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Using RNNs to generate Super Mario Maker levels, Adam Geitgey
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Previously on COMP541

e
.
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* sequence modeling

 recurrent neural networks (RNNs)
 the vanilla RNN unit

* how to train RNNs

 the long short-term memory
(LSTM) unit and its variants

» gated recurrent unit (GRU)




Lecture overview

» Content-based attention
 Location-based attention
* Soft vs. hard attention
* Show, Attend and Tell

e Self-attention and
Transformer networks

* \/Ision Transformers

* Pretraining during transformers

Disclaimer: Much of the material and slides for this

lecture were borrowed from

—Dzmitry Bahdanau's IFT 6266 slides

—Graham Neubig’'s CMU CS11-747 Neural Networks for
NLP class

—Mlateusz Malinowski's lecture on Attention-based
Networks

—Yoshua Bengio's talk on From Attention to Memory and
towards Longer-Term Dependencies

—Kyunghyun Cho'’s slides on neural sequence modeling

—Arian Hosseini's IFT 6135 slides

—Hongsheng Li's ELEG5491 class

—Justin Johnson's EECS 498/598 class

—Jacob Devlin’s slides on transformers

—Lucas Beyer's slides on transformers

—Philip Isola and Stefanie Jegelka's MIT 6.5898 Deep
Learning class



Deep Learning for Vision

convolutions subsampling convolutions full
l connection

convolutions subsampling k_)

subsampling output

input 1st stage 2nd stage classifier

Figure credit: Xiaogang Wang



Deep Learning for Speech

frequencies
in window

“He can for example present significant university wide
issues to the senate.”
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small time window

slide 15ms phoneme

Spectrogram: window in time -> vector of frequences; slide; repeat

Figure credit: NVidia



Deep Learning for Text

positive

| @y
\»A.wNWvM Vl.“.:
Wiid N
i
(A

e

@
=

7

The movie was not bad at all. | had fun.
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Deep Models

Typically a Linear Projection
with some non-linearity
(log-soft-max)

can be seen as Fully Connected Network

a prior on the type of
transformation you want

_
T

“The movie was not bad at all. | had fun.”

Convolution Network

Recurrent Network



Deep Models
Tl o

_ Typically a Linear Projection
with some non-linearity

log-soft-max)

Learnable parametric function
Inputs: generally considered 1.1.D.

. : : ;onnected Network
can be seen a Qutputs: classification or regression

a prior on the typ volution Network

rensforTatior you e A PO
Recurrent Network

|

o euPopresentaion
T

“The movie was not bad at all. | had fun.”



Encoder-Decoder Framework

* Intermediate representation of meaning
= ‘'universal representation’

* Encoder: from word sequence to sentence representation
» Decoder: from representation to word seqguence distribution

Decoder

English sentence English sentence | Yo /yz..‘ ¥
s T T T e ., ;|
© English © English T T T
®© decoder ° Q
3 I decoder
+— D)
s 1 2
5 —
—  French E
O —
L encoder S
French sentence English sentence

Encoder



Sequence Representations

« But what if we could use multiple vectors, based on the length of
the sequence

this is an example >

this is an example >

10



Attention Models
In Deep Learning



A lot of things are called "attention”
these days...

1. Attention (alignment) models used in applications of deep supervised learning
with variable-length inputs and outputs (typical sequential).

2. Models of visual attention that process a region of an image at high resolution
or the whole image at low resolution.

3. Internal self-attention mechanisms can be used to replace recurrent and
convolutional networks for sequential data.

4. Addressing schemes of memory-augmented neural networks

The shared idea: focus on the relevant parts of the input (output).

12



Attention in Deep Learning Applications
[to Language Processing]

machine translation

Economic growth has

speech recognition
. Alignment between the Characters and Audio
slowed down in recent years . __ _
| y. 2 ,L.l.:;
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Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .
Economic growth has slowed down in recent years
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speech synthesis, summarization, ...
(seg2seq) task

any seguence-to-sequence



Traditional deep learning approach

iInput — d-dimensional feature vector — layer, — .... — layer, — output

Good for: image classification, phoneme recognition, decision-making
In reflex agents (ATARI)

Less good for: text classification

Not really good for: ... everything else?!

14



Example: Machine Translation

Vlachine translation presented a challenge to vanilla deep learning

e INput and output are sequences
o the lengths vary
« Input and output may have different lengths

e NO Obvious correspondence between positions In the Input and
IN the output

:llAnII, IIRNNII, llexamplelll ll.II]H[IIUnII, “example”’ llde,” IIRNNII’ ll.”

15



Vanilla seq2seq learning for machine
translation

<EOS>

?
T T T ]

A B C <EOS>

Y
Y
Y
Y
Y

s —> [—>x
X —p > <
< —> |[—>nN
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input sequence output sequence

/
T Encoder

p(yla “ ,yT/‘iEl, 5 @ 8 ,ZCT> — p(yt‘;}ayla i ¥ 8 7yt—1)

=1
fixed size representation

Recurrent Continuous Translation Models, Kalchbrenner et al, EMNLP 2013

Sequence to Sequence Learning with Recurrent Neural Networks, Sutskever et al., NIPS 2014

Learning Phrase Representations using RNN Encoder-Decoder for

Statistical Machine Translation, Cho et al., EMNLP 2014 16



Problems with vanilla seg2seq

looong term dependencies
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e training the network to encode 50 words In a vector I1s hard = very big
models are needed

e gradients has to flow for b0 steps back without vanishing = training can
be slow and require lots of data



Soft attention

lets decoder focus on the relevant hidden states
of the encoder, avoids squeezing everything
Into the last hidden state = no bottleneck!

dynamically creates shortcuts in the computation
graph that allow the gradient to flow freely
= shorter dependencies!

best with a bidirectional encoder

Neural Machine Translation by Jointly Learning to Align and Translate, Bahdanau et al, ICLR 2015

....................

18



Soft attention - math 1

At each step the decoder consumes a different weighted combination
of the encoder states, called context vector or glimpse.

p(y’Llyl? I 7yi—17X) = g(y><173i7 Ci)

Ty
C; — E Oéijhj.
j=1

....................



Soft attention - math 2

But where do the weights come from?
They are computed by another network!

exp (€;;)

i — T 9
> e €Xp (€ik)

ei; = a(si—1,h;)

The choice from the original paper Is
T-layer MLP: X % X X

a(8s—1,h4) = v;_ tanh (Wys;—1 + Ugh;)

20



Soft attention - computational aspects

The computational complexity of using soft attention is quadratic. But it's not slow:

o for each pair of rand |

o sum two vectors G —u ! tanh (Wasz'—l + U,h )
J a J
o apply tanh
o compute dot product exp (eij)
e can be done In parallel for all J, 1.e. Xij :ZT::: ox (e' )
o add a vector to a matrix k=1 P \Cik
o apply tanh To
o compute vector-matrix product C; = Z i hj7
J=1

e softmax is cheap
e welighted combination is another vector-matrix product
e INn summary: just vector-matrix products = fast!

21



Soft attention - visualization

The agreement on the European Economic Area was signed in August 1992 .

el

L' accord sur |I' Espace économique européen a été signé en aodt 1992 .

It is known , that the verb often occupies the last position in German sentences

\V Y/

Es ist bekannt , dass das Verb oft die letzte Position in deutschen Strafen einnimmt

Great visualizations at https:/distill.pub/2016/augmented-rnns/#attentional-interfaces [ pe Na |ty? ? ?]

22


https://distill.pub/2016/augmented-rnns/

Soft attention - visualization

Visualize attention weights a;;

Exampl_e: English to French 2 §§ o - R
translation ef. 258885 23 5
F © 0O WW< o £~ v
U%*

Input: “The agreement on 2srord

. sur

the European Economic a

Area was signed in August =

' économique

1 992 européenne

a

P été

Output: “L'accord sur la signé

zOne économigue S

/ s / aolt
européenne a ete signé en 1992
aodt 1992."

