Al P N R
LRGN N A OV
BEFNRS RN AR
G ER Y O TR REL
: AN el s)y R \" 0 § q Y
OIS ’ N s &\‘ SR LA
ip.(b ISR : &\CVQ' 0\ ‘?; \Q'O“W i
: 2 e L
v > WIS
Ry

~ Lecture ;
MODE CONNFETI——

OPTIMA G w1/ % FUNCT BY SIMPLE CURVES OVER
WHICH T'*=:iNb A2 === CCUR ONSTANT

BASED ON THEY &7 F2UBN11 \UR BARIPOV, PAVELM ONWILSON '
VISUALIZATION & A/ o1 15 A coLLABORATIONRETRIE YA F vifR 10EM @ LOSSLANDSCAPE CoM)

NeurIPS 2018, ARXIV:1802.10026 | LOSSLANDSCAPE.COM . ~ :

s

ResNet-20 Wlth no skip connections Q,_;n‘C

[FARf]Q dataset,»Javie;r ldeami
l . / | 5 A g

3 4 \ f

LOSS (TRAIN MODE)

REAL DATA. RESNET-20 NO-SKIP.
CIFAR10. SGD-MOM. BS=128
WD=3e-4 MOM=0.9

BN, TRAIN MOD, 90K PTS

LOG SCALED (ORIG LOSS NUMS)

Image: Jose-Luis’@¥ares

Previously on COMP541 &

* multi-layer perceptrons

e activation functions

* chain rule

* backpropagation algorithm

« computational graph

e distributed word representations

Lecture overview

data preprocessing and normalization

welight initializations

ways to Improve generalization

optimization

babysitting the learning process

hyperparameter selection

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Fel-Fei Li, Andrej Karpathy and Justin Johnson's CS231n class

—Roger Grosse's CSC321 class

—Shubhendu Trivedi and Risi Kondor's CMSC 35246 class

—Efstratios Gavves and Max Welling's UVA deep learning class

—Hinton's Neural Networks for Machine Learning class

—Justin Johnson's EECS 498/598 class

* Paper presentations will
start next week!

+ Paper critiques

— More info on \Wednesday

Whe

z a) ‘When Do Flat Mini!
— /F'——__/'-

ST

Jean Kaddout
Cenire for / Asificial lmclh;m.
University Coliege

Ricardo Silya Matt J. Kusa

Depanment of ratistical Science Centre for Anificial lnle\l'

University College Loadon University College London
Abstract

¢ been show on perior
tic and uAANI\C gradient- h.w.d \vpu.m.:n
.I.’ll:|l(ll\ﬂ due 10 theiw
.\gm; (SWA), and 2. SharPeests Aware Mini
been lmu\u! investigatioa int® their propesiy

umm\ rfn' minirea optim: c Jloss neigh
8 tic

(e across differsnt domains. We fill this £20
of the wdc\s u.nm:d with each method and | nmg_h brod
mm\ natural Janguage processing. graph Is;‘n.sl‘mahhﬂ jcaming

ks, We or several surprising di B esc results, which we hope
will help resear riher improve deeP \earning OPUMIZETS: nd pracuiiones
identify the nght optimizel for their problem

Introduction
dc“cxvnsu\)\mcu»»dx e nu.xllvm.unl ne urkqmn\u.num\h\ Recently.

s focused on bias: ng S methods sowards s alled “flat minima. whi
£ very similar low 1055 ¥2 Ses (43). Theoretical and

e that such flatter npn ns generalize better than
d the flat rnnlrr et l-budnrw against o lunur
qeain and 1€ d,nu as iustrated in F ag 1l TW puhv flag-minuma

Stochastic Weight Averaging (SWA)) 148), and 2 ness-AY

ate much differently. On the one hand. SWA
r smaller, leaving many iteraes 0 that
flat region. , ave 5 duc s p.nlkd wwards these flaver
. see Fig. 1 top: 08 the .S sum Joss around & 5 eighborhood
he current iLCTale: 3 L ped 10 J\C uniformly \m Y0ss:
g, 1| bortom- C! AM requires 3 ward pass for each neter

c. making it wore expensive than SW \

De: ‘pl'«' the SUCEESSES 3.5) of SWA ane AM in some domains, W& afc Unaware ofa
sys !m[\.lll\u(\ lﬂucm them that would ml, px.cl.unuc 10 choose ¢ aght optimnizer
ny dvn' pmhu.m and rescarchers ¥ mmp et opEILET, The SWA [48] peper was published

2018, and the SAM 22 paper in 202 howover, the SAM paper: nd its mm! aoticeable
m\u»‘,p‘ (65, 12, 103]. do a0t compase ..wm SWA. Furdser, (bere i ¥er¥ limited overlap in

* Equal contribe! 00 cocrespondence ¥ {jean kaddons Jincgisg 1) 200 uc) 30K

\ Processing Systet™ (NeurlPS 2022

inima Optimizer
s s Work?. Jean K
ilva, Matt J. Kusner. NeurIPangggg

Activation Functions

Activation Functions

Leaky ReLU
max(0.1X, x)
PR 4
Sigmoid : /
! |
olx)=1/(1+e ") L -_,//
VRTITTIIN AT

Maxout max(w’z + by, wlz + by)

ta n h ta n h (X) ;’ﬁ: E LU f(I) _ {.I' e >0

a(exp(z)—1) ifx<0

ReLU max(0,x)

Activation Functions
o(x)=1/(1+e" ")

op Squashes numbers to range [0, 1]

- '[
0.6 H
L/

* Historically popular since they
have nice Interpretation as a
saturating “firing rate” of a

ya neuron

1 A A A i A i
=10 -5 5 10

Activation Functions

— — L
o(x) = 1/(1+ ¢)
\ X oo SIgl’nOId G(x)zl/(1+e_:)
b - 5z Qate <
L 00 oL oL * Squashes numbers to range [0,1]
oz r o =

* Historically popular since they

; * BE have nice interpretation as a
& saturating “firing rate” of a
s neuron
- Eal
. | 3 problems:
e ;
—— : — = 1. Saturated neurons “kill” the gradients
Sigmoid

Image credit: Jefkine Kafunah

Activation Functions
o(x)=1/(1+e" ")

g Squashes numbers to range [0, 1]

7 * Historically popular since they
have nice interpretation as a

/ - T B 7
7t saturating “firing rate” of a
Wi neuron
“ 3 problems:
Sigmoid 1. Saturated neurons “kill” the gradients

2. Sigmoid outputs are not zero-centered

10

Consider what happens when the input to
a neuron (x) is always positive:

Inputs weights sum non-linearity

bias

What can we say about the gradients on W?

11

Consider what happens when the input to
a neuron (x) is always positive:

allowed
gradient
update
directions
I
ZIg zag path
f E w;x; + b - 9720
. gradient
1 update
directions
hypothetical
- 5 optimal w
VWhat can we say about the gradients on W: vector

(this Is also why you want zero-mean datal)

12

Activation Functions
o(x)=1/(1+e" ")

/-,-d— Squashes numbers to range [0, 1]

08F

/ * Historically popular since they
have nice Interpretation as a
saturating “firing rate” of a

/ neuron

’ 3 problems:

Sigmoid 1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered
3. exp() I1s a bit compute expensive

13

Activation Functions

;/ « Squashes numbers to range [-1,1]

....................

e zero centered (nice)

) | » still kills gradients when saturated (

[LeCun et al., 1991]

14

Activation Functions

10 F

..................

RelLU
(Rectified Linear Unit)

Computes f(x) = max(0,x)

Does not saturate (In +region)
Very computationally efficient
Converges much faster than
sigmoid/tanh In practice (e.g. 6x)

[Krizhevsky et al., 2012]

15

Activation Functions

{o,ifxgo

1,ifx >0
\ v 50 Rel U o(z) = max(0, z)
< — e <
0 ate
oL os oL 22 9 oL
dr Oz do oo
lO.-
|
of
|
_;0. ~ 5 " _ls ; 2 " i 1 ll()
RelLU

« Computes f(x) = max(0,x)

 Does not saturate (In +region)

« Very computationally efficient

« (Converges much faster than
sigmoid/tanh In practice (e.g. 6x)

Not zero-centered output
An annoyance:

Hint: what is the gradient when x < 07

[Krizhevsky et al., 2012]

16

active RelLU

\

dead RelU
will never activate
— never update

18

active RelLLU

— people like to initialize RelLU

neurons with slightly positive dead Rel.U
biases (e.g. 0.01) will never activate

— never update

19

Activation Functions

10

 Does not saturate
 Computationally efficient

« Converges much faster than

: sigmoid/tanh in practice! (e.g. 6x)
.......... « will not “die”.

Leaky RelLU
f(x) = max(0.01xz, x)

[Mass et al., 2013]
[He et al., 2015]

20

Activation Functions

10 }

....................

Leaky RelLU
f(x) = max(0.01x, x)

 Does not saturate
 Computationally efficient
 (Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
 will not "die”.

