivatives of $\|\mathbf{y}-\mathbf{X w}\|^{2} / n$ to zero, we get the same optimality conditions as before, now expressed in a matrix form

$$
\frac{\partial}{\partial \mathbf{w}} \frac{1}{n}\|\mathbf{y}-\mathbf{X w}\|^{2}=\frac{\partial}{\partial \mathbf{w}} \frac{1}{n}(\mathbf{y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{y}-\mathbf{X} \mathbf{w})
$$

Linear regression: solution

- By setting the derivatives of $\|\mathbf{y}-\mathbf{X w}\|^{2} / n$ to zero, we get the same optimality conditions as before, now expressed in a matrix form

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{w}} \frac{1}{n}\|\mathbf{y}-\mathbf{X} \mathbf{w}\|^{2} & =\frac{\partial}{\partial \mathbf{w}} \frac{1}{n}(\mathbf{y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{y}-\mathbf{X} \mathbf{w}) \\
& =\frac{2}{n} \mathbf{X}^{T}(\mathbf{y}-\mathbf{X} \mathbf{w})
\end{aligned}
$$

Linear regression: solution

- By setting the derivatives of $\|\mathbf{y}-\mathbf{X w}\|^{2} / n$ to zero, we get the same optimality conditions as before, now expressed in a matrix form

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{w}} \frac{1}{n}\|\mathbf{y}-\mathbf{X} \mathbf{w}\|^{2} & =\frac{\partial}{\partial \mathbf{w}} \frac{1}{n}(\mathbf{y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{y}-\mathbf{X} \mathbf{w}) \\
& =\frac{2}{n} \mathbf{X}^{T}(\mathbf{y}-\mathbf{X} \mathbf{w}) \\
& =\frac{2}{n}\left(\mathbf{X}^{T} \mathbf{y}-\mathbf{X}^{T} \mathbf{X} \mathbf{w}\right)=\mathbf{0}
\end{aligned}
$$

which gives

$$
\hat{\mathbf{w}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

- The solution is a linear function of the outputs y

Alternative: Gradient Descent Algorithm

- One straightforward method: gradient descent
- initialize $\boldsymbol{\theta}$ (e.g., randomly)
- repeatedly update $\boldsymbol{\theta}$ based on the gradient

$$
\begin{aligned}
& \Delta=-\frac{1}{T} \sum_{t} \nabla_{\boldsymbol{\theta}} l\left(f\left(\mathbf{x}^{(t)} ; \boldsymbol{\theta}\right), y^{(t)}\right)-\lambda \nabla_{\boldsymbol{\theta}} \Omega(\boldsymbol{\theta}) \\
& \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\alpha \Delta
\end{aligned}
$$

- α is the learning rate

Effect of learning rate λ

- Large $\lambda=>$ Fast convergence but larger residual error Also possible oscillations
- Small $\lambda=>$ Slow convergence but small residual error

Local and Global Optima

Stochastic Gradient Descent

- Two ways to generalize this for all examples in training set:

1. Batch updates: sum or average updates across every example n, then change the parameter values
2.Stochastic/online updates: update the parameters for each training case in turn, according to its own gradients

$$
\begin{aligned}
& \Delta=-\nabla_{\boldsymbol{\theta}} l\left(f\left(\mathbf{x}^{(t)} ; \boldsymbol{\theta}\right), y^{(t)}\right)-\lambda \nabla_{\boldsymbol{\theta}} \Omega(\boldsymbol{\theta}) \\
& \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\alpha \Delta
\end{aligned}
$$

Linear regression: generalization

- As the number of training examples increases our solution gets "better"

We'd like to understand the error a bit better

Linear regression: types of errors

- Structural error measures the error introduced by the limited function class (infinite training data):
related to the
capacity of
the model

$$
\min _{w_{1}, w_{0}} E_{(x, y) \sim P}\left(y-w_{0}-w_{1} x\right)^{2}=E_{(x, y) \sim P}\left(y-w_{0}^{*}-w_{1}^{*} x\right)^{2}
$$

where $\left(w_{0}^{*}, w_{1}^{*}\right)$ are the optimal linear regression parameters.