<end>

Bahdanau et al., “Neural machine translation by jointly learning to align and translate”, ICLR 2015 23



Soft attention - visualization

Visualize attention weights a;;

Example: English to French
translation

agreement
European
Economic

Diagonal attention means

InpUt: The agreement on words correspond in order

the European Economic
Area was signed in August o

" economique
1 992 européenne

zone

Output: “L'accord sur la

zOne économigue

européenne a eté Sigﬂé en Diagonal attention means
aolt 1992 " words correspond in order

Bahdanau et al., “Neural machine translation by jointly learning to align and translate”, ICLR 2015



Soft attention - visualization

Visualize attention weights a;;

Example: English to French 2 §
translation 5 c oS 8
7 Diagonal attention means
InpUt' The agreement on words correspond in order
the
was signed in August ~ wame
1992.,, économique

européenne

Output: “L'accord sur la

a éte Sigﬂé en Diagonal attention means
aolit 1992." words correspond in order

Bahdanau et al., “Neural machine translation by jointly learning to align and translate”, ICLR 2015



Soft attention - visualization

Visualize attention weights a;;

Example: English to French 2 5
translation S
7 Diagonal attention means
InpUt' The agreement on words correspond in order
the
was signed in August ~ =ome
1992.,, économique

européenne

11 [ 4 V b . ‘t
Output: “L'accord sur la erb conjugation

a été signé en Diagonal attention means
aolt 1992 " words correspond in order

Bahdanau et al., “Neural machine translation by jointly learning to align and translate”, ICLR 2015



Soft attention - improvements

no performance drop on long sentences

11

much better than RNN

Encoder-Decoder

a) l
W oo :
o 20}
o) z 5
A z g
> b ~ ;
- 1 z : 5
m 10} RNNsearch-50 | 5
= = RNNsearch-30 | 5 : |
5( === RNNenc-50 [ S a T . I
== RNNenc30 | f ' g
0 ] ] i ]
0 10 20 30 40 50 60

Sentence length

Model All No UNK”
RNNencdec-30 | 13.93 24.19
RNNsearch-30 | 21.50 31.44
RNNencdec-50 (f 17.82 N 26.71
RNNsearch-50 ~26.75 34.16
RNNsearch-50* | 28.45 36.15 \

Moses 33.30 3563

without unknown words
comparable with the
SMT system

27



End-to-End Machine Translation with Recurrent Nets

and Attention Mechanism
(Bahdanau et al 2014, Jean et al 2014, Gulcehre et al 2015, Jean et al 2015)

25

20

15

10

2013

2014

2015

2016

B Phrase-based SMT
B Syntax-based SMT
B Neural MT

Figure credit: Rico Sennrich
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Soft content-based attention pros and cons

Pros
« faster training, better performance
« good inductive bias for many tasks => lowers sample complexity

Cons
« not good enough inductive bias for tasks with monotonic
alignment (handwriting recognition, speech recognition)
« chokes on sequences of length >1000

29



Location-based attention

o In content-based attention the attention weights depend
on the content at different positions of the input (hence
BiIRNN)

o In location-based attention the current attention weights
are computed relative to the previous attention weights

30



Gaussian mixture location-based attention

Originally proposed for handwriting synthesis.

The (unnormalized) weight of the input
position u at the time step t Is parametrized T
as a mixture of K Gaussians 075

K
P(t,u) = Zaf eXp (—Bf (ki — U)z) /B&
k=1 ——

d 1
Wt = E :gb(t,U)Cu ofoJoJofJofrJofoJofo
Ofoffofoqfrgofogrrjojo
u=1 L{ofjr]Jofojofolo]t1]o
ojofogrjojoffojojolqli
Section 5, Generating Sequence with Recurrent Neural Networks, A. Graves 2014 011 10JO0OfOoOjJOf1}310]J0O]J0




Gaussian mixture location-based attention

The new locations of Gaussians are computed as a sum of the
previous ones and the predicted offsets

(O/\étv Bb ’%t) — Whlph% SiE bp

o = exp ()
Bt = exp (Bt

t = Kt—1 + exp (K¢)

Thought that the muster from

MOQL\\\& Wb Mol woshar YL,M

32



Gaussian mixture location-based attention

The first soft attention mechanism ever!

Pros:
o good for problems with monotonic alignment

Cons:
« predicting the offset can be challenging
o only monotonic alignment (although exp In theory could be removed)

33



Various Soft-Attentions

e Uuse dot-product or non-linearity of choice instead of tanh in content-based
attention

o use unidirectional RNN instead of Bi- (but not pure word embeddings!)
o explicitly remember past alignments with an RNN

e USE a separate embedding for each of the positions of the input (heavily
used iIn Memory Networks)

e MIX content-based and location-based attentions

See “Attention-Based Models for Speech Recognition” by Chorowski et al
(2015) for a scalability analysis of various attention mechanisms on speech
recognition.

34



Various Attention Score Functions

* g is the query and K is the key * Dot Product (Luong et al. 2015)

* Multi-layer Perceptron | |
(Bahdanau et al. 2015) - No para%&g’rféb B:Uté@ku'res sizes 10

be the sa
a(q, k) = wltanh(W|q; k|)
» Scaled Dot Product (vaswani et al.
- Flexible, often very good with large  2017)

data - Problem: scale of dot product

INncreases as dimensions get e larger

* Bilinear (L tal. 2015 . .
(Luong et 2 | - Fix: scale by size of the vector

a(g, k) =q"Wk

RVALZ .



Going back in time: Connection Temporal
Classification (CTC)

CTC is a predecessor of soft attention
that is still widely used

has very successful inductive T Y I VTR,

bias for monotonous seg2seq +

transduction ; P(THE—CAT—)
core idea: sum over all possible p(_T__H__EE__fC__AA__T____)

ways of inserting blank tokens JINA TR TR RN

In the output so that It aligns : { : " | ” :!I' 'i

with the input

Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks, Graves et al, ICML 2006

36



CTC

labeling
$

p(l|z)
1 )

Input

conditional probability of
probability of a outputting \pi_t
labeling with blanks at the step t
: ;
— Zweg—l (1) p(mlz) = Zweg—l (1) 11, Yy
1 )
sum over all labelling
with blanks P(L_TH____E_-_C__AAA__TT__-)
+
: P(THE—CAT—)
b
P(_T__H__EE__-_C__AA i -)

RN lg" I ! 'l?
“' 1 "upl
i1 ﬂ 114

37



CTC

« can be viewed as modelling ply|x) as sum of all p(y|a,x), where a is
a monotonic alignment

« thanks to the monotonicity assumption the marginalization of a
can be carried out with forward-backward algorithm
(a.k.a. dynamic programming)

Plo-TH._ B = €. AAA_-TT__=)

« hard stochastic monotonic attention +
] .. . P(THE—CAT—)
o popular in speech and handwriting +
recognition PLT__H__EE__~_C__AA__T___)

- " : _ g9 ¢ ig-s T {1
o VY _Iare conditionally independent given a ﬂ THEETR '
and x but this can be fixed | |

38



Soft Attention and CTC for seg2seq: summary

the most flexible and general is content-based soft attention and
It 1S very widely used, especially in natural language processing

location-based soft attention is appropriate for when the input
and the output can be monotonously aligned; location-based and
content-based approaches can be mixed

CTC is less generic but can be hard to beat on tasks with
monotonous alignments

39



Visual and Hard Attention

A dog is standing on a hardwood floor.

40



Models of Visual Attention

« Convnets are great! But they process the whole image at a high
resolution.

o 'Instead humans focus attention selectively on parts of the visual
space to acquire information when and where it is heeded, and

combine information from different fixations over time to build up an
internal representation of the scene” (Mnih et al, 2014)

o hence the idea: build a recurrent network that focus on a patch of
an input image at each step and combines information from
multiple steps

Recurrent Models of Visual Attention, V. Mnih et al, NIPS 2014 41



Soft and Hard Attention

The attention mechanism In Recurrent attention model (RAM) Is hard -
It outputs a precise location where to look.

Content-based attention from neural MT Is soft - it assigns weights to
all input locations.

CTC can be interpreted as a hard attention mechanism with tractable
gradient.

42



Soft and Hard Attention

Soft Hard
o deterministic o Stochastic*®
e exact gradient o gradient approximation®**
o Oflinput size) o O(1)
o typically easy to train o harder to train

* deterministic hard attention would not have gradients
** exact gradient can be computed for models with tractable marginalization
(e.g. CTC)

43



Soft and Hard Attention

Can soft content-based attention be used for vision? Yes.

Show Attend and Tell, Xu et al, ICML 2015

Can hard attention be used for seq2seq? Yes.  adogis standing on a hardwood floor

Learning Online Alignments with
Continuous Rewards Policy Gradient,
Luo et al, NIPS 2016

| 1“ J“m. ‘

lﬂﬂ. ‘.m, n

(but the learning curves are a nightmare...)