Parametric Rectifier (PRelLU)

f(x) = max(ax, x)

backprop into \alpha

(parameter) [Mass et al., 2013]
[He et al., 2015]

21

Maxout “"Neuron”

* Does not have the basic form of dot product ->
nonlinearity

* Generalizes RelLU and Leaky RelLU
 Linear Regime! Does not saturate! Does not die!

max(w! z + by, w; = + by)

Problem: doubles the number of parameters/neuron :(

[Goodfellow et al., 2013]

22

f(x)

Activation Functions
Exponential Linear Units (ELU)

x ifx >0
a(exp(z) — 1) if £ <0

All benefits of ReLU
Does not die

Closer to zero mean outputs

Computation requires exp()

[Clevert et al., 2015]

23

Activation Functions
Scaled Exponential Linear Units (SELU)

SELU activation function

5 Scaled version of ELU

« Stable and attracting fixed points
for the mean and variance

* No need for batch normalization

___ ~100 pages long of pure math

57 =2 0 ; a "Using the Banach fixed-point theorem, we
(¥ prove that activations close to zero mean and
f(f) _)\) L if x>0 unit variance that are propagated through
Oz(eXp(:Ij) . 1) if r < 0 many network layers will converge towards
\

zero mean and unit variance — even under

a = 1.6732632423543772848170429916717 the presence of noise and perturbations.”
A =1.05070098/3554804934193349852946 [Klambauer et al., 2017] _,

Data Preprocessing and
Normalization

Data preprocessing

» Scale input variables to have similar diagonal covariances ¢; = Z(a:g]))Z

— Similar covariances — more balanced rate of learning for different weights
— Rescaling to 1 1s a good choice, unless some dimensions are less important

_ 1 2 37T _ 1l pn2 p31T _ T . .
v =lot 22,0 =10%,6% 0", a = tanh(6" @) zt, %, x3 — much different covariances
a //--"_ a Z‘fuuhl: z) . a E .
=l Generated gradients —— : much different
a & \ 00 xl,x2 3
00f — ——-"'/61 e
< > 52

63 05| ‘ « > oL / 06!

gl e o s . | Gradient update harder: '+t = ' — p, [0L/06?
OL]06°

26

Data preprocessing

* Input variables should be as decorrelated as possible
— Input variables are “more independent”
— Network Is forced to find non-trivial correlations between inputs
— Decorrelated inputs — Better optimization
— Obviously not the case when inputs are by definition correlated (sequences)

27

Data preprocessing

original data zero-centered data normalized data
10 10 10
&
0 - 0 - 0
5 -5l -5
\
a0 £ g =105 = 0 5 19 1955 5 0 5 10
X -= np.mean(X, axis = 0) X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix, each example in a row)

Data preprocessing

In practice, you may also see PCA and Whitening of the data

10

original data

10

decorrelated data

(data has diagonal
covariance matrix)

10

whitened data

(covariance matrix Is
the identity matrix)

29

Data preprocessing

In practice, you may also see PCA and Whitening of the data

orlglnal |mages top 144 eigenvectors reduced images whitened images

30

TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image
(mean iImage = [32,32,3] array)

- Subtract per-channel mean
(mean along each channel = 3 numbers)

Not common to normalize
variance, to do PCA or
whitening

31

Weight Initialization

Q: what happens when W=0 init is used?

output layer
input layer
hidden layer

33

First idea: Small random numbers

(Gaussian with zero mean and 1e-2 standard deviation)

W= 0.01* np.random.randn(D,H)

34

First idea: Small random numbers

(Gaussian with zero mean and 1e-2 standard deviation)

W= 0.01* np.random.randn(D,H)

Works ~okay for small networks, but can lead to
non-homogeneous distributions of activations
across the layers of a network.

35

Lets look
at some
activation
statistics

E.g. 10-layer net with 500
neurons on each layer,
using tanh non-linearities,
and initializing as described
In last slide.

assume some unit gaussian 10-D input data

D = np.random.randn(1000, 500)

hidden layer sizes = [500]*10

nonlinearities = ['tanh']*len(hidden layer sizes)

act = {'relu’':lambda x:np.maximum(@,x), 'tanh':lambda x:np.tanh(x)}
Hs = {}
for i in xrange(len(hidden layer sizes)):

X =D if i == 0 else Hs[i-1] # input at this layer

fan in = X.shape[1]

fan _out = hidden layer sizes[i]

W = np.random.randn(fan_in, fan out) * 0.01 # layer initialization

H = np.dot(X, W) # matrix multiply
H = act[nonlinearities[i]](H) # nonlinearity
Hs[i] = H # cache result on this layer
look at distributions at each layer
print 'input layer had mean %f and std %f' % (np.mean(D), np.std(D))
layer means = [np.mean(H) for i,H in Hs.iteritems()]
layer stds = [np.std(H) for i,H in Hs.iteritems()]
for i,H in Hs.iteritems():
print 'hidden layer %d had mean %f and std %f' % (i+1, layer means[i], layer stds[i])

plot the means and standard deviations
plt.figure()

plt.subplot(121)

plt.plot(Hs.keys(), layer means, 'ob-')
plt.title('layer mean')

plt.subplot(122)

plt.plot(Hs.keys(), layer stds, ‘'or-')
plt.title('layer std')

plot the raw distributions

plt.figure()

for i,H in Hs.iteritems():
plt.subplot(1,len(Hs),i+1)
plt.hist(H.ravel(), 30, range=(-1,1))

36

input layer had mean ©.000927 and std 0.998388

layer std

'S

hidden layer 1 had mean -0.000117 and std 0.213081
hidden layer 2 had mean -0.000001 and std ©0.047551
hidden layer 3 had mean -0.000002 and std 0.010630
hidden layer 4 had mean 0.000001 and std 0.002378
hidden layer 5 had mean 0.000002 and std 0.000532
hidden layer 6 had mean -0.000000 and std 6.000119
hidden layer 7 had mean 0.000000 and std 0.000026
hidden layer 8 had mean -0.000000 and std ©0.000006
hidden layer 9 had mean 0.000000 and std 0.000001
hidden layer 10 had mean -0.000000 and std ©.000000
v layer mean
000000 . gt —— —— - - - }
010
= AT’]::L S 3 3 3 6) g 00
a0 0 00 ey)
20040 20040 20040 20040

150Q00 150900 150402 150400

o Vore—re O L
0-1.0-05 00

A NE NG L
4 0=05 00

All activations
become zero!

Q: think about the
backward pass. What
do the gradients look

like?

Hint: think about backward pass
for a W*X gate.

38

W = np.random.randn(fan in, fan out) * 1.0 # layer initialization

input layer had mean ©.001800 and std 1.001311 Al mOSt a || neu ronS

hidden layer 1 had mean -0.000430 and std ©.981879

hidden layer 2 had mean -0.000849 and std ©0.981649
s Tr s o o 5 e i it b asta completely saturated
hidden layer 4 had mean 0.000483 and std ©.981755 % . % Y
hidden layer 5 had mean -0.000682 and std 0.981614 1 O |nStead Of O 01 .
had mean -0.000401 and std ©.981560 . . e|ther —1 a nd 1
had mean -0.000237 and std -
had mean -0.000448 and std
had mean -0.000899 and std
©® had mean 0.000584 and std

hidden layer
hidden layer
hidden layer
hidden layer
hidden layer

.981520
.981913

it Gradients will be all

HOONOWULEWNE

[cNoNoNoNoNol

layer mean 49 8156~1 layer std
00008 x Y 00coss 12-815e-1 y
- Zero
00004 f \ f 000040 A '
00002 / 000035 |
000030
00200
\ / 000025 .
-0.0002 / \ { d _ ——-q
/ \ //\ 000020 \ , A
-0.0004 \ N / ‘
f \ { 000015 . / '

-0.0006 f \ \\\ / 000010 . &]
-0.0008 A \ 000005 - f

-
=000 1 2 3 2 5 B 7 g s 00009 1 2 a 3 G 7 3 o
250000 253400 253500 #4500 225600 2358500 258400 255500 222400 255500
200000 200400 200f00 00§00 200foo 200400 200400 200400 wafoe 200§00
150000 150f00 15000 L 150400 150§00 150§00 15000 150400 150§00
106000 1wofps 10000 100ffoo wofos 10000 10000 100fac 100j00 10000
50000 soffoo sofoo sofco 00 sofoo sofoo sofco sofoo sofco

—Cl:—-l'f 00 05 10-1.0-05 00 05 10-10-05 00 05 10-1.0-0500 05 10-10-05 00 05 10-10-05 00 05 10-10-05 00 05 10-10-0500 05 10-10-05 00 05 10-1.0-05 00 05 10

input layer had mean 0.001800 and std 1.001311 W
hidden layer 1 had mean 0.001198 and std 0.627953

= np.random.randn(fan in, fan out) / np.sqrt(fan in) # layer initialization

hidden layer 2 had mean -0.000175 and std 0.486051
hidden layer 3 had mean 0.000055 and std 0.407723 K th . th “X . r ﬂt | _t n 1T}
hidden layer 4 had mean -0.000306 and std ©.357108

hidden layer 5 had mean 0.000142 and std 0.320917 eep e Varlance e Same aV|e l l la Iza IO
hidden layer 6 had mean -0.000389 and std 0.292116

hidden layer 7 had mean -0.000228 and std 0.273387 aCFOSS every Iayerl [G|Or0t et al, 201 O]
hidden layer 8 had mean -0.000291 and std 0.254935
hidden layer 9 had mean 0.000361 and std 0.239266
hidden layer 10 had mean 0.000139 and std 0.228008

Reasonable initialization.
ool (Mathematical derivation
assumes linear activations)

B . » |f a hidden unit has a big fan-in,
. \ N . small changes on many of its
% a3 S incoming weights can cause the
- learning to overshoot.
— We generally want smaller
Incoming weights when the fan-
In IS big, so initialize the weights
to be proportional to sqgrt(fan-in).
* We can also scale the learning
rate the same way. More on
this later!
(from Hinton's notes)