- Approximation error measures how close we can get to the optimal linear predictions with limited training data:

$$
E_{(x, y) \sim P}\left(w_{0}^{*}+w_{1}^{*} x-\hat{w}_{0}-\hat{w}_{1} x\right)^{2}
$$

where $\left(\hat{w}_{0}, \hat{w}_{1}\right)$ are the parameter estimates based on a small training set (therefore themselves random variables).

Linear regression: error decomposition

- The expected error of our linear regression function decomposes into the sum of structural and approximation errors

$$
\begin{aligned}
& E_{(x, y) \sim P}\left(y-\hat{w}_{0}-\hat{w}_{1} x\right)^{2}= \\
& \quad E_{(x, y) \sim P}\left(y-w_{0}^{*}-w_{1}^{*} x\right)^{2}+ \\
& \quad E_{(x, y) \sim P}\left(w_{0}^{*}+w_{1}^{*} x-\hat{w}_{0}-\hat{w}_{1} x\right)^{2}
\end{aligned}
$$

Bias-Variance Tradeoff

- Variance of trained model: does it vary a lot if the training set changes
- Bias of trained model: is the average model close to the true solution?
- Generalization error can be seen as the sum of bias and the variance

Parametric vs. non-parametric models

- Parametric model: its capacity is fixed and does not increase with the amount of training data
- examples: linear classifier, neural network with fixed number of hidden units, etc.
- Non-parametric model: the capacity increases with the amount of training data
- examples: k nearest neighbors classifier, neural network with adaptable hidden layer size, etc.

Beyond linear regression models

— additive regression models, examples

- generalization and cross-validation
- population minimizer

Linear regression

- Linear regression functions,

$$
\begin{array}{rl}
f: \mathcal{R} & \rightarrow \mathcal{R} \\
f: \mathcal{R}^{d} \rightarrow \mathcal{R} & f(x ; \mathbf{w})=w_{0}+w_{1} x, \text { or } \\
& f(\mathbf{x} ; \mathbf{w})=w_{0}+w_{1} x_{1}+\ldots+w_{d} x_{d}
\end{array}
$$

combined with the squared loss, are convenient because they are linear in the parameters.
-we get closed form estimates of the parameters

$$
\hat{\mathbf{w}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

where, for example, $\mathbf{y}=\left[y_{1}, \ldots, y_{n}\right]^{T}$.
-the resulting prediction errors $\epsilon_{i}=y_{i}-f\left(\mathbf{x}_{i} ; \hat{\mathbf{w}}\right)$ are uncorrelated with any linear function of the inputs \mathbf{x}.
-we can easily extend these to non-linear functions of the inputs while still keeping them linear in the parameters

Beyond linear regression

- Example extension: $m^{\text {th }}$ order polynomial regression where $f: \mathcal{R} \rightarrow \mathcal{R}$ is given by

$$
f(x ; \mathbf{w})=w_{0}+w_{1} x+\ldots+w_{m-1} x^{m-1}+w_{m} x^{m}
$$

-linear in the parameters, non-linear in the inputs
-solution as before

$$
\hat{\mathbf{w}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

where

$$
\hat{\mathbf{w}}=\left[\begin{array}{c}
\hat{w}_{0} \\
\hat{w}_{1} \\
\ldots \\
\hat{w}_{m}
\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{m} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{m} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{m}
\end{array}\right]
$$

Polynomial regression

Underfitting and Overfitting

Generalization and Capacity

0
Optimal Capacity
Capacity

Bias and Variance

Complexity and overfitting

- With limited training examples our polynomial regression model may achieve zero training error but nevertheless has a large test (generalization) error

$$
\begin{array}{ll}
\text { train } & \frac{1}{n} \sum_{t=1}^{n}\left(y_{t}-f\left(x_{t} ; \hat{\mathbf{w}}\right)\right)^{2} \approx 0 \\
\text { test } & E_{(x, y) \sim P}(y-f(x ; \hat{\mathbf{w}}))^{2} \gg 0
\end{array}
$$

- We suffer from overfitting when the training error no longer bears any relation to the generalization error

Avoiding overfitting: cross-validation

- Cross-validation allows us to estimate the generalization error based on training examples alone

Leave-one-out cross-validation treats each training example in turn as a test example:

$$
\mathrm{CV}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i} ; \hat{\mathbf{w}}^{-i}\right)\right)^{2}
$$

where $\hat{\mathbf{w}}^{-i}$ are the least squares estimates of the parameters without the $i^{\text {th }}$ training example.