'H' '”M
| '?li el
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zebra(0.23) standing(0.20)

Paying Attention
to Selected Parts
of the Image

| While Uttering

tall(0.19) grass(0.22)

(0.18) 4 h
14x14 Feature Map A |
[bird |
| f\ flying
0 LsT™ | over
7 a
' body
- o
water
1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image  Feature Extraction over the image word
. generation)

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, Y. Bengio. ICML 2015 45



Kiko

softmax

likes

softmax

Imm

<S>

=
)

softmax

X2

=
w

A 4
I3

X3

</s>

softmax

X4

Sutskever et al. (2014)
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softmax

owin

softmax

=
w

=
S

a man
P1
softmax softmax

hl h2

A A

X1 X2

A

<S>

X3

X4

Vinyals et al. (2014) Show and Tell: A Neural Image Caption Generator
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Regions in ConvNets

* Each point in a “higher” level of a convnet defines spatially localized
feature vectors(/matrices).

- Xu et al. calls these “annotation vectors”, a;, ¢ € {1,..., L}

48



Regions in ConvNets

a]

49



Regions in ConvNets

a9

50



Regions in ConvNets

a3

51



Extension of LSTM via the context vector

e Extract L D-dimensional annotations

— Lower convolutional layer to have the correspondence between the feature vectors and
portions of the 2-D image

1

|

g Ey; 1 E: embedding matrix
— o TD+m—|—n,n htA—l (D) y: captions
tanh 4t h: previous hidden state
¢ =f0c 1 +i0g ) [z: context vector, a dynam.ic repr.esentatio.n
of the relevant part of the image input at time t

h; = o; ® tanh(cy). (3)

eri = fatt(ai, hy—1) -

exp(es:) A MLP conditioned on

Qg the previous hidden state

Zk;:1 eXp(etk)

z: = ¢ ({a;},{a;}) ¢ is the "attention’ (‘focus’) function — ‘soft’ / 'hard’

p(yela, y’i_l) x exp(Lo(Ey:—1 + Lph; + L, 2;))
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Hard attention

\/|Vehhave two seqluenl_ces_ €4 :fatt(ai, ht—l)
'I" that runs over localizations 7, — a; O
't’ that runs over words exp(eti) t ¢ ({ Z} ’ { Z})
Aty —
Stochastic decisions are discrete L
exple
here, so derivatives are zero Zk:l p< tk)
Loss is a variational lower bound on s o
the marginal log-likelihood p(stﬂ — ’ Sj<t; a) — Qg
Ly =) p(s|a)logp(y| s, a) Zy = St i
5 7
<log ) p(s|a)p(y | s,a) OLs _ ZP(S a) dlog p(y | S’a)—l—logp(y s a)é?logp(s | a)
s aW aW , 8W
=logp(y | a) s

Due to Jensen'’s inequality E[log(X)] = log(E[ X])

$; ~ Multinoulliz, ({o})

oLy 1 3~ lalogmy 5"a)
oL, 1 al {(ﬂogp(y | E”,a)Jr ow N ow

ow N oW

n=1

Odlogp(s" | a) OH[5"]
ow ow
To reduce the estimator variance, entropy term H[s] and bias are added [1,2]

+ Ae

dlogp(s™ | a)
oW

Ar(logp(y | gnaa) o b)
logp(y | 5", a) ]

[1] J. Ba et al. “Multiple object recognition with visual attention”
[2] A. Mnih et al. “Neural variational inference and learning in belief networks”
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Hard attention

yl\'/cfhh?ve two seqluenlpest_ €45 :fatt(aia ht—l) X

at runs over localizations — ) .

't’ that runs over words o — exp(eti) 4t ¢ ({aZ} ’ {QZ})
Stochastic decisions are discrete te = Zé—l eXp(etk)

here, so derivatives are zero

Loss is a variational lower o |nstead Of a SOf't interp0|ati0n, make d

the marginal log-likelihood

L=Y s )lepy  ZEFO-ONE decision about where to attend

SlogZp (s | a)
; * Harder to train, requires methods such as W

=logp(y | a) f |
Due to Jensen's inequality rel N Orcement earn I ng
B G .
§¢ ~ Multinoulliz, ({c;}) L. lﬁlogp(y | gn a)+
oL, _ 1\ [mogp(y [5"a) ow "~ N ow
ow N — ow OH[5"]

n Ologp(5" | a)
810gp(§” ‘ a)] )\r(logp(y | S 7a) T b) OW + >\e oW

101%% To reduce the estimator variance, entropy term H[s] and bias are added [1,2]

logp(y | 5", a)

[1] J. Ba et al. “Multiple object recognition with visual attention”
[2] A. Mnih et al. “Neural variational inference and learning in belief networks”
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Soft attention
Z; = ZSt,z‘az‘

© Instead of making hard decisions,
1 we take the expected context vector

EP(St |a) Z (t,iQq The whole model is smooth and differentiable under the

deterministic attention; learning via a standard backprop

o ({ai}, {ai}) = X7 aua

Theoretical arguments

*  Ep(s,ja)lht] equals to computing h, using a single forward prop with the expected context vector E, s, |q)[2¢]

* Normalized Weighted Geometric Mean approximation [1] NWGM[p(y: = k | a)] ~ Elpy; = k | a)]
« Finally

NWGM{p(ys = | a)] = 1L xR0k 71 exp(Ep(s,Ja) [121,k])
Z H exp(ntj Z)p(St 7,—1|a/) Zj eXp(Ep(st|a) [nt,j])

En;| = L,(Ey;—1 + LyEh;] + L.E|z¢])

[1] P. Baldi et al. “The dropout learning algorithm”
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Soft attention
Z; = ZSt,z‘az‘

© Instead of making hard decisions,
1 we take the expected context vector

EP(St |a) Z (t,iQq The whole model is smooth and differentiable under the

deterministic attention; learning via a standard backprop

o ({ai}, {ai}) = X7 aua

Theoretical arguments

*  Ep(s,ja)lht] equals to computing h, using a single forward prop with the expected context vector E, s, |q)[2¢]

* Normalized Weighted Geometric Mean approximation [1] NWGM[p(y: = k | a)] ~ Elpy; = k | a)]
« Finally

NWGM{p(ys = | a)] = 1L xR0k 71 exp(Ep(s,Ja) [121,k])
Z H exp(ntj Z)p(St 7,—1|a/) Zj eXp(Ep(st|a) [nt,j])

En;| = L,(Ey;—1 + LyEh;] + L.E|z¢])

[1] P. Baldi et al. “The dropout learning algorithm”
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How soft/hard
attention works

Attention

State

Mechanism

f=(a, man, 1s, jumping, into, a, lake, .)

Adinotation
Vectors

h.

J

Convolutional Neural Network
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How soft/hard attention works

Sample regions of attention

L.=) logp(y| z)
< (0.0.0.0)

AIying over a body of water.

" conv-512

[6)]
pat ¥
Il\)

conv-512 j

maxpool —p

14x14x512 =
196 x 512 (Lx D)
annotations

90000®
' 961

O

&
75

o

=

L :ZP('S I a) logp(y | Ssa)
° Zy = < |P1 P2 P3 P4 D5 Pe|,

' L 7
A variational lower bound of ‘.“. >

maximum likelihood Computes the expexted attention
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Hard
Attention
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A(0.98) woman(0.54)

throwing(0.33)

frisbee(0.37)

park(0.35)

Soft Attention



The Good

LT S T ot ¢

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
- — mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with

a teddy bear. in the water. trees in the background.
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And the Bad

A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.
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Quantitative results

Human Automatic
Model M1 M2 BLEU CIDEr
Human 0.638 0.675 0471 0.91
Google* 0.273 0.317 0.587 0.946
MSR*® 0.268 0.322 0.567 0.925
Attention-based™ 0262 0.272 0.523 0.878
Captivator® 0.250 0.301 | 0.601 0.937
Berkeley LRCN® | 0.246  0.268 0.534 0.891

M1: human preferred (or equal) the method over human annotation

M?2: turing test

« Add soft attention to image captioning: +2 BLEU
* Add hard attention to image captioning: +4 BLEU
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Why attention?