40

input layer had mean 0.000501 and std 0.999444

W

= np.random.randn(fan in, fan out) / np.sqrt(fan in) # layer initialization

hidden layer 1 had mean 0.398623 and std 0.582273
hidden layer 2 had mean 0.272352 and std 0.403795
hidden layer 3 had mean 0.186076 and std 0.276912 . . .
sidden Layar 4 had Bean 6.135412 and std 9. 150085 but when using the ReLU nonlinearity
hidden layer 5 had mean 0.099568 and std ©0.140299
hidden layer 6 had mean 0.072234 and std 0.103280 .
hidden layer 7 had mean 0.049775 and std 0.072748 | t b re a kS .
hidden layer 8 had mean 0.035138 and std 0.051572
hidden layer 9 had mean 0.025404 and std 0.038583
hidden layer 10 had mean 0.018408 and std 0.026076
e layer mean layer std
050 ’
03S .
030
u
025 N
020 s
01s
.
“ A
010 2 o
R 9 O
oos} 7= e S
O ——— O S B - =
e JCC 1 2 3 4 S 6 g 9 0 1 2 3 4 5 6 g 9
30000 34500 265500 255400 2400 s U8 =500 3400 =350 £83500
25460 - ks 300¢00 200400 350400 0400 e
“““““ D 0 sidan 20400 400400
200400 00qoe =
250400 250400
200000 200Q00 200400 300400
250000 2504o¢ 1400 300407
200400 200400 250400
150000 150400 150400 200400 200400
o i 150d00 150400 i i 200000 200400
100000 100400 100400 i i 150400
100400 100400 10000 100dos
L) il = == o i 100400 100400 100400
S0000 SO400 SO4c0 s0q00 0300 sodoo 400 300
%3:313}52 32':30%3:51 01520253 3%-3: 510152 32530% 005101520253 3% 00510152 32530% 0051015202 53');:'32 5101520253 J;: 00510152 32’43'3%0252 015202 SE‘J% 0051015202530

41

input layer had mean 0.000501 and std ©.999444

W = np.random.randn(fan in, fan out) / np.sqrt(fan in/2) # layer initialization

hidden layer 1 had mean 0.562488 and std 0.825232
hidden layer 2 had mean 0.553614 and std 0.827835
hidden layer 3 had mean 0.545867 and std ©.813855 H e e-t 3 | 2 O ’I 5
hidden layer 4 had mean 0.565396 and std 0.826902 "y
hidden layer 5 had mean 0.547678 and std 0.834092
hidden layer 6 had mean ©.587103 and std 0.860035 "
hidden layer 7 had mean 0.596867 and std 0.870610 ﬂ O'te a |'t|o n a 2
hidden layer 8 had mean 0.623214 and std 0.889348
hidden layer 9 had mean 0.567498 and std 0.845357
hidden layer 10 had mean 0.552531 and std ©0.844523
ie layer mean S layer std -
062 088 e
Bal : 087 o
60 p -..‘..\ " "
059 i \
// \ 085
058 / . - 4
o / \ 084 ,
057 // 3 S
56 '\\\ / \ 083 - V3 0.95
- o 9 / / 082
- X . 0.9
>0 1 2 3 3 5 B G < o 1 2 :) < 6 7 g E
300000 700 263900 900 0300 03400 00 265900 g0 26340 S 0.85
1
250001 250400 250400 250400 25040 25040 25040 250400 250400 250400 08 _ Er'i,Var[w,I =1 ours
200000 200400 200400 200400 20040 200400 200400 200400 20040 20040 0.75H fVartn]=1 Xavier
rap—— l ‘ = v \J ‘l
150000 150000 150900 150400 150400 150400 150400 150900 156400 150400 - = - = i 2 5 £ A
0 1 2 3 a 5 6 8 u
100000 100400 100400 100400 100400 10040 10040 100400 100400 100400 g
50000 50400 0400 50400 50400 50400 50400 s0400 50400 0400
%‘JC 51015202 530;5'33 5101520252)% 005101 52‘3252“3;\. 005101520253 3% 005101520253 J% 0051015202 53-3:'3‘3: 5101520252 3% 00510152 325."3% 005101520253 Ji 0051015202530

43

Proper initialization is an active area of
research...

 Understanding the difficulty of training deep feedforward neural networks. Glorot and Bengio,
2010

« Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. Saxe et
al, 2013

« Random walk initialization for training very deep feedforward networks. Sussillo and Abbott,
2014

* Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification.
He et al., 2015

« Data-dependent Initializations of Convolutional Neural Networks. Krahenbuhl et al., 2015
« All you need is a good init. Mishkin and Matas, 2015
 How to start training: The effect of initialization and architecture. Hanin and Rolnick, 2018

« How to Initialize your Network? Robust Initialization for WeightNorm & ResNets. Arpit et al.,
2019

44

Batch Normalization

“you want unit Gaussian activations? just make them so.”

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

/j(k) 2B _E[z(®)]
\/ Var[z(®)] this is a vanilla differentiable
function...

[loffe and Szegedy, 2015]

45

Batch Normalization

“you want unit gaussian activations? just make them so.”

1. compute the empirical mean and

A A A _ |
variance independently for each
dimension.
N X >
2. Normalize
- (k) _ R [p(F)
VVYY CIZ(k) = x|
\/Var[a:(k)]
D

[loffe and Szegedy, 2015]

Batch Normalization

l

FC

v

BN

v

tanh

v

FC

v

BN

v

tanh

v

Usually inserted after Fully
Connected / (or Convolutional, as
we'll see soon) layers, and before

nonlinearity.
Problem: do we (k) (k)
necessarily want a unit fg(k) . —BElz "]
Gaussian input to a tanh (k)
layer? \/Var[x]

[loffe and Szegedy, 2015]

47

Batch Normalization

Normalize:

(k) —) _E[z(®)]
\/Var[x(k)]

And then allow the network to squash
the range If it wants to:

yF) = ~F)z(k) 1 g(k)

Note, the network can learn:

~(F) — \/Var[x(k)]
5(’6) _ E[:c(k)]

to recover the identity mapping.

48

Batch Normalization

Input: Values of x over a mini-batch: B = {z1. . };
Parameters to be learned: ~, (3

Output: {y; = BN, s(z;)}
HUB i < L

1 m
o =) (i — ps)
=1

iz r; — KB

&

ek Vo5 + €

o < 7% + B = BNy plz;)

// mini-batch mean

// mini-batch variance

// normalize

// scale and shift

Improves gradient flow
through the network

Allows higher learning rates

Reduces the strong
dependence on initialization

Acts as a form of regularization
iIn a funny way, and slightly
reduces the need for dropout,
maybe

[loffe and Szegedy, 2015]

49

Batch Normalization

Input: Values of x over a mini-batch: B = {z1._,.};
Parameters to be learned: ~, 3

Output: {y; = BN, 5(z;)}

1 m
UB < — E L
m
i=1
m

1
o o Z(-l“i — p1B)*
=1

Li — UB

U S ’}’EIT\Z —+ ﬁ = BN%[j(Cl?i)

ZII\Z'<—

// mini-batch mean

// mini-batch variance

// normalize

// scale and shift

Note: at test time BatchNorm
layer functions differently:

The mean/std are not computed
based on the batch. Instead, a
single fixed empirical mean of
activations during training is used.

(e.g. can be estimated during
training with running averages)

[loffe and Szegedy, 2015]

50

Other normalization schemes

Batch Norm Layer Norm

 Layer Normalization
Ba et al., Layer Normalization, arXiv preprint, 2016

* Weight Normalization =N 2 1
Salimans, Weight Normalization: A Simple T s g
Reparameterization to Accelerate Training of Deep Neural ay=
Networks, NIPS, 2016 1

C N C N

* Instance Normalization

Instance Norm Group Norm

Ulyanov et al., Instance normalization: The missing
ingredient for fast stylization. arXiv preprint, 2016

« Batch Renormalization

loffe, Batch Renormalization: Towards Reducing Minibatch -
Dependence in Batch-Normalized Models, NIPS 2017

 Group Renormalization
Wu and He, Group Normalization, ECCV 2018

H, W

AN
NAVAVAUAWAY

O
Z
O
Z

51

Improving Generalization

Preventing Overfitting

* Approach 1: Get more data! * Approach 3: Average many
— Almost always the best bet if you different models.
have enough compute power to — Use models with different forms.

train on more data. — Or train the model on different

subsets of the training data (this is

 Approach 2: Use a model that called “bagging”).

has the right capacity:
— enough to fit the true regularities. * Approach 4: (Bayesian) Use a
— not enough to also fit spurious single neural network
regularities (if they are weaker). architecture, but average the
predictions made by many
different weight vectors.

53

Some ways to limit the capacity of a
neural net

* The capacity can be controlled in many ways:

» Architecture: Limit the number of hidden layers and the number of units
per layer.

 Early stopping: Start with small weights and stop the learning before it
overfits.

 Weight-decay: Penalize large weights using penalties or constraints on
their squared values (L2 penalty) or absolute values (L1 penalty).

* Noise: Add noise to the weights or the activities.

 Typically, a combination of several of these methods is used.

54

Regularization

* Neural networks typically have thousands, if not millions of parameters
— Usually, the dataset size smaller than the number of parameters

» Overfitting Is a grave danger
* Proper weight regularization is crucial to avoid overfitting

0% + a,rgmgilfl Z Uy, ar(z;01,..,1))+\Q0)
(z,y)C(X,Y)

* Possible regularization methods
— [,-regularization
— [,-regularization
— Dropout

55

[,-regularization

* Most important (or most popular) regularization

0" argm@m Z f(y,aL(il?;@L...,L))Jr §ZZ:HQZHQ

(x,y)C(X,Y)

* The l,-regularization can pass inside the gradient descend update rule

0T =0 — (VoL + NO;) =
H(tH) = (1 —)\nt)H(t) — UtVQL:

« 1 is usually about 10—, 102

56

[,-regularization

* [,-regularization is one of the most important technigues

0" argm@m Z f(y,aL(il?;@L...,L))Jr 5;”9”’

(x,y)C(X,Y)

» Also [,-regularization passes inside the gradient descend update rule

H(t)

(t+1) _ g(t) _

VoL

* [,-regularization — sparse weights
A T — more welights become 0

57

Data augmentation [Krizhevsky2012]

Flip Random crop

Original

Noise as a regularizer

» Suppose we add Gaussian noise to the inputs.