Polynomial regression: example (cont'd)

$$
\text { degree }=1, C V=0.6 \quad \text { degree }=3, C V=1.5
$$

degree $=5, C V=6.0 \quad$ degree $=7, C V=15.6$

Additive models

- More generally, predictions can be based on a linear combination of a set of basis functions (or features) $\left\{\phi_{1}(\mathbf{x}), \ldots, \phi_{m}(\mathbf{x})\right\}$, where each $\phi_{i}(\mathbf{x}): \mathcal{R}^{d} \rightarrow \mathcal{R}$, and

$$
f(\mathbf{x} ; \mathbf{w})=w_{0}+w_{1} \phi_{1}(\mathbf{x})+\ldots+w_{m} \phi_{m}(\mathbf{x})
$$

- Examples

$$
\begin{aligned}
& \text { If } \phi_{i}(x)=x^{i}, i=1, \ldots, m \text {, then } \\
& \qquad f(x ; \mathbf{w})=w_{0}+w_{1} x+\ldots+w_{m-1} x^{m-1}+w_{m} x^{m}
\end{aligned}
$$

Additive models

- More generally, predictions can be based on a linear combination of a set of basis functions (or features) $\left\{\phi_{1}(\mathbf{x}), \ldots, \phi_{m}(\mathbf{x})\right\}$, where each $\phi_{i}(\mathbf{x}): \mathcal{R}^{d} \rightarrow \mathcal{R}$, and

$$
f(\mathbf{x} ; \mathbf{w})=w_{0}+w_{1} \phi_{1}(\mathbf{x})+\ldots+w_{m} \phi_{m}(\mathbf{x})
$$

- Examples

$$
\begin{aligned}
& \text { If } \phi_{i}(x)=x^{i}, i=1, \ldots, m \text {, then } \\
& \qquad f(x ; \mathbf{w})=w_{0}+w_{1} x+\ldots+w_{m-1} x^{m-1}+w_{m} x^{m} \\
& \text { If } m=d, \phi_{i}(\mathbf{x})=x_{i}, i=1, \ldots, d \text {, then } \\
& \qquad f(\mathbf{x} ; \mathbf{w})=w_{0}+w_{1} x_{1}+\ldots+w_{d} x_{d}
\end{aligned}
$$

Additive models (cont'd)

- The basis functions can capture various (e.g., qualitative) properties of the inputs.
- For example: we can try to rate companies based on text descriptions

$$
\begin{aligned}
\mathbf{x} & =\text { text document (collection of words) } \\
\phi_{i}(\mathbf{x}) & =\left\{\begin{array}{l}
1 \text { if word } i \text { appears in the document } \\
0 \text { otherwise }
\end{array}\right. \\
f(\mathbf{x} ; \mathbf{w}) & =w_{0}+\sum_{i \in \text { words }} w_{i} \phi_{i}(\mathbf{x})
\end{aligned}
$$

Additive models (cont'd)

- We can view the additive models graphically in terms of simple "units" and "weights"

- In neural networks, the basis functions themselves have adjustable parameters (cf. prototypes)

Take-home messages

Statistical regression models

- model formulation, motivation
- maximum likelihood estimation

Statistical view of linear regression

- In a statistical regression model we model both the function and noise

$$
\begin{aligned}
\text { Observed output } & =\text { function }+ \text { noise } \\
y & =f(\mathbf{x} ; \mathbf{w})+\epsilon
\end{aligned}
$$

where, e.g., $\epsilon \sim N\left(0, \sigma^{2}\right)$.