* Long term memories - attending to memories
— Dealing with gradient vanishing problem

« Exceeding limitations of a global representation

— Attending/focusing to smaller parts of data
= patches in images
= words or phrases in sentences

* Decoupling representation from a problem

— Different problems required different sizes of representations
= LSTM with longer sentences requires larger vectors

« Overcoming computational limits for visual data
— Focusing only on the parts of images
— Scalability independent of the size of images

 Adds some interpretability to the models (error inspection)
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Attention on Memory Elements

* Recurrent networks cannot remember things for very long
— The cortex only remember things for 20 seconds

 We need a “hippocampus” (a separate memory module)

— LSTM [Hochreiter 19971, registers
— Memory networks [Weston et 2014] (FAIR), associative memory
— NTM [Graves et al. 2014], “tape”.

Attention
mechanism

Recurrent net

A

> memory




Recall: Long-Term Dependencies

 The RNN gradient is a product of Jacobian matrices, each associated
with a step in the forward computation. To store information robustly
In a finite-dimensional state, the dynamics must be contractive
[Bengio et al 19941.

L = L(ST(ST—1(- . 3t+1(3t7 3 ))))
oL OL aST 85t—1—1 Storing bits

= SRR robustly requires
83t aST 6)ST—l 8875 sing. values<1

Gradien
* Problems: t
. . . clipping
* sing. values of Jacobians > 1 = gradients explode
* or sing. values < 1 = gradients shrink & vanish (Hochreiter 1991)
e or random = variance grows exponentially
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Gated Recurrent Units & LSTM

can flow for longer with self-

* Create a path where gradients
loop Cg

» Corresponds to an eigenvalue of
Jacobian slightly less than 1

 LSTM Is heavily used
(Hochreiter & Schmidhuber 1997)

* GRU light-weight version ot gate
(Cho et al 2014) )
4‘4—
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Delays & Hierarchies to Reach Farther

. . (0]
e Delays and multiple time

scales, Elhihi & Bengio NIPS
1995, Koutnik et al ICML 2014 §

Hierarchical RNNs
(words / sentences): -
Sordoni et al CIKM 2015,

Serban et al AAAI 2016 = ,_’,_’,_’

wow , | keep on bumping into you . hpy r mango
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Large Memory Networks: Sparse Access
Memory for Long-Term Dependencies

» A mental state stored in an external memory can stay for arbitrarily
ong durations, until evoked for read or write

* Forgetting = vanishing gradient.

 Memory = larger state, avoiding the need for forgetting/vanishing
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Memory Networks

 Class of models that combine large memory with learning component
that can read and write to It.

* Incorporates reasoning with attention over memory (RAM).

* Most ML has limited memory which is more-or-less all that's needed for
“low level” tasks e.g. object detection.

Jason Weston, Sumit Chopra, Antoine Bordes. Memory Networks. ICLR 2016
S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. End-to-end Memory Networks. NIPS 2015
Ankit Kumar et al. Ask Me Anything: Dynamic Memory Networks for Natural Language Processing. ICML 2016

Alex Graves et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626): 471-476,
2016. 70



Parametrization — Recurrent Neural Nets

» Following Bahdanau et al. [2019]

* The encoder turns a sequence of tokens into a sequence of
contextualized vectors.

— — — — —
ht = [ht, ht], where ht = RNN(Qﬁt, ht—1)7 ht = RNN(QZt, ]’Lt_|_1)

* The underlying principle behind recently successful contextualized
embeddings N
— ELMo [Peters et al., 2018], p<yl|y1<l> )W

BERT [Devlin et al. 2019] and m_

all the other muppets
L1,L2y...,XT, yikay;w"ayik—l Y
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Parametrization — Recurrent Neural Nets

» Following Bahdanau et al. [2019]
oy X exp(ATT (A, ze—1,Y¢-1))

* The decoder consists of three stages

T:L'
1. Attention: attend to a small subset of Ct = Z o e
source vectors t/=1

2. Update: update its internal state
3. Predict: predict the next token

zt = RNN([yt—1; ¢, 2¢-1)
p(yr = v|y<s, X) x exp(OUT (24, v))

» Attention has become the core
component in many recent
advances

e Transformers [Vaswani et al., 2017],

S

* % *
L1,L2y...,XT, Y1+:Y25---5Y1—-1 Y
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Side-note: gated recurrent units to attention

* A key idea behind LSTM and GRU is the additive update

ht = ur © ht—l + (1 — Ut) ® Bt, where ilt = f(flft, ht—l)

* This additive update creates linear short-cut connections

DEOE0 >0
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Side-note: gated recurrent units to attention

* \What are these shortcuts? @
OSOS0<_>6

* [f we unroll it, we see it's a weighted combination of all previous
hidden vectors:
hi =ur @ hy—1 + (1 —ug) © ilta
—u; O (w1 O hyo+ (1 —ui1) @ he1) + (1 —u) © hy,
= O (w1 © (Up—2 @ s + (1 —uy—2) @ hyo) + (1 —w—1) @ hy1) + (1 — wy) @ hy,

74



Side-note: gated recurrent units to attention

1. Can we “free” these dependent i izl ~
weights? hy = Zl ( ]11 ug‘) (E(l — Uk)) h 0
2. Can we “free” candidate vectors? .

hy = Z oziﬁi, where «; o< eXp(ATT(iLi,CCt)) 1

3. Can we separate keys and values?’ ~—

4. Can we have multiple attention .
heads? hy = Zaif(a:i), where o; o< exp(ATT(f(x;), 7)) 2

Zaz x;)), where a; o exp(ATT(K(f(x;)), Q(x))) 3

he = [hi;--- ;hi*], where hY = Zakvk (z;)), where af oc exp(ATT(K"(f(z:)), Q% (x¢))) 4

— Transformers
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Generalized dot-product attention - vector

form

GQ'I‘T/

Alg, K,V) =)
keys values 3 Z]- e’
outputs

%)
'AJ

queries
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Generalized dot-product attention - matrix
form

AQ, K, V) = softmax(QKT)V

 rows of Q, K, V are keys,
queries, values
« softmax acts row-wise
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Transformer Architecture

e Introduces the self attention mechanism

— No locality bias, 1.e. long-distance context has
"equal opportunity” as compared to LSTMs

« more efficient than RNNs/LSTMs
— It breaks down the recurrent structure
— Single multiplication per layer

Transformer LSTM

X00 | X01 | X02 | X023 X 0O0|| X01 [|[X02 | X023
X | W X | W

X_10 X_11 X_12 X_13 X_10 X_11 X_12 X_13

( R
Add & Norm
Feed
Forward

Output
Probabilities

Add & Norm

!

Feed
Forward

Add & Norm

I

Multi-Head
Attention

N>
\>

———

N f—>| Add & Norm '

Multi-Head
Attention

, T T

\_

Add & Norm

Masked
Multi-Head
Attention

J/

e
.

C

Positional &
Encoding

Input

Embedding

I

Inputs

E_

Output
Embedding

!

Outputs
(shifted right)

Positional
Encoding

A. Vaswani et al. Attention Is All You Need. In NeurlPS 2017
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Transformer Architecture

Output
Probabilities

( ™\
Add & Norm Je=~

Feed
Forward
4 N\ Add & Norm Je=~
_ '
gud s e Multi-Head
Feed Attention
Forward t ) Nx
~—
Nix Add & Norm
(—»| Add & Norm | Wiaeke
Multi-Head Multi-Head
Attention Attention
, T - A2
s J =
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)
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Transformer Architecture

Positional
Encoding

O+

Input
Embedding

I

Inputs

Input (Tokenization and) Embedding

Input text is first split into pieces. Can be characters, word, "tokens":

"The detective investigated" -> [The ] [detective ] [invest] [igat] [ed ]
Tokens are indices into the "vocabulary":

[ The ] [detective ] [invest] [igat] [ed ] ->[3 721 68 1337 42]

Each vocab entry corresponds to a learned d, 4o-dimensional vector.

[3 721 68 1337 42] ->[ [0.123, -5.234, ...1, [.--1, [---1., [---1, [.--11

Positional Encoding

Remember attention is permutation invariant, but language is not!
Need to encode position of each word; just add something.

Think [The ] + 10 [detective ] + 20 [invest] + 30 ... but smarter.
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Transformer Architecture

Multi-Head
Attention

- —

Multi-headed Self-Attention

Meaning the input sequence Is used to
create queries, keys, and values!

Each token can "look around" the whole
Input, and decide how to update its
representation based on what it sees.