— The variance of the noise is amplified by the squared
weight before going into the next layer.

* In a simple net with a linear output unit directly
connected to the inputs, the amplified noise gets
added to the output.

* This makes an additive contribution to the
squared error.

— So minimizing the squared error tends to minimize the
sguared weights when the inputs are noisy.

Not exactly equivalent to using an L2 weight penalty.

yj + N(O,w o)

X, + N(O, o7)

Gaussian noise

59

Multi-task Learning

Improving generalization by pooling the examples
arising out of several tasks.

Different supervised tasks share the same input X,
as well as some intermediate-level representation
h(shared)

— Task-specific parameters

— Generic parameters (shared across all the tasks)

(O~
O©OLO

60

Early stopping

« Start with small weights and stop the learning before it overfits.

» Think early stopping as a very efficient hyperparameter selection.
— The number of training steps is just another hyperparameter.

— - Training error
Underfitting zone| Overfitting zone

—— (eneralization error

Error

0 Optimal Capacity
Capacity

Model Ensembles: The bias-variance
trade-off

* \When the amount of training data is limited, we get overfitting.
— Averaging the predictions of many different models is a good way to
reduce overfitting.
— It helps most when the models make very different predictions.

* For regression, the squared error can be decomposed into a
"blas” term and a “variance” term.

— The bias term is big if the model has too little capacity to fit the data.

— The variance term is big iIf the model has so much capacity that it is good
at fitting the sampling error in each particular training set.

* By averaging away the variance we can use individual models with
high capacity. These models have high variance but low bias.

62

Model Ensembles

 Train several different models
separately, then have all of the
models vote on the output for
test examples.

* Different models will usually
not make all the same errors
on the test set.

e Usually ~2% gain!

Original dataset

First resampled dataset CFENJ%

Second resampled dataset Second ensemble member

@D > (=>0)

63

Model Ensembles

* \We can also get a small boost from averaging multiple
model checkpoints of a single model.

» keep track of (and use at test time) a running average
parameter vector:

True:

data batch = dataset.sample data batch()
loss = network.forward(data batch)

dx = network.backward()
X += - learning rate * dx
X test = 0.995*x test + 0.005*x

64

1

//h

\ !
)14\‘
N X7
\s?««..

-

\
(2

D
'!»».

randomly set some neurons to zero In the forward pass

11

Dropout

Jo——A{ Jo—H{)
/lﬂ\\)//li\\
-G
XK R
O~ KY

. 0 ,’\Q O
bn/ X «o“,vow 0&“\.

‘/‘\Q ;”»o 0\ X/ ;»Q\v 9
XIORN\ ARV
(.& %«.& X

[Srivastava et al., 2014]

(b) After applying dropout.

a) Standard Neural Net

65

Waaaait a second...
How could this possibly be a good idea?

Waaaait a second...

How could this possibly be a good idea?

T

has an ear
has a tall
s furry

has claws

mischievous
look

Forces the network to have a redundant representation.

AV4
/\

.

I score

/'

68

Waaaait a second...

How could this possibly be a good idea?

Another interpretation:

Dropout Is training a large
ensemble of models (that
share parameters).

Each binary mask is one

model, gets trained on only

~0one datapoint.

ove
G

oo

o

cjo

o
O

©,
®

aaaaaaaaa

Cloe®

o O oy

Ol ©

Sl s

Ensemble of Sub-Networks

At test time....

Ideally:
want to integrate out all the noise

Monte Carlo approximation:
do many forward passes with different
dropout masks, average all predictions

70

At test time....

Can In fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

w0 W

71

At test time....

Can In fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

(this can be shown to be an
approximation to evaluating the

w0 W1 whole ensemble)

72

At test time....

Can In fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

w(

W

during test: a = WO*X + w1¥*y
during train:
Elal =% * (wO*0 + w1*0

wO0*0 + w1*y
wO*X + w1*0
wO*X + w1%y)

Yo * (2 w0 + 2 wl™y

1 * (WO*X + w1*

With p=0.5, using all
inputs in the forward
pass would inflate the
activations by 2x from
what the network was
“used to” during
training!

=> Have to
compensate by scaling
he activations back
down by V2

75

We can do something approximate
analytically

def predict(X):

H1 = np.maximum(©, np.dot(Wl, X) + bl) * p
H2 = np.maximum(©, np.dot(W2, Hl) + b2) * p
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> \Ne must scale the activations so that for each neuron:
output at test time = expected output at training time

76

Dropout Summary

""" Vanilla Dropout: Not recommended implementation (see notes below) """
p=0.5# probability of keeping a unit active. higher = less dropout

def train_step(X):

""" X contains the data """

forward pass for example 3-layer neural network

H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # 7irst dropout mask
Hl *= Ul # drop! .
H2 = np.maximum(®, np.dot(WZ, HI) + b2) drOp N forward PaSS
U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

backward pass: compute gradients... (not shown)

=+ 31+

perform parameter update... (not shown)

def predict(X):
ensembled forward pass
H1 = np.maximum(®, np.dot(Wl, X) + bl)|* p # NOTE: scale the activations SCa|e at test -Ume
H2 = np.maximum(©, np.dot(W2, Hl) + b2 * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3

More common: “Inverted dropout”

i L J T J - 3 [) | 7 J 2
—_ i1 nro =1 71 T\ nT kooninr - 11N T ~rT717\v/70 MT1Trrhor — occ ~r-nnnit
p = 0.5 # probability of keeping a unit active. higher = less di opout

def train_step(X):
forward pass for example 3-layer neural network
H1 = np. max1mum(0, np. dot(w1 X) + bl)
Ul = (np.random.rand(*Hl.shape) < p) / p # first dropout mask. Notice /p!
H1 *= Ul # drop!
H2 = np.maximum(0, np.dot(W2, H1l) + b2)
U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
H2 *= U2 # drop!
out = np.dot(W3, H2) + b3

- A)
STNOWTr!)

pertorm parameter update... (not shown)
‘ ,

test time I1s unchanged!
def predlct() ""”’_,,,,——”””””””

.’ Irorwa Pa

H1 = np. max1mum(0, np. dot(w1 X) + bl) # no scaling necessary
H2 = np.maximum(©, np.dot(W2, H1l) + b2)
out = np.dot(W3, H2) + b3

Optimization

Training a neural network, main loop:

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step_size * weights_grad 3 ,

80

Training a neural network, main loop:

while |
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights _grad|# periorm parameter

simple gradient descent update
now: complicate.

81

Gradients

* When we write Vy, L(W), we mean the vector of partial derivatives wrt all
coordinates of W':

oL OL or 1%
L — L2
Vw L(W) oW, oWy’ ’an]

where

measures how fast the loss changes
)
vs. change InW;

=0.5

* In figure: loss surface is blue, gradient vectors are red: _ .

=210
-2.5

* When Viw L(W) = 0, it means all the partials are =
zero, i.e. the loss is not changing in any direction.

(A'%)}

* Note: arrows point out from a minimum, in toward

d maximum Slide adapted from John Canny 82

Optimization

* Visualizing gradient descent in one dimension:
C(w)

30011 intheali 1ation

MU MU
)

globa)

WL VA U un

e

W

7

* The regions where gradient descent converges to a particular local
minimum are called basins of attraction.

83

Local Minima

» Since the optimization problem is non-convex, it probably has local
minima.

 This kept people from using neural nets for a long time, because
they wanted guarantees they were getting the optimal solution.

» But are local minima really a problem?

— Common view among practitioners: yes, there are local minima, but
they're probably still pretty good.

* Maybe your network wastes some hidden units, but then you can just make it larger.
— It's very hard to demonstrate the existence of local minima in practice.
—In any case, other optimization-related issues are much more important.

84

Saddle Points

* At a saddle point, j—V[L/ = 0 even though

we are not at a minimum. Some
directions curve upwards, and others
curve downwards.

* \When would saddle points be a problem? |

— If we're exactly on the saddle point, then
we're stuck.

— If we're slightly to the side, then we can get
unstuck.

85

Saddle Points

* At a saddle point, g—V[L/ = 0 even though

we are not at a minimum. Some
directions curve upwards, and others

curve downwards.

* \\When would saddle points be a problem?
— If we're exactly on the saddle point, then
we're stuck.

— If we're slightly to the side, then we can get
unstuck.

Saddle points much more common in high dimensions!

Y. Dauphin et al. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In NIPS 2014 86

Plateaux

» A flat region is called a plateau. (Plural: plateaux)

A,;@‘,,&&M\@ﬁbﬂnn

94

Plateaux

* An important example of a plateau is a saturated unit. This is
when it is In the flat region of its activation function.