- Whatever we cannot capture with our chosen family of functions will be interpreted as noise

Statistical view of linear regression

- $f(\mathbf{x} ; \mathbf{w})$ is trying to capture the mean of the observations y given the input \mathbf{x} :

$$
\begin{aligned}
E\{y \mid \mathbf{x}\} & =E\{f(\mathbf{x} ; \mathbf{w})+\epsilon \mid \mathbf{x}\} \\
& =f(\mathbf{x} ; \mathbf{w})
\end{aligned}
$$

where $E\{y \mid \mathbf{x}\}$ is the conditional expectation of y given \mathbf{x}, evaluated according to the model (not according to the underlying distribution P)

Statistical view of linear regression

- According to our statistical model

$$
y=f(\mathbf{x} ; \mathbf{w})+\epsilon, \quad \epsilon \sim N\left(0, \sigma^{2}\right)
$$

the outputs y given \mathbf{x} are normally distributed with mean $f(\mathbf{x} ; \mathbf{w})$ and variance σ^{2} :

$$
p\left(y \mid \mathbf{x}, \mathbf{w}, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}(y-f(\mathbf{x} ; \mathbf{w}))^{2}\right\}
$$

(we model the uncertainty in the predictions, not just the mean)

- Loss function? Estimation?

Maximum likelihood estimation

- Given observations $D_{n}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}$ we find the parameters \mathbf{w} that maximize the (conditional) likelihood of the outputs

$$
L\left(D_{n} ; \mathbf{w}, \sigma^{2}\right)=\prod_{i=1}^{n} p\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}, \sigma^{2}\right)
$$

- Example: linear function

$$
\begin{aligned}
& p\left(y \mid \mathbf{x}, \mathbf{w}, \sigma^{2}\right)= \\
& \quad \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(y-w_{0}-w_{1} x\right)^{2}\right\}
\end{aligned}
$$

Maximum likelihood estimation (cont'd)

Likelihood of the observed outputs:

$$
L\left(D ; \mathbf{w}, \sigma^{2}\right)=\prod_{i=1}^{n} P\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}, \sigma^{2}\right)
$$

- It is often easier (but equivalent) to try to maximize the log-likelihood:

$$
\begin{aligned}
l\left(D ; \mathbf{w}, \sigma^{2}\right) & =\log L\left(D ; \mathbf{w}, \sigma^{2}\right)=\sum_{i=1}^{n} \log P\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}, \sigma^{2}\right) \\
& =\sum_{i=1}^{n}\left(-\frac{1}{2 \sigma^{2}}\left(y_{i}-f\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)^{2}-\log \sqrt{2 \pi \sigma^{2}}\right) \\
& =\left(-\frac{1}{2 \sigma^{2}}\right) \sum_{i=1}^{n}\left(y_{i}-f\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)^{2}+\ldots
\end{aligned}
$$

Maximum likelihood estimation (cont'd)

- Maximizing log-likelihood is equivalent to minimizing empirical loss when the loss is defined according to

$$
\operatorname{Loss}\left(y_{i}, f\left(\mathbf{x}_{i} ; \mathbf{w}\right)\right)=-\log P\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}, \sigma^{2}\right)
$$

Loss defined as the negative log-probability is known as the log-loss.

Maximum likelihood estimation (cont'd)

- The log-likelihood of observations

$$
\log L\left(D ; \mathbf{w}, \sigma^{2}\right)=\sum_{i=1}^{n} \log P\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}, \sigma^{2}\right)
$$

is a generic fitting criterion and can be used to estimate the noise variance σ^{2} as well.

- Let $\hat{\mathbf{w}}$ be the maximum likelihood (here least squares) setting of the parameters. What is the maximum likelihood estimate of σ^{2}, obtained by solving

$$
\frac{\partial}{\partial \sigma^{2}} \log L\left(D ; \mathbf{w}, \sigma^{2}\right)=0 ?
$$

Maximum likelihood estimation (cont'd)

- The log-likelihood of observations

$$
\log L\left(D ; \mathbf{w}, \sigma^{2}\right)=\sum_{i=1}^{n} \log P\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}, \sigma^{2}\right)
$$

is a generic fitting criterion and can be used to estimate the noise variance σ^{2} as well.

- Let $\hat{\mathbf{w}}$ be the maximum likelihood (here least squares) setting of the parameters.