L

MHSA

ﬁwﬂwﬁ

[The ] [detecti

iiiii

t] [igat] [ed]
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Transformer Architecture

Point-wise MLP E

A simple MLP applied to each token
iIndividually:

Zi — Wz GeLU(W1X + bl) + b2 [

GelU

T Think of it as each token pondering for
itself about what it has observed previously

There's some weak evidence this is where E
"'world knowledge’ Is stored, too.

It contains the bulk of the parameters. When
people make giant models and sparse/moe,
this Is what becomes giant.

Some people like to call it 1x1 convolution.



Transformer Architecture

Nx

i N\
( Add & Norm J<=~

1
E Add & Norm |

)] ||Add&Norm |<\

| I Add & Norm ;

(—>| Add & Norm |

. . "Skip connection" "Residual block"
Residual connections

Each module's output has the exact é
same shape as its input. T

Following ResNets, the module
computes a 'residual’ instead of a
new value:

z; = Module(x;) + x;

300|g J/

13019

This was shown to dramatically

improve trainability. j_/

LayerNorm
Normalization also dramatically improves trainability.
There's post-norm (original) and pre-norm (modern)

z; = LN(Module(x;) + x;) z; = Module(LN(x;)) + x;
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Transformer Architecture

L
\
[ Add & Norm

Feed
Forward

 —

Nx ~—{Add & Norm

Multi-Head
Attention

At

kL

J/

Positional

Encoding D

Input
Embedding

I

Inputs

Encoding / Encoder
Since input and output shapes are identical,
we can stack N such blocks.

Typically, N=6 ("base”), N=12 ("large’) or more.

Encoder output is a "heavily processed”
(think: "high level, contextualized") version
of the input tokens, I.e. a sequence.

This has nothing to do with the requested
output yet (think: translation). That comes
with the decoder.



Transformer Architecture

p(z3]22,21,X)

Positional
Encoding

Output
Embedding

I

OQutputs
(shifted right)

YATRY)

Decoding / the Decoder (alternatively Generating / the

Gg\q@ra\fyﬁ)want to model: p(z|x)

e.g., In translation: p(z | "the detective investigated") Vz

Seems impossible at first, but we can exactly decompose into tokens:
p(z[x) = p(z1]x) p(2z2|z1,%) p(23]|22,21,%)...

Meaning, we can generate the answer one token at a time.
Each pis a full pass through the model.

For generating p(z3|z,,24,X):
x comes from the encoder,
71, Z, 1S what we have predicted so far, goes into the decoder.

Once we have p(z|x) we still need to actually sample a sentence such
as "le détective a enquété”. Many strategies: greedy, beam-search, ...
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Transformer Architecture

Masked self-attention

This is regular self-attention as in the encoder, to process what's
been decoded so far, but with a trick...

If we had to train on one single p(z;|z,,z,,x) at a time: SLOW!

Instead, train on all p(z;|z,.,x) simultaneously.

How? In the attention weights for z,, set all entries i:N to 0.
Masked

Multi-Head 3

Lo This way, each token only sees the already generated ones.

At generation time

There is no such trick. We need to generate one z at a time. This
IS why autoregressive decoding is extremely slow.
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Transformer Architecture

"Cross" attention

Each decoded token can "look at" the encoder's output:

Xenc Attn(q:Wquec' Xencs V:WvXenc)
M}Tm \ This is where |x in p(z5|z,,z,,x) comes from.
Attention
Nx

Xdec

Because self-attention is so widely used, people have started just
calling it "attention”.

Hence, we now often need to explicitly call this "cross attention".
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Transformer Architecture

Feedforward and stack layers.

Add & Norm
Feed
Forward
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Transformer Architecture

ORI el
Assume we have already generated K tokens, generate the next
one

The decoder was used to gather all information necessary to
predict a probability distribution for the next token (K), over the
whole vocab.

Simple:
linear projection of token K
SoftMax normalization
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Three types of attention in Transformer

usual attention between encoder and decoder:
Q=[current state] K=V=[BiRNN states]

self-attention in the encoder (encoder attends to itself!)

Q=K=V=[encoder states]

masked self-attention in the decoder (attends to itself,
but a states can only attend previous states)

7 N7

-
1 f
1 |
R ]

R

Output
Probabilities

Softmax

[ Linear |

\
(| Add & Norm

Feed

Forward

4 | ~\ I Add & Norm |<_:
KL E D Multi-Head

Feed Attention

Forward ) N x
e =
Add & Norm _jee=

Nx
f—>| Add & Norm | N iasked
Multi-Head Multi-Head
Attention Attention
, T T , S,

La=— Y, \_ —
Positional D 4 Positional
Encoding Encoding

Input Qutput
Embedding Embedding
Inputs Outputs
(shifted right)
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Positional Embeddings

* To give the model a sense of order

» Learned or predefined

POSITIONAL Ll 7B 0.0001 [ IR 091 [ARYPE
ENCODING
- - -
EMBEDDINGS X1 e X3 |

INPUT Je SUis etudiant



Positional Embeddings
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How to use Attention / Transformers for Vision?
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to existing CNNs

10N

Add attenti

ldea #1

Start from standard CNN architecture (e.g. ResNet)

Softmax

FC 1000

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128,/ 2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

Pool

Input

", ICML 2018

"Self-Attention Generative Adversarial Networks'’

Zhang et al.,

96

", CVPR 2018

"Non-local Neural Networks

Wang et al.,



ldea #1: Add attention to existing CNNs

Start from standard CNN architecture (e.g. ResNet)

Add Self-Attention blocks between existing ResNet blocks

O
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O
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Zhang et al., "Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al., "Non-local Neural Networks"”, CVPR 2018



ldea #1: Add attention to existing CNNs

Model is still a CNN!  Start from standard CNN architecture (e.g. ResNet)
Can we replace
convolution entirely? Add Self-Attention blocks between existing ResNet blocks

O

[
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Zhang et al., "Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al., "Non-local Neural Networks"”, CVPR 2018



ldea

2: Replace Convolution with “Local Attention”

Convolution: Output at each position is inner product of
conv kernel with receptive field in input

Input: C x Hx W Output: C' x Hx W

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurlPS 2019 9



ldea #2: Replace Convolution with “Local Attention”

Map center of receptive field to query

Query: Dq

Input: C x Hx W Output: C' x Hx W

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurlPS 2019 100



ldea #2: Replace Convolution with “Local Attention”

Map center of receptive field to query
Map each element in receptive field to key and value

Query: Dq
Keys: RxX R x Dg
Values: Rx R x C’

Input: C x Hx W Output: C' x Hx W

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurlPS 2019 101



ldea #2: Replace Convolution with “Local Attention”

Map center of receptive field to query
Map each element in receptive field to key and value
Compute using attention

Query: Dq
Keys: RxX R x Dg
Values: Rx R x C’

oo

Attention
Input: C x Hx W Output: C' x Hx W

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models"”, NeurlPS 2019 102



ldea

Map center of receptive field to query
Map each element in receptive field to
Compute using attention

and value

Replace all conv in ResNet with local attention

LR = “Local Relation’

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;

Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurlPS 2019

I

2: Replace Convolution with “Local Attention’

I

stage| output ResNet-50 LR-Net-50 (7 x7, m=8)
. 1x1, 64

resl | 112x112| 7x7 conv, 64, stride 2 7x7 LR, 64, stride 2

3 %3 max pool, stride 2 | 3X3 max pool, stride 2
el mre 1x1, 64 1x1, 100

3x3 conv, 64 | X3 7x7LR,100 | %3
1:¢1,:256 ! 1%l,256 I

[ 1x1,128 [ 1x1,200 |
res3 | 28x28 3x3 conv, 128 | X4 7x7LR,200 | x4

L 1.%1,512 | ! %1, 512 I

[ 1x1,256 i [ 1x1,400 |
resd | 14x14 3x3 conv, 256 | X6 7x7LR,400 | X6

| 1x1, 1024 | L 1x1, 1024 I

[ 1x1,512 | [ 1x1,800 |
resS| 7x7 3x3conv, 512 | X3 7x7LR, 800 | X3

L 1x1, 2048 | L 1x1,2048 I

- global average pool global average pool
X
1000-d fc, softmax 1000-d fc, softmax
# params 25.5x10° 23.3x10°
FLOPs 4.3x10° 4.3x10°
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I

ldea #2: Replace Convolution with “Local Attention’