It ¢'(z) Is always close to zero, then the weights *°
will get stuck. o

0.6

>

* |f there is a ReLLU unit whose input z is always
negative, the weight derivatives will be exactly 0. o
We call this a dead unit. 00

e B BN 5

NRNE G 3, o ta {(&v Q) Patd Vs

n!’.\\; LR\ RS 3 : { ¥ & "Q‘ & ‘.-" 4 5

Sy ¥ | - W adh B oSN |~y

N ’ ¥ | — R f"é § 4)

e 1 i Y b I RN

6\’:\\\\ Q;’v:;; | | : 3 g‘f.‘o \A},‘ : MR !:' | 8 ?‘l 7
\' SN nY A \ %(, R ¥ i {7 Q\\{s"&,ﬁ ~ 4 f) 2
S e 0 g

N W,)

N
U DR
AR N \‘\M\
3 %%&\v&g § \Q\\Q R
LY
té- ‘&0\\\@,‘@%‘-’@\‘ ‘o’%\ e ‘Q\\'\‘ ‘ﬁ \\\“\\@\ \?’
T RS

CRNAREZNON
S

\ 1‘. H \
1 .l\‘!llj'; \

MODE CONNECTIVITY =~ $5.5%

OPTIMA OF COMPLEX LOSS FUNCTIONS CONNECTED BY SIMPLE CURVES OVER
WHICH TRAINING AND TEST ACCURACY ARE NEARLY CONSTANT

BASED ON THE PAPER BY TIMUR GARIPOY, PAVEL [ZMAILOV, DMITRII PODOPRIKHIN. DMITRY VETROV, ANDREW -GORDON WILSON 3
VISUALIZATION & ANALYSIS IS A COLLABORATION BETWEEN TIMUR GARIPOY, PAVEL {ZMAILOV AND JAVIER IDEAMI@LOSSLANDSCAPECOM

NeurlIPS 2018, ARXIV:1802.10026 | LOSSLANDSCAPE.COM . ~

f,‘vl,”;l ,’7{
4 A

LOSS (TRAIN MODE)

REAL DATA, RESNET-20 NO-SKIP.
CIFAR1D, SG6D-MOM, BS=128
WD=3e-4 MOM=0.9

BN. TRAIN MOD, 90K PTS

LOG SCALED (ORIG LOSS NUM'j:

Batch Gradient Descent

Algorithm 1 Batch Gradient Descent at lteration &
Require: Learning rate ¢
Require: Initial Parameter 6
1: while stopping criteria not met do
2: Compute gradient estimate over N examples:
5 g 5 VoY, LF(xD:0),y0)
4. Apply Update: 0 < 0 — €g
5. end while

* Positive: Gradient estimates are stable

* Negative: Need to compute gradients over the entire training for
one update

97

Gradient Descent

)

Gradient Descent

)

Gradient Descent

)

Gradient Descent

)

Gradient Descent

)

Gradient Descent

)

Stochastic Batch Gradient Descent

Algorithm 2 Stochastic Gradient Descent at lteration k
Require: Learning rate €;
Require: Initial Parameter 6

1: while stopping criteria not met do

2: Sample example (x®,y(®)) from training set

3, Compute gradient estimate:
4 g+ +VeL(f(x1";0),y")
5
6:

Apply Update: 6 < 0 — eg
end while

104

Minibatching

» Potential Problem: Gradient estimates can be very noisy
* Obvious Solution: Use larger mini-batches

« Advantage: Computation time per update does not depend on
number of training examples N

* This allows convergence on extremely large datasets

» See: Large Scale Learning with Stochastic Gradient Descent by
Leon Bottou

105

Stochastic Gradient Descent

)

Stochastic Gradient Descent

)

Stochastic Gradient Descent

"

5

)

Stochastic Gradient Descent

(

-

Stochastic Gradient Descent

s

)

Stochastic Gradient Descent

S

)

Stochastic Gradient Descent

"

/
S

=

Stochastic Gradient Descent

S

/
S
A

)

Stochastic Gradient Descent

sgd
momentum
nag
adagrad
adadelta
rmsprop

1

1//[///1/-‘

M

80 100 120

Image credits: Alec Radford

115

Suppose loss function is steep vertically but shallow

Q: What is the trajectory along which we converge towards
the minimum with SGD?

116

Suppose loss function is steep vertically but shallow
horizontally:

Q: What is the trajectory along which we converge towards
the minimum with SGD?

117

Suppose loss function is steep vertically but shallow
horizontally:

Q: What is the trajectory along which we converge towards

the minimum with SGD?
very slow progress along flat direction, jitter along steep

one

118

Momentum update

SGD

Tip1 = o¢ — aV f(xy)

while True:
dx = compute_gradient(x)
X += learning_rate * dx

SGD+Momentum
Vi1 = pvg + V f ()

Li+1 — Lt — QU411

VX = 0

while True:

dx = compute_gradient(x)
vX = rho * vx + dxX
X += learning_rate * vx

119

Momentum update

SGD

Tip1 = o¢ — aV f(xy)

while True:

dx = compute_gradient(x)
X += learning_rate * dx

SGD+Momentum
Vi1 = pvg + V f ()

Li+1 — Lt — QU411

VX = 0

while True:

dx = compute_gradient(x)
vX = rho * vx + dxX
X += learning_rate * vx

« Build up “velocity” as a running mean of gradients
 Rho gives “friction”; typically rho=0.9 or 0.99

120

SGD vs Momentum

| — sgd
- momentum |}
- Nag
- adagrad
adadelta
rmsprop

notice momentum
\T\\\\\‘ overshooting the target,

— but overall getting to the
\\\ minimum much faster.

//1///1/

80 100 120
121

SGD + Momentum

Momentum update

momentu

step
actual step

>

gradient
step

122

Nesterov Momentum

Momentum update Nesterov momentum update

“lookahead”
gradient step (bit

momentu momentum different than
ste ste o
’ actual step P original)
actual step
>
gradient Nesterov: the only difference...
step

v = pve-1 — €V f(0s—1 + pvr_1))

0 = 0i1—1 + vy

123

Nesterov Momentum

Vt+1 — PUr — OéVf(ﬂZ’t + ,OUt)

Tit1 = Tg + Vet

124

Nesterov Momentum

Ut+1 =

Lt+1 —

pvy — aV f(

Tt + pUg)

Tt + Vi1

Change of variables I; = x; 4+ pv; and

rearrange:

Ut4+1 — PUt — OéVf(.’jft)
Tip1 = Ty — pvg + (1 + p)vega
= Tt + Ver1 + p(Ve41 — V¢)

Annoying, usually we want
update in terms of ¢, V f(x¢)

dx = compute_gradient(x)

old_v = v

v = rho * v - learning_rate * dx
X += -rho * old_v + (1 + rho) * v

125

- sgd

- momentum

e nag<—_____<____
- adagrad

adadelta
rmsprop Nesterov

Accelerated
Gradient
—5 UL

—

L2

nag =

1///(//

I
N
I
[
o
w

100 . T ; T
80 |- .
60 - .
40} 1
20 E
O] 1 1 1 1
0 20 40 60 80 100 120

126

AdaGrad update

grad_squared = 0

while True:
dx = compute_gradient(x)
[grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension

[Duchi et al., 2011]

127

AdaGrad update

grad_squared = 0

while True:
dx = compute_gradient(x)
[grad_squared += dx * dX
X -= learning_rate * dx / (np.sgrt(grad_squared) + 1le-7)

Q: What happens with AdaGrad?

Weights that receive high gradients will have their effective
learning rate reduced, while weights that receive small
updates will have their effective learning rate increased! 128

AdaGrad update

grad_squared = 0

while True:
dx = compute_gradient(x)
[grad_squared += dx * dX
X -= learning_rate * dx / (np.sgrt(grad_squared) + 1le-7)

Q2: What happens to the step size over long time?

The adaptive learning scheme i1s monotonic, which Is usually
too aggressive and stops the learning process too early.

129

RMSProp

grad_squared = 0
while True:

AdaGrad dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + le-7)

grad_squared = 0

while True:

F%qussF)r()F) dx = compute_gradient(x)

grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

[Tieleman and Hinton, 2012]

130

—— — sgd
~— momentum |}
ol - nag g
- adagrad y
-1} adadelta |S
\
5 rmsprop \ I~
-3}
i
|
_5 | ! \ |
-2 -1 0 5
100 I 1 1 1 1
80 - L
60 .
40} :
20 + -
0 1 1] 1]
0 20 40 60 80 100 120

adagrad
rmsprop

131

Adaptive Moment Estimation (Adam)
(incomplete, but close)

first_moment = 0
second_moment = 0
while True:

dx = compute_gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx momentum
second_moment = beta second_moment + - beta X 7R IE
X -= learning_rate * first_moment / (np.sqrt(second_moment) + 1le-7)) AdaGrad / RMSPFOD

Looks a bit like RMSProp with momentum

[Kingma and Ba, 2014]

132

Adam (full form)

first_moment = 0
second_moment = 0
for t in range(num_iterations):

dx_= compute gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx momentum

second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias = first_moment / (1 - betal ** t)

second_unbias = second _moment / (1 - beta2 ** t) Bias correction

x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7)) AdaGrad / RMSProp

The bias correction compensates for the fact that m,v are
Initialized at zero and need some time to “warm up”.

[Kingma and Ba, 2014]

133

Adam (full form)

first_moment = 0

second_moment = 0

for t in range(num_iterations):
dx = compute gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx momentum

second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias = first_moment / (1 - betal ** t) : :
second_unbias = second_moment / (1 - beta2 ** t) Bias correction

x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7)) AdaGrad / RMSProp

Adam with betal = 0.9,
The bias correction compensates for the fact that m,v are | beta2 = 0.999, and
initialized at zero and need some time to “warm up”. lsaming_rate = 16-3 or oe-4
IS a great starting point for
many models!