The maximum likelihood estimate of the noise variance σ^{2} is

$$
\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(\mathbf{x}_{i} ; \hat{\mathbf{w}}\right)\right)^{2}
$$

i.e., the mean squared prediction error.

Polynomial regression

- Consider again a simple $m^{\text {th }}$ degree polynomial regression model

$$
y=w_{0}+w_{1} x+\ldots+w_{m} x^{m}+\epsilon, \epsilon \sim N\left(0, \sigma^{2}\right)
$$

where σ^{2} is assumed fixed (known).

- In this model the outputs $\left\{y_{1}, \ldots, y_{n}\right\}$ corresponding to any inputs $\left\{x_{1}, \ldots, x_{n}\right\}$ are generated according to

$$
\begin{aligned}
\mathbf{y} & =\mathbf{X} \mathbf{w}+\mathbf{e}, \quad \text { where } \\
\mathbf{y} & =\left[\begin{array}{c}
y_{1} \\
\ldots \\
y_{n}
\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{cccc}
1 & x_{1} & \ldots & x_{1}^{m} \\
\ldots & \ldots & \ldots & \\
1 & x_{n} & \ldots & x_{n}^{m}
\end{array}\right], \quad \mathbf{e}=\left[\begin{array}{c}
\epsilon_{1} \\
\ldots \\
\epsilon_{n}
\end{array}\right]
\end{aligned}
$$

$$
\text { and } \epsilon_{i} \sim N\left(0, \sigma^{2}\right), i=1, \ldots, n
$$

ML estimator, uncertainty

- We are interested in studying how the choice of inputs $\left\{x_{1}, \ldots, x_{n}\right\}$ or, equivalently, \mathbf{X}, affects the accuracy of our regression model
- Our model for the outputs $\left\{y_{1}, \ldots, y_{n}\right\}$ given \mathbf{X} is

$$
\mathbf{y}=\mathbf{X} \mathbf{w}+\mathbf{e}, \quad \mathbf{e} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

- We assume also that the training outputs are actually generated by a model in this class with some fixed but unknown parameters $\mathbf{w}^{*}\left(\right.$ same σ^{2})

$$
\mathbf{y}=\mathbf{X} \mathbf{w}^{*}+\mathbf{e}, \quad \mathbf{e} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

- We can now ask, for a given \mathbf{X}, how accurately we are able to recover the "true" parameters w*

ML estimator, uncertainty

- The ML estimator $\hat{\mathbf{w}}$ viewed here as a function of the outputs \mathbf{y} for a fixed \mathbf{X}, is given by

$$
\hat{\mathbf{w}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

- We need to understand how $\hat{\mathbf{w}}$ varies in relation to \mathbf{w}^{*} when the outputs are generated according to

$$
\mathbf{y}=\mathbf{X w}^{*}+\mathbf{e}, \quad \mathbf{e} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

- In the absence of noise \mathbf{e}, the ML estimator would recover \mathbf{w}^{*} exactly (with only minor constraints on \mathbf{X})

$$
\begin{aligned}
\hat{\mathbf{w}} & =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}\left(\mathbf{X} \mathbf{w}^{*}\right) \\
& =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{X}\right) \mathbf{w}^{*} \\
& =\mathbf{w}^{*}
\end{aligned}
$$

ML estimator, uncertainty

- In the presence of noise we can still use the fact that $\mathbf{y}=\mathbf{X w}^{*}+\mathbf{e}$ to simplify the parameter estimates

$$
\begin{aligned}
\hat{\mathbf{w}} & =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \\
& =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}\left(\mathbf{X} \mathbf{w}^{*}+\mathbf{e}\right) \\
& =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{X}\right) \mathbf{w}^{*}+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{e} \\
& =\mathbf{w}^{*}+\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{e}
\end{aligned}
$$

- So the ML estimate is the correct parameter vector plus an estimate based purely on noise

Recap: Lecture overview

- what is learning?
- types of machine learning problems
- image classification
- linear regression
- generalization
- cross-validation
- maximum likelihood estimation

Next Lecture:

Multi-layer Perceptrons