Map center of receptive field to query Lots of tricky details,
Map each element in receptive field to key and value hard to implement,
Compute using attention only marginally better
Replace all conv in ResNet with local attention than ResNets

Query: Dq
Keys: RxX R x Dg
Values: Rx R x C’

oo

Attention
Input: C x Hx W Output: C' x Hx W

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurlPS 2019 104



ldea #3: Standard Transformer on Pixels

Treat an Image as a set
of pixel values t t t t

Layer Normalization

(+

| I | |
MLP MLP MLP MLP

L 1 I |

Layer Normalization

:é
L Self-Attention

t t t t
I et
Feed as input to
standard Transformer ‘

Chen et al., “Generative Pretraining from Pixels”, ICML 2020 105



ldea #3: Standard Transformer on Pixels

Treat an Image as a set
of pixel values t t f t

Problem: Memory use!
Layer Normalization

' o |
. ‘? €|+) R x R image needs R*
;E« | I I | elements per attention
v

MLP MLP MLP MLP matrix
t f f |

Layer Normalization

:é
L Self-Attention

t 1} 1} 1}

] I

Feed as input to ‘

standard Transformer

Chen et al., “Generative Pretraining from Pixels”, ICML 2020 106



ldea #3: Standard Transformer on Pixels

Treat an Image as a set

of pixel values t t t 1
;" Layer Normalization
i A ‘? e
4 | [ | |
f;‘ L4 MLP | |MLP| |MLP| |MLP
N
i 1 | |
v |
Layer Normalization
:
Self-Attention
y t t t t
EEE = L T
Feed as input to
standard Transformer

Chen et al., “Generative Pretraining from Pixels”, ICML 2020

Problem: Memory use!

R x R image needs R*
elements per attention
matrix

R=128, 48 layers, 16 heads
per layer takes 768GB of
memory for attention
matrices for a single
example...
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ldea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 108



ldea #4: Standard Transformer on Patches

B ‘ '

A
W A

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 109



ldea #4: Standard Transformer on Patches

o

N input patches, each > . % ' % }i _
of shape 3x16x16 E D1

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 110




ldea #4: Standard Transformer on Patches

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
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ldea #4: Standard Transformer on Patches

Add positional
embedding: learned
D-dim vector per position +

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 112



ldea #4: Standard Transformer on Patches

Output vectors

Exact same as
NLP Transformer!

Add positional
embedding: learned
D-dim vector per position

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Transformer

I

I

I

113



ldea #4: Standard Transformer on Patches

Output vectors

Exact same as

NLP Transformer! Transformer

Add positional
embedding: learned
D-dim vector per position +

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Special extra input:
classification token
(D dims, learned)
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ldea #4: Standard Transformer on Patches

Linear projection
to C-dim vector
of predicted class

scores
Output vectors

Exact same as

NLP Transformer! Transformer

Add positional
embedding: learned
D-dim vector per position

Special extra input:
|:| classification token
(D dims, learned)

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 115



Vision Transformer (ViT)

with no convolutions! to C-dim vector
of predicted class

scores
Output vectors

Exact same as

NLP Transformer! Transformer

Special extra input:
classification token
(D dims, learned)

Add positional
embedding: learned
D-dim vector per position

1

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 116



Vision Transformer (ViT)

Computer vision model Not quite: With patch size p, first layer Linear projection

with no convolutions! is Conv2D(pxp, 3->D, stride=p) to C-dim vector
of predicted class
SCcores

Output vectors

Exact same as

NLP Transformer! Transformer

Special extra input:
classification token
(D dims, learned)

Add positional
embedding: learned
D-dim vector per position

1

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 117



Vision Transformer (ViT)

Computer vision model Not quite: MLPs in Transfprmer Linear projection
with no convolutions! are stacks of 1x1 convolution to C-dim vector
of predicted class

scores
Output vectors

Exact same as

NLP Transformer! Transformer

Special extra input:
classification token
(D dims, learned)

Add positional
embedding: learned
D-dim vector per position

1

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 118



Vision Transformer (ViT)

In practice: take 224x224 input image, Each attention matrix has 144 = 38,416
divide into 14x14 grid of 16x16 pixel entries, takes 150 KB
patches (or 16x16 grid of 14x14 patches) (or 65,536 entries, takes 256 KB)

Output vectors

Linear projection
to C-dim vector
of predicted class
scores

Exact same as

NLP Transformer! Transformer

Add positional
embedding: learned
D-dim vector per position

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Special extra input:
classification token
(D dims, learned)
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Vision Transformer (ViT)

In practice: take 224x224 input image, With 48 layers, 16 heads per
divide into 14x14 grid of 16x16 pixel layer, all attention matrices
patches (or 16x16 grid of 14x14 patches) take 112 MB (or 192MB)

Output vectors

Linear projection
to C-dim vector
of predicted class
scores

Exact same as

NLP Transformer! Transformer

Add positional
embedding: learned
D-dim vector per position

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Special extra input:
classification token
(D dims, learned)
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Vision Transformer (ViT) vs ResNets

90
S
Q>)\. J
< 85 Il
o .
= _
o !
< _ B = Base
— 80 1 L = Large
. H = Huge
—
© ; /32, /16, /14 is patch
% 75 ResNet-152x4 VIT-L/32 Size; smaller patch
on ViT-B/32 ViT-L/16 size is a bigger model
E ] VIiT-B/I6 @ ViT-H/14 | morepetenes)

70 | 1 | 1

ImageNet ImageNet-21k JFT-300M

Pre-training dataset

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 121



Vision Transformer (ViT) vs ResNets

90
Recall: ImageNet g |
dataset has -
1k categories, = 85
. — .
1.2M Images S
| <QE : B = Base
VWhen trained on — 80 1 L = Large
ImageNet, ViT models E‘ ‘ H = Huge
perform worse than s | 132, /16, /14 is patch
ResNets % 15 ResNets ViT-L/32 size; smaller patch
on ViT-B/32 ViT-L/16 size is a bigger model
E ] VIiT-B/I6 @ ViT-H/14 | morepetenes)
70 | 1 | 1
ImageNet ImageNet-21k JFT-300M

Pre-training dataset

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 122



Vision Transformer (ViT) vs ResNets

90
ImageNet-21k has S
14M images with P
21k categories 3 85
| 3
If you pretrain on < | ® B = Base
ImageNet-21k and — 80 1 L = Large
_ o - H = Huge
fine-tune on ImageNet, ©
. e =
V!T does bett_er. big = ' /32, /16, /14 is patch
ViTs match big % 73 ResNets VIT-L/32 | size: smaller patch
ResNets = ViT-B/32 ViT-L/16 | sizeis a bigger model
E ] VIiT-B/I6 @ ViT-H/14 | morepetenes)
70 | 1 | 1
ImageNet ImageNet-21k JFT-300M

Pre-training dataset

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 123



Vision Transformer (ViT) vs ResNets

JFT-300M Is an _ a
internal Google S
dataset with 300M 2 95 ]
labeled images g =
o _
If you pretrain on JFT <€ 1 ® B = Base
and finetune on =l hif&gi
ImageNet, large ViTs ﬁ
D 32, /16, /14 is patch
ouperfomlaige 5 .
on ViT-B/32 ViT-L/16 size is a bigger model
E ViT-B/16 ViT-H/14 | Morepatches)
70 — . .
ImageNet ImageNet-21k JFT-300M

Pre-training dataset

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 124



Vision Transformer (ViT) vs ResNets

JFT-300M is an _ o
internal Google S
dataset with 300M o e |
. < 85 Il
labeled images 5
5
2
If you pretrain on JFT <G -
and finetune on a
ImageNet, large Vils ﬁ
outperform large D
ResNets % 75
o))
<
g
70

@
ResNets ViT-L/32
ViT-B/32 ViT-L/16
ViT-B/16 ViT-H/14
ImagleN et ImageNet-2 1k J FT-1I300M

Pre-training dataset

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ViTs make more
efficient use of GPU /
TPU hardware
(matrix multiply is
more hardware-
friendly than conv)

125



Vision Transformer (ViT) vs ResNets

Claim: ViT models have _ a
“|less inductive bias” than &, ]
ResNets, so need more  2» 95 ]
pretraining data to learn g ol
good features 3 j
< |
(Not sure | buy this =l A
explanation: “inductive ﬁ
bias” is not a well- D
defined concept we can % T3]
measure!) &
g
70

|
ResNets ViT-L/32
ViT-B/32 ViT-L/16
ViT-B/16 ViT-H/14
ImagleN et ImageNet-Q 1k J FT-1I300M