[Kingma and Ba, 2014]

134

Optimization Algorithm Comparison

Tracks second

Tracks first Leaky . :
: moments Bias correction for
Algorithm moments . second .
(Adaptive moment estimates
(Momentum) . moments
learning rates)
SGD X X X X
SGD+Momentum V4 X X X
Nesterov v X X X
AdaGrad X Vv X X
RMSProp b'¢ v v X
Adam v Vv Vv Vv

136

L2 Regularization vs Weight Decay

Optimization Algorithm

Lw) = Lagra(W) + Lyeg (w)

9t = VL(w)
sy = optimizer(g;)
Wti1 = W — A5t

137

L2 Regularization vs Weight Decay

Optimization Algorithm L2 Regularization

L(w) = Lgagra(W) + Lyeg (w) Lw) = Lggra(W) + Alw]|*

9t = VL(Wt) gt = VL(Wt) — VLdata(Wt) + let
sy = optimizer(g;) s¢ = optimizer(g;)

Wt+1 — Wt — afSt Wt+1 — Wt o aSt

138

L2 Regularization vs Weight Decay

Optimization Algorithm L2 Regularization

L(w) = Lggea(w) + Lreg (w) L(w) = Lggea(W) + A|W|2

9t = VL(Wt) gt = VL(Wt) — VLdata(Wt) + let
sy = optimizer(g;) s¢ = optimizer(g;)

Wiryq1 = W — St Wiy1 = W — ASt

Weight Decay

L(w) = Lgata(W)
9t = Vlgata (W)
s; = optimizer(g;) +
Wti1 = We — AS5¢

139

L2 Regularization vs Weight Decay

Optimization Algorithm L2 Regularization

L(W) — Ldata(W) T Lreg (W) L(w) = Ldata(W) + A|W|2

9t = VL(Wt) Jt = VL(Wt) — VLdata(Wt) + let
sy = optimizer(g;) s¢ = optimizer(g;)

Wiryq1 = W — St Wiy = W — aSt

L2 Regularization and Weight Decay are Weight Decay

equivalent for SGD, SGD+Momentum so —

people often use the terms L(W) — Ldata (W)

interchangeably! 9t = VLdata(Wt)

s; = optimizer(g;) +
Wti1 = We — AS5¢
[Loshchilov and Hutter, 2019]

140

L2 Regularization vs Weight Decay

Optimization Algorithm

L(w) = Lagta(w) + Lieg (w)
ge = VL(w;)

sy = optimizer(g;)

Wiy1 = We — A5t

L2 Regularization and Weight Decay are
equivalent for SGD, SGD+Momentum so
people often use the terms
interchangeably!

But they are not the same for adaptive
methods (AdaGrad, RMSProp, Adam,
etc)

L2 Regularization

L(W) = Lgqeq(W) + A|w|?

9t = VL(W¢) = VLggra (W) + 24w,
sy = optimizer(g;)

Wir1 = W — A5¢

Weight Decay

Lw) = Laata (w)
gt = VLgara(We)
s; = optimizer(g;) +
Wti1 = We — AS5¢
[Loshchilov and Hutter, 2019]

141

AdamW: Decoupled Weight Decay

Algorithm 2 Adam with Ly regularization and Adam with decoupled weight decay (AdamW)

DN —

11:
12;

S\ AW

. given o = 0.001,8; = 0.9,8, =0.999,e =10, A € R
initialize time step ¢ < 0, parameter vector 8;—o € IR", first moment vector m;—q < 0, second moment
vector v;—qg <— 0, schedule multiplier n,—9 € IR

repeat

b -l

V fi(0:-1) < SelectBatch(6, 1) > select batch and return the corresponding gradient
g, Vfi(0:i—1) [+ A0

my < Bime—1+ (1 — B1)g, > here and below all operations are element-wise
ve — Bavi—1 + (1 — 52)gf

my <—my /(1 — B7) > (1 is taken to the power of ¢
vy < v /(1 — 55) > (32 is taken to the power of ¢
ne < SetScheduleMultiplier(t) > can be fixed, decay, or also be used for warm restarts

0, 0,1 —n (a’ht/(\/‘Z‘F €) +A0; 4)

13: until stopping criterion is met
14: return optimized parameters 6

[Loshchilov and Hutter, 2019]

142

AdamW: Decoupled Weight Decay

Algorithm 2 Adam with L regularization and Adam with decoupled weight decay (Ac‘amW)
given o = 0.001, 5, = 0.9,32 =0.999,e = 10"°)\ €

l:
Y, & (] D 7
r=—mry p s w]

vector v;—g < 0, schedule multiplier n,—o € IR

AdamW should probably be your
“default” optimizer for new problems

8: v < Bovi—1 + (1 — B2)g;

9y +—my/(1— B7) > (1 is taken to the power of ¢
10: Ve —ve /(1 — /35) > (2 is taken to the power of ¢
11: 1 < SetScheduleMultiplier(¢) > can be fixed, decay, or also be used for warm restarts

2 0, < 0,1 —ny (Oﬂht/(\/‘ZJr €) +A0;_4)

13: until stopping criterion is met
14: return optimized parameters 6

143

SGD, SGD+Momentum, Adagrad, RMSProp,
Adam all have learning rate as a hyperparameter

low learning rate

high learning rate

good learning rate

=> Learning rate decay over time!

step decay:
e.g. decay learning rate by half every few epochs.

exponential decay:

a=age ™

1/t decay:
a=ay/(1+ kt)

144

SGD, SGD+Momentum, Adagrad, RMSProp,
Adam all have learning rate as a hyperparameter

low learning rate
high learning rate

good learning rate

A Loss

Learning rate decay!

|

Epoch

145

First-Order Optimization

1) Use gradient form linear approximation
2) Step to minimize the approximation

N

Loss

w1

146

Second-Order Optimization

1) Use gradient and Hessian (H) to form quadratic approximation
2) Step to the minima of the approximation

A
Loss

w1

147

Second order optimization methods

second-order Taylor expansion:

J(0) = J(0y) + (B—G))TVQJ(Oo)—i- %(B—OO)TH(H— 6o)

Solving for the critical point we obtain the Newton parameter update:

0" =0y — H 'VgJ(0y)| NoUCe:

no hyperparameters! (e.g. learning rate)

Q: what is nice about this update?

148

Second order optimization methods

second-order Taylor expansion:

J(0) = J(0y) + (B—G))TVQJ(Oo)—i- l(49—90)TI-I(¢9— 0o)

2

Solving for the critical point we obtain the Newton parameter update:

0* =0, — H 'VeoJ(0,)

notice:
no hyperparameters! (e.g. learning rate)

Q2: why is this impractical for training Deep Neural Nets?

149

Second order optimization methods

0" =0, — H 'VoJ(0))

* Quasi-Newton methods (BGFS most popular):

instead of inverting the Hessian (O(nA3)), approximate inverse
Hessian with rank 1 updates over time (O(nA2) each).

 L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

150

Babysitting the Learning Process

Say we start with one hidden layer of b0 neurons:

50 hidden

Neurons +

\

fout | 10 output
outputiayer neurons, one

CIFAR-10 input layer oer class
iImages, 3072 hidden layer
numbers

152

Double check that the loss is reasonable:

def init two layer model(input size, hidden size, output size):

model = {
model[‘W1 0.0001 * np.random.randn(input size, hidden size)

model ['b] - np.zeros(hidden size)

model[‘W2 - 0.0001 * np.random.randn(hidden size, output size)

model['b2 np.zeros(output size)

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes

loss, grad = two layer net(X train, model, y train

loss ~2.3.

returns the loss and the gradient for
all parameters

2.30261216167 \

“correct “ for
10 classes

0.0

disable regularization

153

Double check that the loss is reasonable:

def init two layer model(input size, hidden size, output size):

model = {
model[‘W1 0.0001 * np.random.randn(input size, hidden size)

model ['b] - np.zeros(hidden size)
model[‘W2 - 0.0001 * np.random.randn(hidden size, output size)
model['b2 np.zeros(output size)

model = init two layer model(32%*32*3, 50, 10) # ingut size, hidden size, number of classes

loss, grad = two layer net(X train, model, y train, le3 crank up regularization
print loss

3.06859716482 \
loss went up, good. (sanity check)

154

Lets try to train now...

Tip: Make sure that
you can overfit very
small portion of the
training data

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
X tiny = X train[:20] # take 20 examples
y tiny = y train[:20]
best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,
num_epochs=200, reg=0.0,
update='sgd', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)

The above code:

- take the first 20 examples from
CIFAR-10

- turn off regularization (reg = 0.0)

- use simple vanilla 'sgd’

155

Lets try to train now.

Tip: Make sure that
you can overfit very
small portion of the
training data

Very small loss,
train accuracy 1.00,
nice!

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes

trainer = ClassifierTrainer()
X train[:20] # take 20 examples
y tiny = y train[:20]
trainer.train(X _tiny, y tiny, X tiny, y tiny,
model, two layer net,

num_epochs=200, reg=0.0,
update='sgd', learning rate decay=1,

X tiny =

best model, stats

sample batches =

False,

learning rate=le-3, verbose=True)

Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished

Flowmabhad

epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch

b

Finished
Finished
Finished

el Finished

Finished
Finished
finished

LCONOOULEWNM=
S S i i S S e e N

=
w
T i S Mgy Sy iy

2
b
~

epoch
epoch
epoch
epoch
epoch
epoch

optimizati

200:
200:
200:
200:
200:
200:
200:
200:
200:

200:
200:
200:
200:
200:
200:
200:
200:
200:
200:

AN

195
196
197
198
199
200

cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost
cost

-~

NNNNNNNNN

200:
200:
200:
200:
200:
200:

0 Y

.302603,
.302258,
.301849,
.301196,
.300044,
.297864,
293595,

train:
train:
train:
train:
train:
train:
train:

.285096, train:
.268094, train:

AR R R R R REERENNN

.234787,
.173187,
.076862,
.974090,
.895885,
.820876,
.737430,
.642356,
.535239,
.421527,

_nACTIEN

cost 0.002694,
cost 0.002674,
cost 0.002655,
cost 0.002635,
cost 0.002617,
cost 0.002597,

[cNoNoNoNoNO]

train:
train:
train:
train:
train:
train:
train:
train:
train:
train:

A -

val
val
val
val
val

.400000,
.450000,
.600000,
.650000,
.650000,
.550000, val
.600000, val
.550000, val
.550000, val
.500000, val
.500000, val
.500000, val
.400000, val
.400000, val
.450000, val
.450000, val
.500000, val
.600000, val
.600000, val

ECNANNN P |

[cNoNoNoNoNoNoNoNo
[cNoNoNoNoNoNoNoNo

P cNoNoNoNoNoNoNoNoNo)

train:
train:
train:
train:
train:
train:

1

-——————y

.000000,
1.000000,
1.000000,
1
1
1

000000,

.000000,
.000000,
n. best validation accuracy: 1.000000

.400000,
.450000,
.600000,
.650000,
.650000,
.550000,
.600000,
.550000,
.550000,

PR NoNoNoNoNoNoNo ool

Er
ir
ir
ir
lr
lr
i
ir
ir
ir
ir
ir
ir
ir
Lr
ir
Ir
ir
Lr

T -

.500000,
.500000,
.500000,
.400000,
.400000,
.450000,
.450000,
.500000,
.600000,
.600000,

CECNANNN

el el el

.000000,
.000000,
.000000,
.000000,
.000000,
.000000,

.000000e-03
.000000e-03
.000000e-03
.000000e-03
.000000e-03
.000000e-03
.000000e-03
.000000e-03
.000000e-03

At et el e e e e e e et

.000000e-03
.000000e-03
.000000e-03
.000000e-03
.000000e-03
.000000e-03
.000000e-03
.000000e-03
.000000e-03
.000000e-03

ANANAANAN A~ NN

ir
ir
1r
r
ir
ir

.000000e-03
.000000e-03
.000000e-03
.000000e-03
.000000e-03
.000000e-03

1)

156

Lets try to train now...

Start with small
regularization and find
learning rate that makes
the loss go down.

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes

trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,
sample batches = True,
learning rate=le-6, verbose=True)

157

Lets try to train now...

Start with small
regularization and find
learning rate that makes
the loss go down.

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes

trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,

sampte—batches—Frje,

learning rate=le-6,|verbose=True)
Finished epoch 1 / 10:|cost 2.302576, |[trair: ©.080000, Val 0.103000, lr
Finished epoch 2 / 10:|cost 2.302582, |[train: ©.121000, val 0.124000, lr
Finished epoch 3 / 10:|cost 2.302558, |[trair: ©.119000, Val 0.138000, lr
Finished epoch 4 / 10:|cost 2.302519, |[train: ©.127000, Val 0.151000, lr
Finished epoch 5 / 10:|cost 2.302517, |trairn: ©.158000, val 0.171000, 1r
Finished epoch 6 / 10:|cost 2.302518, |[train: ©.179000, Val 0.172000, lr
Finished epoch 7 / 10:|cost 2.302466, |trair: ©.180000, Val ©0.176000, 1r
Finished epoch 8 / 10:|cost 2.302452, |train: 0.175000, val ©.185000, 1r
Finished epoch 9 / 10:|cost 2.302459, |trairn: ©.206000, Val 0.192000, 1r
Finished epoch 10 / 10} cost 2.302420 traﬂn: 0.190000, |val 0.192000, lr 1.000000e-06
finished optimization.lbest validatiom accuracy: 0.192000

Loss barely changing

= e e e

.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06

158

. model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
LetS try tO traln NOW... trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=10, reg=0.000001,

: update='sgd', learning rate decay=1,
StartVVWkISﬂﬂa” sampte—batches—Frje,
. . . learning rate=le-6,|verbose=True)
regU|arlzat|On and flnd Finished epoch 1 / 10:|cost 2.302576, |train: ©.080000, al ©.103000, lr 1.000000e-06
. Finished epoch 2 / 10:|cost 2.302582, |[train: 0.121000, val 0.124000, lr 1.000000e-06
|ea|’n|ng rate that makes Finished epoch 3 / 10:|cost 2.302558, |trairl: ©.119000, al 0.1380600, lr 1.000000¢-06
Finished epoch 4 / 10:|cost 2.302519, |[train: 0.127000, val 0.151000, lr 1.000000e-06
Finished epoch 5 / 10:|cost 2.302517, |trair: ©0.158000, Val 0.171000, 1lr 1.000000e-06
Itr1€3 |()ESES QJCD Cj()\ﬂdrw- Finished epoch 6 / 10:|cost 2.302518, [train: ©.179000, Val 0.172000, lr 1.000000e-06
Finished epoch 7 / 10:|cost 2.302466, |trairl: ©.180000, Val ©0.176000, lr 1.000000e-06
Finished epoch 8 / 10:|cost 2.302452, |trairn: 0.175000, val ©.185000, lr 1.000000e-06
Finished epoch 9 / 10:|cost 2.302459, |trairl: 0.206000, Val 0.192000, 1r 1.000000e-06
1 . Finished epoch 10 / 10} cost 2.302420 traﬂn: 0.190000, |val 0.192000, lr 1.000000e-06
IOSS nOt QOIng down' finished optimization.lbest validatiom accuracy: 0.192000

learning rate too low Loss barely changing: Learning rate is
probably too low

Notice train/val accuracy goes t0 20%

though, what's up with that?
(remember this is softmax)

160

Lets try to train now...

Start with small
regularization and find
learning rate that makes
the loss go down.

loss not going down:
learning rate too low

model = init two layer model(32%32*3, 50, 10) # input size, hidden size, number of classes

trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,
sample batches = True,
learning rate=le6, verbose=True)

N

Okay now lets try learning rate 1e6. \What could
possibly go wrong?

161

Lets try to train now...

Start with small
regularization and find
learning rate that makes
the loss go down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

model = init two layer model(32%32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,

model, two layer net,

num_epochs=10, reg=0.000001,

update='sgd', learning rate decay=1,

sample batches = True,

learning rate=1e6, verbose=True)

/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:50: RuntimeWarning: divide by zero en
countered in log

data loss = -np.sum(np.log(probs[range(N), yl)) / N
/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:48: RuntimeWarning: invalid value enc
ountered in subtract

probs = np.exp(scores - np.max(scores, axis=1, keepdims=True))

Finished epoch 1 / 10: cost nan, train: 0.091000, val 0.087000, lr 1.000000e+06
Finished epoch 2 / 10: cost nan, train: 0.095000, val 0.087000, lr 1.000000e+06
Finished epoch 3 / 10: cost nan, train: 0.100000, val 0.087000, 1lr 1.000000e+06

cost: NaN almost always
means high learning
rate...

162

Lets try to train now...

Start with small
regularization and find
learning rate that makes
the loss go down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

model = init_two_layer model(32*32*3, 50, 10) # input size, hidden size,

trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,

Finished
Finished
Finished
Finished
Finished
Finished

epoch
epoch
epoch
epoch
epoch
epoch

L. 10
2 0 16
2. 18:
4 / 10:
S5/ 18:
G 7 10:

cost
cost
cost
cost
cost
cost

model, two layer net,
num epochs=10, reg=0.000001,

update='sgd', learning rate decay=1,

sample batches = True,
learning rate=3e-3, verbose=True)

2.186654, train: 0.308000, val 0.306000,
2.176230, train: 0.330000, val 0.350000,
1.942257, train: 0.376000, val 0.352000,
1.827868, train: 0.329000, val 0.310000,

lr 3.000000e-03
lr 3.000000e-03
lr 3.000000e-03
lr 3.000000e-03

inf, train: 0.128000, val ©.128000, lr 3.000000e-03
inf, train: 0.144000, val 0.147000, lr 3.000000e-03

3e-3 is still too high. Cost
explodes....

=> Rough range for learning rate we
should be cross-validating Is
somewhere [1e-3 ... 1e-5]

number of classes

163

Hyperparameter Selection

Everything is a hyperparameter

* Network size/depth

« Small model variations

* Minibatch creation strategy
* Optimizer/learning rate

* Models are complicated and opague, debugging can be difficult!

Adapted from Graham Neubig 165

Cross-validation strategy

First do coarse -> fine cross-validation Iin stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
... (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early

166

For example: run coarse search for 5 epochs

e O note it's best to optimize in
reg = 10**upiform(-5, 5) <
lr = 10**uniform(-3, -6) I()g; E;F)Ei(:f}!

trainer = ClassifierTrainer()
model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model local, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=5, reg=reg,
update='momentum’, learning rate decay=0.9,
sample batches = True, batch size = 100,
learning rate=lr, verbose=False)

val acc: 0.412000, lr: 1.405206e-04, reg: 4.793564e-01, (1 / 100)
val acc: 0.214000, lr: 7.231888e-06, reg: 2.32128le-04, (2 / 100)
val acc: 0.208000, lr: 2.119571e-06, reg: 8.011857e+01, (3 / 100)
val acc: 0.196000, lr: 1.551131e-05, reg: 4.374936e-05, (4 / 100)
val acc: 0.079000, lr: 1.753300e-05, reg: 1.200424e+03, (5 / 100)
val acc: 0.223000, lr: 4.215128e-05, reg: 4.196174e+01, (6 / 100)
] val acc: 0.441000, lr: 1.750259e-04, reg: 2.110807e-04, (7 / 100)
nice val acc: 0.241000, lr: 6.749231e-05, reg: 4.226413e+01, (8 / 100)
» | val acc: 0.482000, lr: 4.296863e-04, reg: 6.642555e-01, (9 / 100)
val acc: 0.079000, lr: 5.401602e-06, reg: 1.599828e+04, (10 / 100)
val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100)

167

Now run finer search...

max_count = 106 ' max_count = 100
for count in xrange(max_count): adJUSt range for count in xrange(max count):

reg = 10**uniform(-5, 5) > reg = 10**uniform(-4, 0)