Pre-training dataset

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ViTs make more
efficient use of GPU /
TPU hardware
(matrix multiply is
more hardware-
friendly than conv)
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Vision Transformer (ViT) vs ResNets

90

S

>\. J

Q' 85 -

g &

= J
Q

S

<o

How can we g. -
Improve the —

performance of © -
ViIT models on é}
ImageNet? g

=

70+

@
ResNets ViT-L/32
ViT-B/32 ViT-L/16
ViT-B/16 ViT-H/14
ImagleN et ImageNet-2 1k J FT-1I300M

Pre-training dataset

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ViTs make more
efficient use of GPU /
TPU hardware
(matrix multiply is
more hardware-
friendly than conv)
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ViT vs CNN

Stage 3:
266 x 14 x 14

Stage 2:
128 x 28 x 28

Stage 1:
64 x b6 x b6

Input:
3 X224 x 224

In most CNNs (including
ResNets), decrease resolution
and increase channels as you
go deeper in the network
(Hierarchical architecture)

Useful since objects in images
can occur at various scales
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ViT vs CNN

Stage 3:
266 x 14 x 14

Stage 2:
128 x 28 x 28

Stage 1:
64 x b6 x b6

Input:
3 X224 x 224

In most CNNs (including
ResNets), decrease resolution
and increase channels as you
go deeper in the network
(Hierarchical architecture)

Useful since objects in images
can occur at various scales

In a ViT, all blocks have
same resolution and
number of channels

(Isotropic architecture)

! ! ! !

Layer Normalization

i

| ]
M| (M| wmee | MLP

Layer Normalization

|

Self-Attention

t t t t

! ! ! !
! ! ! !

Layer Normalization

L

[ |
‘Mp | mep | e MLP
t f

Layer Normalization

|

Self-Attention
1 f f f

! ! ! !
! ! ! !

Layer Normalization

i

I |
‘MW“MW“MW“MW‘

Layer Normalization

|

Self-Attention

t t t t
f f f f

3 block:
768 x 14 x 14

2nd block:
768 x 14 x 14

15t block:
768 x 14 x 14

Input:
3 X 224 x 224
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ViT vs CNN

Stage 3:
266 x 14 x 14

Stage 2:
128 x 28 x 28

Stage 1:
64 x b6 x b6

Input:
3 X224 x 224

In most CNNs (including
ResNets), decrease resolution
and increase channels as you
go deeper in the network
(Hierarchical architecture)

Useful since objects in images
can occur at various scales

In a ViT, all blocks have
same resolution and
number of channels

(Isotropic architecture)

Can we build a hierarchical ViT model?

! ! ! !

Layer Normalization

i

| ]
M| (M| wmee | MLP

Layer Normalization

|

Self-Attention

t t t t

! ! ! !
! ! ! !

Layer Normalization

L

[ |
‘Mp | mep | e MLP
t f

Layer Normalization

|

Self-Attention
1 f f f

! ! ! !
! ! ! !

Layer Normalization

i

I |
‘MW“MW“MW“MW‘

Layer Normalization

|

Self-Attention

t t t t
f f f f

3 block:
768 x 14 x 14

2nd block:
768 x 14 x 14

15t block:
768 x 14 x 14

Input:
3 X 224 x 224
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Hierarchical ViT: Swin Transformer

C H W
X — X —
4 4

R _S;aée_l_ TN

| I

[ b0 4 N\ 1

[ = I

3xHxW |E| 1+ |% '

-+ 1 1

1 | & Swin I

Images [ £ —> 5 —»| Transformer [+

SN = Block I

A L ) 1

VN = I

A Gl BN /

‘e X2 ’/

Divide image into 4x4
patches and project to
C dimensions

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021 131



Hierarchical ViT: Swin Transformer

C H W 2 H W
X — X — X = X —
4 4 38 38
7 Stagel  vT 0 Stage2
1 1 1
1 50 4 N\ 1! 4 N\ 1
= = 1! 50 I
ISIXHXW || |3 1! = i
2l = ) 1 ! B0 . [
21 | & Swin | g Swin |
Images PP £ —> 5 > Transformer-:—:-) = [ Transformer [+
Sl | = Block |11 |5 Block |,
=1 S L [~ i
v I = ! : A~ I
2 Kl Y 1y \ J!
‘e X2 AN X2 ’
Divide image into 4x4 Merge 2x2
patches and project to neighborhoods;
C dimensions now patches are

(effectively) 8x8

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021 132



Hierarchical ViT: Swin Transfor

c H W 2 H W
X — X — X =X —
4 4 38 38
" Stagel  CvsT 0 Stage2
1 1
1 ol N\ 1! 4 )
ol ! =) 1! 50
IXHXW | 3|1 |= =
=N I o ) 1! B0 )
21 | & Swin | g Swin
Images PP £ —> 5 > Transformer—:-i') = [P Transformer
SIERE Block |11 |5 Block
=1 L ) 1! b=
AL = 1! [a¥
' F) X Fla \ y
‘e X2 AN X2
Divide image into 4x4 Merge 2x2

patches and project to
C dimensions

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

neighborhoods;
now patches are
(effectively) 8x8

H/4

W/4
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Hierarchical ViT: Swin Transfor

3IXHXW

-

Images

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

Patch Partition

C H W 2 H W
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I S L I
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‘. X2 AN X2
Divide image into 4x4 Merge 2x2
patches and project to neighborhoods;

C dimensions

now patches are
(effectively) 8x8
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C
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Concatenate
groups of
2x2 features
H/8
AC
W/8
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Hierarchical ViT: Swin Transfor

H/4
c H W » H W /
X — X — X = X —
4 4 8 8
. Stagel " T Stage2 C
|
1 ol N\ ! : 4 R : W/4
gl!' |.8 S Y '
3XHXW Sl |3 , X b% , : Concatenate
£l |2 Swin 1! | § Swin |y groups of
Images P £ > & PP Transformer[#=»] = | Transformer [~
A ! o - 2x2 features
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Al |8 12 | ! 4C
2 Kl Y 13 . J!
' X2 N X2 s W/8
Divide image into 4x4 Merge 2x2 Llrr(])'eeac:tion
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C dimensions now patches are H/8 rom 4C 1o
(effectively) 8x8 2C channels
2C (1x1 conv)
W/8
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Hierarchical ViT: Swin Transformer

c H W 2 H W AC H
X — X — X = X — X X
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Divide image into 4x4 Merge 2x2 Merge 2x2
patches and project to neighborhoods; neighborhoods;
C dimensions now patches are now patches are
(effectively) 8x8 (effectively) 16x16
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Hierarchical ViT: Swin Transformer
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Divide image into 4x4 Merge 2x2 Merge 2x2 Merge 2x2
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C dimensions now patches are now patches are now patches are
(effectively) 8x8 (effectively) 16x16 (effectively) 32x32
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Hierarchical ViT: Swin Transformer

Problem: 224x224 image

with 56>.<56 grlo! of 4x4 | H W H W H H W
patches: attention matrix — (Cx — x — 2C X — X — 4C X X 8C X
has 564 = 9.8M entries 4 4 8 8 16 16 32 32
" Stagel w7 Stage2 Cv 7 Stage3 N 07 Staged Y
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Divide image into 4x4 Merge 2x2 Merge 2x2 Merge 2x2
patches and project to neighborhoods; neighborhoods; neighborhoods;
C dimensions now patches are now patches are now patches are
(effectively) 8x8 (effectively) 16x16 (effectively) 32x32
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Hierarchical ViT: Swin Transformer

Problem: 224x224 image

with 56>.<56 grlo! of 4x4 | H W H W H H W
patches: attention matrix — (Cx — x — 2C X — X — 4C X X 8C X
has 564 = 9.8M entries 4 4 8 8 16 16 32 32
" Stagel w7 Stage2 Cv 7 Stage3 N 07 Staged Y
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SRR Block |11 |5 Block |11 |5 Block |!' |5 Block |,
211 S LA I~ 11 | s a1 = I
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‘. X2 AN X2 RN X6 ,’ ‘\ X2 ’
Divide image into 4x4 Merge 2x2 Merge 2x2 Merge 2x2
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C dimensions now patches are now patches are now patches are
(effectively) 8x8 (effectively) 16x16 (effectively) 32x32
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Swin Transformer: Window Attention

With H x W grid of tokens, each attention
matrix is H?W? — quadratic in image size

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021 140



Swin Transformer: Window Attention

With H x W grid of tokens, each attention
matrix is H?W? — quadratic in image size

Rather than allowing each token to attend to all
other tokens, instead divide into windows of
M x M tokens (here M=4); only compute
attention within each window

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021 141



Swin Transformer: Window Attention

With H x W grid of tokens, each attention
matrix is H?W? — quadratic in image size

Rather than allowing each token to attend to all
other tokens, instead divide into windows of
M x M tokens (here M=4); only compute
attention within each window

Total size of all attention matrices is now:
M4 (H/M)(W/M) = M2HW

Linear in image size for fixed M!
Swin uses M=7 throughout the network

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021 142



Swin Transformer: Window Attention

Problem: tokens only interact with other tokens within the
same window: no communication across windows

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021 143



Swin Transformer: Shifted Window Attention

Block L: Normal windows Block L+1: Shifted Windows

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021

Ugly detall:
Non-square
windows at
edges and
corners
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Swin Transformer: Shifted Window Attention

Detail: Relative Positional Bias

VIT adds positional embedding to
iInput tokens, encodes absolute
position of each token in the image

Block L: Normal windows Block L+1: Shifted Windows

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021 145



Swin Transformer: Shifted Window Attention

Detail: Relative Positional Bias

VIT adds positional embedding to
iInput tokens, encodes absolute
position of each token in the image

Swin does not use positional
embeddings, instead encodes
relative position between patches
> when computing attention:

Standard Attention:

A = Soft (QKT>V
=Jo0j7tmax \/.5

0,K,V:M? x D (Query, Key, Value)

Block L: Normal windows Block L+1: Shifted Windows

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021 146



Swin Transformer: Shifted Window Attention

Detail: Relative Positional Bias

VIT adds positional embedding to
iInput tokens, encodes absolute
position of each token in the image

Swin does not use positional
embeddings, instead encodes
relative position between patches
> when computing attention:

Attention with relative bias:

A = Soft (QKT+B>V
= Softmax

VD
0,K,V:M? x D (Query, Key, Value)

B: M? x M? (learned biases)

Block L: Normal windows Block L+1: Shifted Windows

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021 147



Swin Transformer: Speed vs Accuracy

-o-RegNetY -e-EffNet ViT+Distillation (DelT) Swin

Q0
o1

+

Q0
W

00]

Q0
)

Accuracy (ImageNet Top1)
00)
N

~
(@)

0 5 10 15 20
Speed (ms/image on V100)

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021 148



Swin Transformer: Speed vs Accuracy

-o-RegNetY -e-EffNet ViT+Distillation (DelT) Swin

85
34 0= -
83
« Bonus: Swin Transformer can also

be used as a backbone for object
detection, instance segmentation,
and semantic segmentation!

00]

Q0
)

Accuracy (ImageNet Top1)
(00
N

~
(@)

0 5 10 15 20
Speed (ms/image on V100)

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"”, CVPR 2021 149



Other Hierarchical Vision Transformers

MVIT Swin-V2 Improved MVIT

(‘Dog’, | ) ‘Running’

‘Dog’
q k v UV —
B [we | [ w¥ | [ w ||e=[CAtention ]
Parameterized t ; ! | I
T
e

<
.
B"’
=
=
5
3
A
Tz
g

b1 MVIT MVIT | | FPN| MVIT
=

(a) Image classification (b) Object detection (c) Video recognition
Fan et al., “Multiscale Vision Transformers”, Liu et al, “Swin Transformer V2: Scaling Li et al, “Improved Multiscale Vision Transformers
ICCV 2021 up Capacity and Resolution”, CVPR 2022 for Classification and Detection”, arXiv 2021
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Recap of Transformers

* Three key ideas
— Tokens
— Attention
— Positional encoding

Output
Probabilities
|l Softmax
t
| Linear
(. )
[ Add & Norm J<=~
Feed
Forward
D
s I ~ | Add & Norm J<~
> Add & Norm Mult-Head
Feed Attention
Forward ? I Nx
A [ ]ﬂ
Add & Norm
Nx I
~>| Add & Norm J e
Multi-Head Multi-Head
Attention Attention
. T T L
\_ J \_ _J)
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)
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Tokens: A new data structure

» A token is just transformer lingo for a vector of neurons (note: GNNs also operate over
tokens, but over there we called them “node attributes” or node “feature descriptors”)

» But the connotation is that a token is an encapsulated bundle of information; with
transformers we will operate over tokens rather than over neurons

array of neurons array of tokens

PS
OO0000O
e+
|OO0O00] [OO00] [©O00]
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Tokens: A new data structure

» A token is just transformer lingo for a vector of neurons (note: GNNs also operate over
tokens, but over there we called them “node attributes” or node “feature descriptors”)

» But the connotation is that a token is an encapsulated bundle of information; with
transformers we will operate over tokens rather than over neurons

set of neurons set of tokens
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[O000O] [OO0O] [OOOO]
[O000O] [OO0O] [OOOO]

'S
0000
0000
0000
0000
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Tokenizing the input data

tokens ‘ e.g., linear projection

.
.
.
.
"""
nus®

patches ‘

* \When operating over neurons, we represent
the input as an array of scalar-valued
measurements (e.q., pixels)

* \When operating over tokens, we represent
the input as an array of vector-valued

. measurements
INput

154



Tokenizing the input data

* You can tokenize anything.

» General strategy: chop the input up into chunks, project each chunk to a vector.

tokens

patches

input

tokens

byte pairs

input

J | Inl
(. bt
[Th][re] ... [wW][.]
bt bt

Three gui neaf ow .

tokens

sound
snippets

input

I
"t
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Transformers

 Transformers takeover the communities since their introduction.
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Image credit: Noe Casas

Pre-training in NLP (before Transformers)

I:’(‘Nn I‘"’n-2:n+2) Tq T2

</s>
(C000) e, Sy
S——— softma ] softma softmax
. JP I T
Softmax project. ) L project. ) project.
(e]eYol®) 1 | T
embed embedz embeds
/ - \ | | |
6 8 6 6 Model
ol |0 ol O
Q| 10 oo N .
g9 Wi i 1
wn-2 Wn-1 wn+1 Wn+2 = 1 -
word embeddings contextualized
word2vec word embeddings via LM
[Mikolov et al., 2013] ELMo

[Peters et al., 2018]

* Word embeddings = Contextualized word embeddings
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Image credit: Noe Casas

Pre-training in NLP (during Transformers)
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[Devlin et al., 2019]

* \Word embeddings = Contextualized word embeddings = Transformers
* Transformer-based models take over the language modelling / NLP domain
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Pre-training in NLP (during Transformers)
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Pre-training in Vision (during Transformers)

Many prior works attempted to introduce
self-attention at the pixel level.

For 224px?, that's bOk sequence length, too
much!

Thus, most works restrict attention to local
pixel neighborhoods, or as high-level
mechanism on top of detections.

The key breakthrough in using the full
Transformer architecture, standalone, was to
"tokenize" the image by cutting it into
patches of 16px?2, and treating each patch as
a token, e.g. embedding it into Input space.

Transformer-based models take over the
vision domain!

Dosovitskiy et al.,
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“An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 160
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Pre-training in Speech (during Transformers)

Largely the same story as in computer vision.
But with spectrograms instead of images.

|
i

Add a third type of block using convolutions, and slightly
reorder blocks, but overall very transformer-like.

Exists as encoder-decoder variant, or as
encoder-only variant with CTC loss.

Transformer-based models take over the
speech domain!
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Gulati et al. Conformer: Convolution-augmented Transformer for Speech Recognition. In INTERSPEECH 2020
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Summary

Attention is used to focus on parts of inputs/outputs

It can be content/location-based and hard/soft
Its three main distinct uses are

connecting encoder and decoder In seguence-to-sequence task
achieving scale-invariance and focus on image processing

- self-attention can be a basic building block for neural nets, often
replacing RNNs and CNNs [recent research, take it with a grain of salt]

ViTs are an evolution, not a revolution. We can still fundamentally
solve the same problems as with CNNs.

Matrix multiply i1Is more hardware-friendly than convolution,
so ViTs with same FLOPs as CNNs can train and run much faster
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Next lecture:
Graph Neural Networks