Lr = 10**uniform(-3, -6) 1r = 10**uniform(-3, -4)
val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)
val acc: ©.492000, Ur: 2.279484e-04, reg: 9.991345€-04, (I / 1909)
val acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
val acc: 0.460000, Llr: 1.113730e-04, reg: 5.24430%9e-02, (4 / 100) .
val acc: 0.498000, lr: 9.477776e-04, reg: 2.801293e-03, (5 / 100) 53% - relatively good
val acc: 0.469000, 1lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100) _
val acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100) for a 2 |ayer neural net
val acc: 0.530000, lr: 5.808183e-04, reg: 8.259964e-02, (8 / 100) with 50 hidden
val acc: 0.489000, Llr: 1.979168e-04, reg: 1.01088%e-04, (9 / 100)
val acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100) neurons.
val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
val acc: 0.460000, Llr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)

| val acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100) |

val acc: 0.509000, Llr: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
val acc: 0.514000, lr: 6.438349e-04, reg: 3.033781le-01, (16 / 100)
val acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
val acc: 0.509000, lr: 9.752279%e-04, reg: 2.850865e-03, (18 / 100)
val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (26 / 160)
val acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)

168

Now run finer search...

max_count = 100 - s
— % max count = 100
for count in xrange(max_count): adJUSt range for count in xrange(max count):

reg = 10**uniform(-5, 5) > reg = 10**uniform(-4, 0)

Lr = 10**uniform(-3, -6) 1r = 10**uniform(-3, -4)
val acc: 0.527000, Llr: 5.340517e-04, reg: 4.897824e-01, (0 / 100)
val accC: 0.492000, Lr: Z2.Z2/9484e-0U4, reg: 9.991345e-04, (1 / 10U0)
val acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
val acc: 0.460000, lr: 1.113730e-04, reg: 5.24430%e-02, (4 / 100) o .
val acc: 0.498000, lr: 9.477776e-04, reg: 2.801293e-03, (5 / 100) 53% - relatively good
val acc: ©.469000, lr: 1.484369e-04, req: 4.328313e-01, (6 / 100) _
val acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100) for a 2-layer neural net
val acc: 0.530000, lr: 5.808183e-04, reg: 8.259964e-02, (8 / 100) with 50 hidden
val _acc: 0.489000, lr: 1.979168e-04, reg: 1.010889e-04, (9 / 100)
val acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100) neurons.
val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100) :

val acc: 0.531000. 1r: 9.471549¢-04 reg: 1.433895¢-03. (14 / 100) |«4— BUt this best cross-

val acc: 0.509000, Lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100) PP :
val acc: 0.514000, lr: 6.438349e-04, reg: 3.033781le-01, (16 / 100) validation result is
val acc: 0.502000, lr: 3.921784e-04, reqg: 2.707126e-04, (17 / 100) worrvina. Why?
val acc: 0.509000, lr: 9.752279e-04, reg: 2.850865e-03, (18 / 100) orrying. \&
val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821le-04, (19 / 100)
val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
val acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)

169

Now run finer search...

max count = 100 . 2
el . adjust range =
for count i" x:ingg(max_count). J g for count in xrange(max count):

(g = 10* uniform(-5, 5) > reg = 10**uniform(-4, 0)

Lr = 10**uniform(-3, -6) 1r = 10**uniform(-3, -4)
val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)
val accC: 0.492000, Lr: Z2.Z2/9484e-0U4, reg: 9.991345e-04, (1 / 10U0)
val _acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
val acc: 0.460000, lr: 1.113730e-04, reg: 5.24430%e-02, (4 / 100) o .
val acc: 0.498000, lr: 9.477776e-04, reg: 2.801293e-03, (5 / 100) 53% - relatively good
val acc: ©.469000, lr: 1.484369e-04, req: 4.328313e-01, (6 / 100) _
val acc: 0.522000, Lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100) for a 2-layer neural net
val acc: 0.530000, lr: 5.808183e-04, reg: 8.259964e-02, (8 / 100) with 50 hidden
val _acc: 0.489000, Lr: 1.979168e-04, reg: 1.010889%e-04, (9 / 100)
val _acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100) Nneurons.
val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100) -

val acc: 0.531000. 1r: 9.471549¢-04 reg: 1.433895¢-03. (14 / 100) |«4— BUt this best cross-

val acc: 0.509000, Lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100) PP -
val acc: 0.514000, Llr: 6.438349e-04, reg: 3.03378le-01, (16 / 100) validation result is
val _acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100) worrying
val acc: 0.509000, lr: 9.752279e-04, reg: 2.850865e-63, (18 / 100) .
val_acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val _acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100) .
val acc: 0.516000, Llr: 8.039527e-04, reg: 1.528291e-02, (21 / 100) Learnlng rate close

to the edge, need

more wider search!
170

Random Search vs. Grid Search

Grid Layout Random Layout

) - -
Q ()]
e e
()] (<))
E -
(g g
, | .
g} (g)
Lo B Q.
— e
c ==
(g (g)
: ; =
@) @)
Q. e
= &
= O O O =
- -
Important parameter Important parameter

Random Search for Hyper-Parameter Optimization
Bergstra and Bengio, 2012

171

Hyperparameters to play with:

- network architecture
- learning rate, 1ts decay schedule, update type
- regularization (L2/Dropout strength)

neural networks practitioner
music = loss function

172

Cross-
validation
"command
center”

173

Monitor and visualize the loss curve

25

loss

204

low learning rate

high learning rate

good learning rate

00 \ , epoch

20 40 60 80 100

174

Loss

time

175

Loss
Bad initialization

e — aprime suspect

time

176

lossfunctions.tumblr.com

valid

Loss function specimen

N

200

0

\

1 3 5 7 9 111315171921 23 2527 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67

——Seriesl

R
-

0.70

0.65

0.60

w
@ 0.55F

0.50

045}

0.40
0

Training Loss

10

20

Epoch

30

50

177

lossfunctions.tumblr.com

— task0
— taskl
— task2
— task3

taskd
— kS
— taskb
— task?
— task8
— askd

task10
—— taskll
— taskl2
— taskl3
— taskld
— tasklS

task16
— taskl?
— taskl8
— taskl9

1000

178

taskl13
task14
task15
task16
task17
task18
task19
task20
task21
task22
task23
task24
task25
task26
task27
task28
task29
task30
task31
task32
task33

task34
tack3s

01 S A8

| i ""’ ! M ’ Y w T n

‘ AN YR YT ALY - task28
: \'*',5.,0‘ '!M' K AQt)?:' i W il =
lossfunctions.tumblr.com it ==

179

Monitor and visualize the accuracy:

0.80

0.75 |

uij rV ot
, 065 (\\/\/\/\/ : . C
\[\/\/\/\/ \’ big gap = overfitting
= /\/\/\A/ V | => increase regularization strength

| => increase model capacity?

0.45

/M\«[\/WMW no gap

0 40 1 L 1 L
0 20 40 60 80 100

EEEEE

180

The Double Descent Phenomenon

under-parameterized

Test risk

“classical”
regime

over-parameterized

“modern”
interpolating regime

~ Tra,lnmg rlsk

———

interpolation threshold

T O — — — — —_— — — — — — — — .

Capamty of H

» Test error follows the traditional U-shaped curve in the

under-parameterized case and monotonically decreases
IN the over-parameterized case.

Neal et al., 2018).

Spigler et al., 2018)
Geiger et al., 2019)
Belkin et al., 2019)

— — — —

181

Visualization

» Check gradients numerically by finite differences

* \isualize features (features need to be uncorrelated) and have high
variance

* Good training: hidden units are
sparse across samples

samples

hidden unit

From Marc'Aurelio Ranzato, CVPR 2014 tutorial 1g3

Visualization

» Check gradients numerically by finite differences

* \isualize features (features need to be uncorrelated) and have high
variance

» Bad training: many hidden units
ignore the input and/or exhibit
strong correlations

=

= &
- .
m
l .
= s

hidden unit

From Marc'Aurelio Ranzato, CVPR 2014 tutorial g4

Visualization

» Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have high

variance

* Visualize parameters: learned features should exhibit structure and

should be uncorrelated and are uncorrelated

BAD

too noisy

BAD

too correlated

From Marc'Aurelio Ranzato, CVPR 2014 tutorial

BAD

-

r LAY
-

-
-
-

\.h‘ fu*'-;; | o

Jol T+ L.
==

ka3
J]

LSRN LNN

raNeEauM

FEIAENTY
SFCS®X LM

-

lack structure

185

Take Home Messages

Optimization Tricks

« SGD with momentum, batch-normalization, and dropout usually
works very well

* Pick learning rate by running on a subset of the data
— Start with large learning rate & divide by 2 until loss does not diverge
— Decay learning rate by a factor of ~100 or more by the end of training

* Use RelLU nonlinearity

* |[nitialize parameters so that each feature across layers has similar
variance. Avolid units In saturation.

From Marc'Aurelio Ranzato, CVPR 2014 tutorial 1g7

Ways To Improve Generalization

* \Weight sharing (greatly reduce the number of parameters)

* Dropout
* Weight decay (L2, L1)

» Sparsity in the hidden units

From Marc'Aurelio Ranzato, CVPR 2014 tutorial 1gg

Babysitting

» Check gradients numerically by finite differences

* \isualize features (features need to be uncorrelated) and have high
variance

* Visualize parameters: learned features should exhibit structure and
should be uncorrelated and are uncorrelated

* Measure error on both training and validation set

 Test on a small subset of the data and check the error — 0.

From Marc'Aurelio Ranzato, CVPR 2014 tutorial 1gg

Next lecture:
Convolutional
Neural Networks

